A resource theory of quantum nonlocality (in space and time)

Francesco Buscemi (Nagoya)

Workshop on Multipartite Entanglement Centro de Ciencias Pedro Pascual, Benasque, Spain 22 May 2018

with Yeong-Cherng Liang (Tainan)

and Denis Rosset (PI)

Two paradigms for entanglement verification

- hidden nonlocality: some entangled states never violate any Bell inequality
 - © device independence

perfect

⑤ faithfulness: for any entangled state,

there exists a witness detecting it

measurement devices need to be

The time-like analogue: quantum memory verification

- ✓ the Choi correspondence, $\mathcal{E}_{A \to B} \longleftrightarrow \rho_{AB}$, suggests trying the same approach in time
- encouraging fact: "classical" (i.e., separable) states correspond to "classical" (i.e., entanglement-breaking) channels

✓ in full analogy with entanglement witnesses, process tomography is faithful (☺) but requires complete trust in the tomographic devices (☺)
✓ instead, time-like Bell tests simply trivialize: A can always signal to B

The case of two memories

 however, if *two* quantum memories are available, one can imagine doing the following

- here, we need two quantum memories, and the test is assessing the pair simultaneously (and it's a Bell test, hence device-independent but not faithful)
- thus the problem remains: is it possible to certify a single given memory, without using any side-channel?

Francesco Buscemi

Let us go back to the space-like setting and try to modify Bell's scenario...

The "semiquantum" Bell scenario

- in conventional nonlocal games, questions are classical labels; in semiquantum (nonlocal) games, questions are encoded on quantum states
- ✓ the referee chooses questions x and y at random
- ✓ the referee encodes questions on quantum states $\tau^x_{A'}$ and $\omega^y_{B'}$
- ✓ the system A' is sent to Alice, B' to Bob

 Alice and Bob must locally compute answers a and b

Achievable correlations in the semiquantum scenario are given by $p(a, b|x, y, \rho_{AB}) = \operatorname{Tr}\left[(P^a_{A'A} \otimes Q^b_{BB'}) \ (\tau^x_{A'} \otimes \rho_{AB} \otimes \omega^y_{B'})\right]$ for varying POVMs

Semiquantum nonlocal games

- ✓ in analogy with quantum statistical decision problems (Holevo, 1973), we also introduce a real-valued payoff function f(a, b, x, y)
- ✓ the "utility" of a given bipartite state ρ_{AB} w.r.t. the semiquantum nonlocal game (τ^x, ω^y, f) is then computed as

$$f^*(\rho_{AB}) = \max_{P,Q} \sum_{a,b,x,y} f(a,b,x,y) \underbrace{\operatorname{Tr}\left[(P^a_{A'A} \otimes Q^b_{BB'}) \left(\tau^x_{A'} \otimes \rho_{AB} \otimes \omega^y_{B'} \right) \right]}_{p(a,b|x,y,\rho_{AB})}$$

Theorem (2012)

Given two bipartite states ρ_{AB} and σ_{CD} , $f^*(\rho_{AB}) \ge f^*(\sigma_{CD})$ for all semiquantum nonlocal games, if and only if

$$\sigma_{CD} = \sum_{\lambda} p(\lambda) \left[\mathcal{E}_{A \to C}^{\lambda} \otimes \mathcal{F}_{B \to D}^{\lambda} \right] (\rho_{AB}) ,$$

for some CPTP maps \mathcal{E}, \mathcal{F} and normalized probability distribution $p(\lambda)$.

- semiquantum nonlocal games provide a complete set of monotones for local operations and shared randomness (LOSR)
- ✓ it is natural to understand this as a resource theory of quantum nonlocality: free operations are LOSR and hence free states are separable states
- ✓ this is different from a resource theory of nonlocality (without "quantum"): there, being manipulated are correlations p(a, b|x, y) (like, e.g., PR-boxes), not bipartite quantum states ρ_{AB}

Robustness properties of semiquantum nonlocal games

- semiquantum nonlocal games ~~ measurement-device-independent entanglement witnesses
- ✓ in particular, robust against losses in the detectors (losses spoil Bell tests)
- moreover, robust against classical communication between players (this also spoils Bell tests)
- this feature is especially welcome in the time-like scenario, where signaling cannot be ruled out and hence *must be assumed*

While we do not have time-like Bell tests, <mark>we could have time-like</mark> <mark>semiquantum tests!</mark>

It! Could! Work!

The time-like semiquantum scenario

(here we should think of *B* as "Alice after some time") \checkmark give Alice a state τ^x at time t_0

wait some time

 \checkmark give her another state ω^y at time t_1

 \checkmark the round ends with Alice outputting an outcome b

Achievable input/output correlations are computed as

$$p(b|x, y, \mathcal{N}) = \sum_{i} \operatorname{Tr} \left[P_{\bar{B}B}^{b|i} \left\{ \omega_{\bar{B}}^{y} \otimes \left(\mathcal{N}_{A \to B} \circ \mathcal{I}_{\bar{A} \to A}^{i} \right) (\tau_{\bar{A}}^{x}) \right\} \right]$$

where $\{\mathcal{I}^i\}$ is an instrument, so that any amount of classical communication can be transmitted via the index i

Francesco Buscemi

Time-like semiquantum games

✓ introduce a real-valued payoff function f(b, x, y)

 \checkmark the utility of a channel ${\cal N}$ is given by

$$f^{*}(\mathcal{N}) = \max_{\mathcal{I},P} \sum_{b,x,y} f(b,x,y) \underbrace{\sum_{i} \operatorname{Tr} \left[P_{\bar{B}B}^{b|i} \left\{ \omega_{\bar{B}}^{y} \otimes \left(\mathcal{N}_{A \to B} \circ \mathcal{I}_{\bar{A} \to A}^{i} \right) (\tau_{\bar{A}}^{x}) \right\} \right]}_{p(b|x,y,\mathcal{N})}$$

Theorem (2018)

Given two channels $\mathcal{N}_{A\to B}$ and $\mathcal{N}'_{A'\to B'}$, $f^*(\mathcal{N}) \ge f^*(\mathcal{N}')$ for all time-like semiquantum games, if and only if

$$\mathcal{N}'_{A'\to B'} = \sum_{i} \mathcal{D}^{i}_{B\to B'} \circ \mathcal{N}_{A\to B} \circ \mathcal{I}^{i}_{A'\to A} ,$$

for some instrument $\{\mathcal{I}^i\}$ and CPTP maps $\{\mathcal{D}^i\}$.

A resource theory of quantum memories

- free operations are given by classically correlated pre/post-processing maps (i.e., quantum combs with classical memory)
- ✓ free "states" are entanglement-breaking channels
- no shared entanglement or backward classical communication in the case of memories

Other features of time-like semiquantum games

- ✓ as long as the quantum memory (channel) *E* is not entanglement breaking, there exists a time-like semiquantum game capable of certifying that
- ✓ assumption: we need to trust the preparation of states τ^x and ω^y , but that is anyway required in the time-like scenario (no fully device-independent quantum channel verification [Pusey, 2015])
 - \implies faithfulness with minimal assumptions
- extra feature: it is possible to *quantify* the minimal dimension of the quantum memory

Conclusions

- ✓ entanglement witnesses: faithful, but complete trust is necessary
- ✓ Bell tests: fully device-independent, but not faithful
- semiquantum tests: faithful, and trust is required only for the referee's preparation devices
- semiquantum tests are particularly compelling in the time-like scenario, in which no device-independent quantum channel verification exists anyway
- verification of non-classical correlations among any two locally quantum agents, independent of their causal separation
- ✓ the test is quantitative: a lower bound on the quantum dimension can be given

