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what is a data-processing theorem?

let N : X → Y and W : Y → Z be two noisy channels

then, the joint distributions (U, Y ) ≡ (U,N (X)) and (U,Z) ≡ (U,W(Y )) are such that

H(U |Y ) 6 H(U |Z) for all initial (U,X)

notice that H(U |Y ) 6 H(U |Z) ⇐⇒ H(U)−H(U |Y ) > H(U)−H(U |Z) ⇐⇒ I(U ;Y ) > I(U ;Z)
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what is a reverse data-processing theorem?

let B : X → (Y ,Z ) be a noisy broadcast channel

4 assume that the final distribution (U, Y, Z) ≡ (U,B(X)) is such that

H(U |Y ) 6 H(U |Z) for all initial (U,X)

4 can we then conclude that there exists a noisy channel W : Y → Z such that
(U,Z) = (U,W(Y )) for all initial (U,X)?

4 no (Körner and Marton, 1977)
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a useful hierarchy of conditions

Consider two noisy channels N : X → Y and N ′ : X → Z

Körner and Marton (1977) introduce the following definitions:

4 N is degradable into N ′ if there exists a noisy channel W : Y → Z such that

N ′ =W ◦N

4 N is less noisy than N ′ if

H(U |Y ) 6 H(U |Z) for all initial (U,X)

4 N is more capable than N ′ if

H(X|Y ) 6 H(X|Z) for all initial X

4 fact: degradable =⇒
6⇐=

less noisy =⇒
6⇐=

more capable
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a reverse that works

Again, take two noisy channels N : X → Y and N ′ : X → Z

Question: when can we say that N is degradable into N ′, i.e., that there exists channel
W such that W ◦N = N ′?

Körner-Marton (1977)

H(U |Y ) 6 H(U |Z) for all initial (U,X)
6=⇒
⇐=

∃W: W ◦N = N ′

Theorem (2016)

Hmin(U |Y ) 6 Hmin(U |Z) for all initial (U,X)
⇐⇒

∃W: W ◦N = N ′

4 Hmin(U |Y ) = − log2 Pguess(U |Y ) = − log2

∑
y maxu p(u, y)

4 it also holds in the quantum case

4 it also holds approximately
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application 1: finding Bayesian structures

4 suppose that, given a conditional probability p(y1, y2, · · · , yN |x), we want to find
stochastic dependencies between these variables

4 reverse data-processing theorem: a path exists if and only if Hmin never decreases
(equivalently, no path exists if and only if Hmin strictly decreases at some point for
some initial conditions)

4 stochastic dependencies follow the “flow” of Hmin

4 partial ordering =⇒ incomparable paths

4 for example, the figure above is equivalent to the following entropic conditions:
Hmin(U |Y1) 6 Hmin(U |Y2) 6 Hmin(U |Y4) 6 Hmin(U |Y5), for all initial (U,X)

Hmin(U |Y3) 6 Hmin(U |Y5), for all initial (U,X)

Hmin(U |Y3) ≶ {Hmin(U |Y1), Hmin(U |Y2), Hmin(U |Y4)}, for some initial (U,X)
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a picture (information as a “fluid”)

Again: while height is a total ordering, the info-ordering is only a partial ordering
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application 2: divisibility of stochastic processes

4 divisibility: Ni =Wi ◦Wi−1 ◦ · · · ◦ W1

4 a dynamical map is divisible if and only if the sequence {Hmin(U |Yi)}i>1 is
non-decreasing for all initial (U,X)

4 namely, divisibility is equivalent to “no Hmin backflow”

4 the same insight holds also in the quantum case (Buscemi, Datta; PRA 2016) and
approximately (Buscemi, Prob. Inf. Trans. 2016; Jencova, ISIT 2016)
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Intervallo: comparison with the Second Law

Reverse Data-Processing Theorems

4 Data-Processing as a principle

4 Hmin(U |X1) 6 Hmin(U |X2), for
U,X1, X2 random variables

4 Equivalent to existence of a memoryless
process

4 No information backflows

Lieb and Yngvasson (1999)

4 Second Law as a principle

4 S(X1) 6 S(X2), for X1, X2

thermodynamical equilibrium states

4 Equivalent to existence of an adiabatic
process

4 No heat flows
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the case of open quantum systems dynamics

S: system, E: environment, S + E: conservative

However, the given process need not be collisional to be divisible, i.e., there are
system-environment correlations that do not break divisibility. Question: how to
characterize such correlations?
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the “Pechukas debate” (1994 onwards)

4 experimentally, the initial factorization condition is an approximation (and
strong-coupling regimes are of interest)

4 what happens to the reduced dynamics in the presence of initial system-environment
correlations?

4 Pechukas (PRL, 1994): “Here we show that complete positivity is an artifact of
product initial conditions. In general, reduced dynamics need not be CP”

4 Lindblad (J. Phys. A, 1995) and Alicki (PRL, 1995, comment to Pechukas)

4 Rodriguez-Rosario, Modi, Kuah, Sudarshan (2008): null discord =⇒ divisibility

4 Shabani–Lidar (2009): null discord ⇐⇒ divisibility (Erratum 2016)

4 Brodutch, Datta, Modi, Rivas, Rodriguez-Rosario (2013): divisibility 6=⇒ null
discord

4 FB (2014): what follows
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guiding idea: data-processing as a principle

4 system and environment start in a correlated state: they have to be considered as
one composite system

4 reference–system–environment: HU ⊗HS ⊗HE
4 the initial condition is given as a tripartite density operator ρUSE

4 the state ρUSE is “Markovian” if H(U |S)ρ 6 H(U |S′)σ for all isometries V

4 first fact: ρUSE Markovian ⇐⇒ I(U ;E|S)ρ = 0

4 second fact: ρUSE Markovian ⇐⇒ ∀VSE , ∃ES : σUS′ = (idU ⊗ ES)(ρUS)

4 therefore, Markovian ⇐⇒ no backflows of information
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conventional approach

4 no reference system; instead, given is a family S = {ρSE : ρSE ∈ S } of possible
initial joint system–environment states

4 in the above diagram, ρSE is a generic element of S (i.e., the condition must hold
for all ρSE ∈ S )

4 if the above diagram holds for all isometries V , we say that the family S is
Markovian

4 example: the initial factorization condition, i.e., S = {ρS ⊗ ξ̄E : ρS any state of S}
for some fixed environment state ξ̄E , defines a Markovian family
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relations

4 how to connect the tripartite with the bipartite scenario?

4 steering: ρΠ
SE =

TrU [ρUSE (ΠU ⊗ 1SE)]

Tr[ρUSE (ΠU ⊗ 1SE)]
for some Π > 0

4 we say that the family S is steerable if there exists a ρUSE such that:
1 for all ρSE ∈ S there exists a ΠU > 0 such that the above holds, and
2 for all ΠU > 0, the steered state ρΠ

SE is in S

4 example: if S is a polytope (e.g., bipartite cq-states) then it’s steerable

4 example: the family S = {ρS ⊗ ξ̄E} corresponding to the initial factorization
condition is steerable

4 main fact: bipartite family S is steerable and Markovian ⇐⇒ it can be steered
from Markovian ρUSE , i.e., I(U ;E|S)ρ = 0

4 first corollary: all previous cases (they all happen to be steerable Markovian families)

4 many other more general constructions are possible too =⇒ no direct connection
between “strength/character of initial correlations” and “existence of CPTP reduced
dynamics”

4 second corollary: assume S Markovian and TrE [S ] complete (contains all states
on HS) =⇒ initial factorization condition

4 extra goody: we can apply all the tools recently developed for approximate
recoverability (family is approximately steerable, family is approximately Markov,
tripartite state is approximately Markov, etc)
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summary

4 data-processing theorem: if there is a process, information always decreases

4 reverse data-processing theorem: if information always decreases, then there exists a
process

4 data-processing inequality as a “physical principle”: the flow of information
determines the evolution

4 no backflows of information + completeness ⇐⇒ initial factorization condition

4 analogy with strong (i.e., necessary and sufficient) second law-like statements (e.g.,
Lieb–Yngvasson formulation of adiabaticity)

4 work in progress: applications to generalized resource theories

�e finita la comedia
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