Reverse Data-Processing Theorems

Francesco Buscemi (Nagoya University)

Hong Kong Workshop on Quantum Information and Foundations Dept. of Computer Science, University of Hong Kong 4 May 2016



✓ let  $\mathcal{N} : \mathscr{X} \to \mathscr{Y}$  and  $\mathcal{W} : \mathscr{Y} \to \mathscr{Z}$  be two noisy channels

✓ then, the joint distributions  $(U, Y) \equiv (U, \mathcal{N}(X))$  and  $(U, Z) \equiv (U, \mathcal{W}(Y))$  are such that

 $H(U|Y) \leq H(U|Z)$  for all initial (U,X)



✓ let  $\mathcal{B} : \mathscr{X} \to (\mathscr{Y}, \mathscr{Z})$  be a broadcast channel

✓ assume that the final distribution  $(U, Y, Z) \equiv (U, \mathcal{B}(X))$  is such that

 $H(U|Y) \leq H(U|Z)$  for all initial (U,X)

✓ can we then conclude that there exists a noisy channel  $\mathcal{W} : \mathscr{Y} \to \mathscr{Z}$  such that  $(U, Z) = (U, \mathcal{W}(Y))$  for all initial (U, X)?

✓ no (Körner and Marton, 1977)

#### degradable, less noisy, more capable

Given two noisy channels  $\mathcal{N}: \mathscr{X} \to \mathscr{Y}$  and  $\mathcal{N}': \mathscr{X} \to \mathscr{Z}$ , Körner and Marton (1977) introduce the following definitions:



 $\checkmark \mathcal{N} \text{ is degradable into } \mathcal{N}' \text{ if there exists a noisy channel } \mathcal{W}: \mathscr{Y} \to \mathscr{Z} \text{ such that}$ 

 $\mathcal{N}'=\mathcal{W}\circ\mathcal{N}$ 

✓  $\mathcal{N}$  is less noisy than  $\mathcal{N}'$  if

 $H(U|Y) \leq H(U|Z)$  for all initial (U,X)

✓  $\mathcal{N}$  is more capable than  $\mathcal{N}'$  if

$$H(X|Y) \leqslant H(X|Z)$$
 for all initial X



Reverse Data-Processing Theorem (FB, Prob. Inf. Trans. 2016) Given two noisy channels  $\mathcal{N} : \mathscr{X} \to \mathscr{Y}$  and  $\mathcal{N}' : \mathscr{X} \to \mathscr{Z}$ ,

 $H_{\min}(U|Y) \leqslant H_{\min}(U|Z)$  for all initial (U,X),

if and only if  $\mathcal N$  is degradable in  $\mathcal N'.$  In other words,

degradable  $\iff$  less noisy w.r.t.  $H_{\min}$ .

$$\checkmark H_{\min}(U|Y) = -\log_2 P_{\text{guess}}(U|Y) = -\log_2 \sum_y \max_u p(u, y)$$

✓ it also holds approximately

 $\checkmark$  suppose that, given a conditional probability  $p(y_1, y_2, \cdots, y_N | x)$ , we want to find stochastic dependencies between these variables



- ✓ reverse data-processing theorem: a path exists if and only if H<sub>min</sub> never decreases (equivalently, no path exists if and only if H<sub>min</sub> strictly decreases at some point for some initial conditions)
- $\checkmark$  stochastic dependencies follow the "flow" of  $H_{\min}$
- $\checkmark$  partial ordering  $\implies$  incomparable paths
- ✓ for example, the figure above is equivalent to the following entropic conditions:

$$\begin{cases} H_{\min}(U|Y_1) \leqslant H_{\min}(U|Y_2) \leqslant H_{\min}(U|Y_4) \leqslant H_{\min}(U|Y_5), & \text{for all initial } (U,X) \\ H_{\min}(U|Y_3) \leqslant H_{\min}(U|Y_5), & \text{for all initial } (U,X) \\ H_{\min}(U|Y_3) \leqslant \{H_{\min}(U|Y_1), H_{\min}(U|Y_2), H_{\min}(U|Y_4)\}, & \text{for some initial } (U,X) \end{cases}$$

## divisibility of stochastic processes



- $\checkmark$  divisibility:  $\mathcal{N}_i = \mathcal{W}_i \circ \mathcal{W}_{i-1} \circ \cdots \circ \mathcal{W}_1$
- ✓ a dynamical map is divisible if and only if the sequence  $\{H_{\min}(U|Y_i)\}_{i \ge 1}$  is non-decreasing for all initial (U, X)
- $\checkmark$  namely, divisibility is equivalent to "no  $H_{\min}$  backflow"
- the same insight holds also in the quantum (Buscemi, Datta; PRA 2016) approximate (Jencova; ISIT 2016) case

## the case of open quantum systems dynamics

S: system, E: environment, S + E: conservative



But the given process need not be collisional to be divisible. **Question**: how to characterize system-environment correlations that do not break divisibility?

- experimentally, the initial factorization condition is an approximation (and strong-coupling regimes are of interest)
- what happens to the reduced dynamics in the presence of initial system-environment correlations?
- ✓ Pechukas (PRL, 1994): "Here we show that complete positivity is an artifact of product initial conditions. In general, reduced dynamics need not be CP"
- ✓ Lindblad (J. Phys. A, 1995) and Alicki (PRL, 1995, comment to Pechukas)
- 🖌 Rodriguez-Rosario, Modi, Kuah, Sudarshan (2008): null discord  $\implies$  divisibility
- ✓ Shabani–Lidar (2009): null discord ⇔ divisibility (Erratum 2016)
- ✓ Brodutch, Datta, Modi, Rivas, Rodriguez-Rosario (2013): divisibility ⇒ null discord
- ✓ FB (2014): what follows

- system and environment start in a correlated state: they have to be considered as one composite system
- ✓ reference–system–environment:  $H_U \otimes H_S \otimes H_E$
- $\checkmark$  the initial condition is given as a tripartite density operator  $\rho_{USE}$



✓ the state  $\rho_{USE}$  is "passive" if  $H(U|S)_{\rho} \leq H(U|S')_{\sigma}$  for all isometries V ✓ first fact:  $\rho_{USE}$  passive  $\iff \forall V_{SE}, \exists \mathcal{E}_{S}^{V} : \sigma_{US'} = (\mathrm{id}_{U} \otimes \mathcal{E}_{S}^{V})(\rho_{US})$ ✓ second fact:  $\rho_{USE}$  passive  $\iff I(U; E|S)_{\rho} = 0 \implies$  "passive"  $\equiv$  "Markovian" ✓ the above facts constitute another reverse data-processing theorem ✓ no reference system; instead, given is a family  $\mathscr{I} = \{\rho_{SE} : \rho_{SE} \in \mathscr{S}\}$  of possible initial joint system-environment states



 $\checkmark$  in the above diagram,  $\rho_{SE}$  is a generic element of  $\mathscr{S}$  (i.e., the condition must hold for all  $\rho_{SE} \in \mathscr{S}$ )

 $\checkmark$  if the above diagram holds for all isometries V, we say that the family  $\mathscr{S}$  is Markovian

 $\checkmark$  example: the initial factorization condition, i.e.,  $\mathscr{S} = \{\rho_S \otimes \overline{\xi}_E : \rho_S \text{ any state of } S\}$ for some fixed environment state  $\bar{\xi}_E$ , defines a Markovian family

# connecting the two approaches

- ✓ how to connect the tripartite with the bipartite scenario? ✓ steering:  $\rho_{SE}^{\Pi} = \frac{\text{Tr}_{U}[\rho_{USE} (\Pi_{U} \otimes \mathbb{1}_{SE})]}{\text{Tr}[\rho_{USE} (\Pi_{U} \otimes \mathbb{1}_{SE})]}$  for some  $\Pi > 0$
- ✓ we say that the family  $\mathscr{S}$  is steerable if there exists a  $\rho_{USE}$  such that: (a) for all  $\rho_{SE} \in \mathscr{S}$  there exists a  $\Pi_U > 0$  such that the above holds, and (c) for all  $\Pi_U > 0$ , the steered state  $\rho_{SE}^{\Pi}$  is in  $\mathscr{S}$
- $\checkmark$  example: if  $\mathscr S$  is a polytope (e.g., bipartite cq-states) then it's steerable
- ✓ example: the family  $\mathscr{S} = \{\rho_S \otimes \overline{\xi}_E\}$  corresponding to the initial factorization condition is steerable
- ✓ main fact: bipartite family  $\mathscr{S}$  is steerable and Markovian  $\iff$  it can be steered from Markovian  $\rho_{USE}$ , i.e.,  $I(U; E|S)_{\rho} = 0$
- ✓ first corollary: all previous cases (they all happen to be steerable Markovian families)
- many other more general constructions are possible too between "strength/character of initial correlations" and "existence of CPTP reduced dynamics"
- ✓ second corollary: if  $\mathscr{S}$  is Markovian, steerable, and such that  $\operatorname{Tr}_{E}[\mathscr{S}]$  contains all states on  $\mathcal{H}_{S}$ , then it must be in factorized form  $\implies$  initial factorization condition
- extra goody: we can apply all the tools recently developed for approximate recoverability (family is approximately steerable, family is approximately Markov, tripartite state is approximately Markov, etc)

#### summary

- $\checkmark$  data-processing theorem: if there is a process, information always decreases
- ✓ reverse data-processing theorem: if information *always* decreases, then there exists a process
- data-processing inequality as a "physical principle": the flow of information determines the evolution
- ✓ analogy with strong (i.e., necessary and sufficient) second law-like statements (e.g., Lieb-Yngvasson formulation of adiabaticity)
- ✓ work in progress: applications to generalized resource theories



è finita la comedia