
QUANTUM 
UNCERTAINT Y
F R A N C E S C O  B U S C E M I  ( N A G OYA  U N I V E R S I T Y )

C O L L O Q U I U M  @  D E P T. A P P L I E D  M AT H E M AT I C S

H A N YA N G U N I V E R S I T Y  ( E R I C A )

2 2  M A R C H  2 0 1 7



THE MECHANICAL CERTAINTY
“The universe as a clockwork”

Laplace’s Demon

“We may regard the present state of the universe as the effect of its past and the cause of its future. 

An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all 

items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it 

would embrace in a single formula the movements of the greatest bodies of the universe and those of the 

tiniest atom; for such an intellect nothing would be uncertain and the future, just like the past, would be 

present before its eyes.”

— Pierre Simon Laplace, A Philosophical Essay on Probabilities (1814)

An orrery.
The “digestive duck” (1739)



T H E  Q U A N T U M  
U N C E R TA I N T I E S
• L A P L A C E ’ S  D R E A M  I S  I M P O S S I B L E  

N OT  O N LY  I N  P R A C T I C E  
( C O M P L E X I T Y, C H A O S , E T C ) , B U T  
A L S O  I N  P R I N C I P L E !

• T H E  C U L P R I T : I N C O M PAT I B I L I T Y  O F  
Q U A N T U M  M E A S U R E M E N T S

• W H AT  A R E  Q U A N T U M  
M E A S U R E M E N T S ?  H OW  TO  D E F I N E  
T H E I R  I N C O M PAT I B I L I T Y ?  A R E  T H E R E  
“ M A N Y ”  Q U A N T U M  U N C E RTA I N T I E S ?



THE INCEPTION OF QUANTUM THEORY

• 1900: Max Planck suggests that radiation is emitted 
in discrete packets, so called “quanta” (sing. 
quantum, from Latin)

• 1905: Einstein explains the photoelectric effects 
using quantized radiation

• 1913: Millikan shows that electric charge always 
comes in integer multiples of an elementary 
charge, the electron

• 1913: Bohr’s atomic model: energy is also 
quantized

• 1923: De Broglie suggests the “wave-particle 
duality”

• 1926~1932: von Neumann lays the mathematical 
foundations of quantum theory

• 1927: Heisenberg’s formulates the “uncertainty 
principle”



QUANTUM MEASUREMENTS
Quantum postulates:

• Quantum states:

normalized complex vectors | ۧ𝜓

(here, Dirac notation: 𝜙,𝜓 = 𝜙 𝜓 )

• Schrödinger’s equation:

a closed system’s evolution is a unitary 

transformation

• Quantum (projective) measurements:

given as set 𝑚𝑖 , Π𝑖 𝑖 where 𝑚𝑖 ∈ ℝ are the 

measurement’s outcomes, and Π𝑖Π𝑗 =

𝛿𝑖𝑗Π𝑖 ≥ 0 are the measurement’s operators

• Born’s rule:

on state | ۧ𝜓 , outcome 𝑚𝑖 is obtained with 

probability 𝑝𝑖 = Π𝑖| ۧ𝜓 2 = 𝜓 Π𝑖 𝜓

• indeed, a measurement process is an open 

process!



QUANTUM OBSERVABLES

Observables:

• Due to the “spectral theorem,” projective 
measurements 𝑚𝑖 , Π𝑖 𝑖 are in one-to-one 
correspondence with self-adjoint operators 
𝐴 = 𝐴† = σ𝑖𝑚𝑖Π𝑖

• Self-adjoint operators are hence called 
“observables” because they correspond to 
“measurable quantities”

• Analogy with analytical mechanics:
there, physical quantities were real functions; 
here they are self-adjoint operators 
(“functions of functions”)

operation vs representation



NONCOMMUTATIVITY

• Operators, in general, do non-commute: 

𝐴𝐵 − 𝐵𝐴 ≠ 0

• It is easy to understand the meaning of 

noncommutativity in the case of maps 

• Quantum theory states that also physical 

quantities are represented by operators

• What does it mean that two physical 

quantities do not commute?

• In particular, what does noncommutativity 

mean in the context of the measurement 

process? Can we “see” noncommutativity?

noncommutativity: example with rotations



HEISENBERG-ROBERTSON RELATIONS
• average value (expectation value):

෍𝑚𝑖𝑝𝑖 =෍𝑚𝑖 𝜓 Π𝑖 𝜓 = 𝜓 𝐴 𝜓 = 𝐴 𝜓

• standard deviation (root variance):

𝜎𝜓 𝐴 = 𝜓 𝐴 − 𝐴 𝜓
2
𝜓 = 𝐴2 𝜓 − 𝐴 𝜓

2

• mathematical relation (Heisenberg-Robertson):

𝜎𝜓 𝐴 𝜎𝜓 𝐵 ≥
1

2
𝜓 𝐴𝐵 − 𝐵𝐴 𝜓

• when 𝐴 = ො𝑞 (position) and 𝐵 = ො𝑝 (momentum), 

ො𝑞 ො𝑝 − ො𝑝ො𝑞 = 𝑖ℏ, and

𝜎𝜓 ො𝑞 𝜎𝜓 ො𝑝 ≥
ℏ

2
≈ 10−34𝐽 ∙ 𝑠

(notice the lower bound is here independent of 𝜓)

The question is: what are the “practical” consequences of 

this bound? Can we give an “intuitive” explanation?



HEISENBERG’S INTUITION

Let 𝜎(𝑞) be the precision with which the value q is 

known (i.e., the mean error of q), therefore here the 

wavelength of the light. Let 𝜎(𝑝) be the precision 

with which the value p is determinable; that is, here, 

the discontinuous change of p in the Compton effect 

(scattering).

— W. Heisenberg, “The physical content of 

quantum kinematics and mechanics.” 1927

𝜎 𝑞 𝜎 𝑝 ≥
ℏ

2
≈ 10−34𝐽 ∙ 𝑠

the gamma-ray “microscope”

Paraphrasing: “The more information we obtain about 

the electron’s present position, the more uncertain 

the electron’s future position becomes.”



AGAINST FORMULATIONS “À LA 
HEISENBERG”

Criticisms to Heisenberg’s argument (i.e., the interpretation):

• It is based on a semi-classical model for the measurement interaction (recoil)

• Heisenberg uses it to characterize the measurement process, but it actually refers to the state 

preparation process

• Orthodox interpretation: “no quantum state exists, which has both position and momentum 

sharply defined as the same time”

Criticisms to the Heisenberg-Robertson bound (i.e., the mathematics):

• Standard deviations depend too much on the precise numerical value of eigenvalues (scaling, 

relabeling)

• The bound in general depends on the state of the system: it becomes trivial if | ۧ𝜓 is either 

eigenstate of A or of B (remember the important exception of position and momentum)

• Standard deviations do not really have an operational interpretation in information theory



SHANNON ENTROPY

• Given is a discrete random variable 𝑋, taking values 𝑥𝑖 with probability 𝑝 𝑖
• Its entropy is given by 𝐻 𝑋 = −σ𝑖 𝑝 𝑖 log2 𝑝 𝑖
• Entropy measures how “random” the random variable is (compression rate, etc.)

Small variance “implies” small entropy, but not vice versa

My greatest concern was what to call it. I thought of calling it 

“information,” but the word was overly used, so I decided to 

call it “uncertainty.” When I discussed it with John von 

Neumann, he had a better idea. Von Neumann told me, “You 

should call it entropy, for two reasons. In the first place your 

uncertainty function has been used in statistical mechanics 

under that name, so it already has a name. In the second place, 

and more important, no one really knows what entropy really 

is, so in a debate you will always have the advantage.”



ENTROPIC UNCERTAINTY RELATIONS

• For simplicity, assume non-degenerate observables 𝐴 = σ𝑖𝑚𝑖| ۧ𝛼𝑖 |𝛼𝑖ۦ (i.e., 𝑚𝑖 ≠ 𝑚𝑗)

• Denote 𝐻 𝐴 𝜓 = −σ𝑖 𝑝(𝑖) log2 𝑝(𝑖) where 𝑝 𝑖 = 𝛼𝑖 𝜓
2

• Then one has the following bound (Maassen, Uffink, 1988): 

𝐻 𝐴 𝜓 + 𝐻 𝐵 𝜓 ≥ − log2 𝑐 𝐴, 𝐵

where 𝑐 𝐴, 𝐵 = max
𝑖,𝑗

𝛼𝑖 𝛽𝑗
2

• The lower bound does not depend on the state | ۧ𝜓 : automatically holds for mixed states too. 

Compare this with what one would get from Robertson: 𝜎𝜚 𝐴 𝜎𝜚 𝐵 ≥
1

2
𝑇𝑟 𝜚 𝐴𝐵 − 𝐵𝐴

• Entropy has a neat operational meaning in information theory



WHAT ABOUT HEISENBERG’S 
ORIGINAL INTUITION?
• So, is it true or not, that information extraction causes disturbance?

• Difference between static uncertainty principles (“it is impossible to prepare a state that 

has all dynamical variables sharply distributed”) and dynamical uncertainty principles (“the 

act of measuring one dynamical variable with high accuracy necessarily disturbs the others”)

• Both the Heisenberg-Robertson relation and the Maassen-Uffink relation are static uncertainty 

relations

• Dynamical uncertainty principles: Ozawa (variance based, state dependent), Busch-Lahti-

Werner (variance based, state independent), Buscemi-Hall-Ozawa-Wilde (entropic, state 

independent), Coles-Furrer (entropic, state dependent)

• …

“A watched pot 

never boils”



CONCLUSIONS

• Laplace (mechanics):

“…for such an intellect nothing would be uncertain and the future, just like the past, 

would be present before its eyes.”

• Shannon (information theory):

“…we may have knowledge of the past but cannot control it; we may control the 

future but have no knowledge of it.”

• Quantum theory (this talk):

we cannot completely know the present (static uncertainty principles), and the more 

we learn about it, the more uncertain the future becomes (dynamical uncertainty 

principles)

• Is there any “deeper” description of reality then?


