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worried about data remanence?



What Quantum Theory Tells Us

e the (information carrier) is a quantum system @)
e the isaCPTPmap & :Q —
e the holds the environment E purifying (—

Appendix) the hiding process &£

Ideal objective: the initial information, after the erasure process,
is neither in Q" nor in E.

. is this possible?
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No, It’s Not Possible

input: an unknown quantum state |¢)) € Hg

assumption: perfect erasure, i.e., the output E(|¢){(w|) does
not depend on [¢)

conclusion: no-hiding, i.e., the initial state |¢)) can be found
intact in the environment £

Perfect hiding of quantum information is impossible, that is,

quantum information is preserved: it can only be moved to the environment (i.e.,

handed over to the eavesdropper)
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Yes, It Is Possible

e input: an unknown state |¢)') chosen from a set of orthogonal
states

e hiding process: measurement on the Fourier transform basis
(7). ie [0 = 3
e the corresponding Stinespring-Kraus dilation is given by
W) — D [9o) ) (ol Wg) = |Bys)
2 XJI 2) (ol Vo) = |Bys

(. V) max. ent.

-~

isometry Vo o/

e perfect hiding has been achieved in this case
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Motivation of This Talk

e whether perfect hiding can be achieved or not, depends on the
“form” of the set of input states used to encode information

e tantalizing idea: quantum information (the first example)
cannot be hidden, while classical information (the second
example) can; to what extent is this true?

e problem: to find a framework able to handle general sets of
input states

4/16



Private Quantum Decoupling



The Extended Setting

R

)

e input: instead of a set of states of (), we consider one
bipartite state prg, shared with a reference R

e hiding process: an isometry V splitting the input system ()
into output @)’ and junk FE

e ideal goal (perfect hiding): grg = or ® gg (perfect
decoupling) and ogp = or ® op (perfect privacy)
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Relation with The Conventional Setting

e original question is single-partite: are all states pg in set S
hidable?

e but is any set S “reasonable”?

e preparability assumption: there must exist an input system
X and a CP (maybe not TP) map & : X — @ such that S is
the image of S

e fact: a set is preparable if and only if there exists a bipartite
state prg such that S is recovered by steering from R:

Trrlprg (TR ® 1))
Trlprq (7R ® Ig)]

VpQES, HWRZO:[)Q:

e hence, from now on, instead of considering a set of possible

input states, we consider a single bipartite state 6/16



The Quantum Mutual Information (QMI)

o define I(X;Y) & H(X) + H(Y) — H(XY)
¢ 0<I(X;Y) < 2H(X)
o I(X;Y) > sisllpxy — px @ pyl?

Given an input bipartite state pprg, find an isometry V', taking @
into Q'F, such that

I(R;Q)=0 and I(R;E)=0.
~ -~ v ———

decoupling privacy
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Reformulation of No-Hiding Using QMI

e consider an initial bipartite pure state |¥pgg)
e any isometry on () will output a tripartite pure state |Vpo )
e in this case, the balance relation identically holds

I(R; Q) + I(R; E) = 2H(R)

——— N —

decoupling privacy

No-Hiding (reform.): in the pure state case, all correlations are
intrinsic, i.e., decoupling and privacy are mutually incompatible
requirements.

Remark. In particular, the original Braunstein-Pati theorem is recovered for

|V ro) maximally entangled.
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Optimal Hiding

Since ideal hiding is in general impossible, we consider a relaxation
of the problem:

Given an input bipartite state pp(, its intrinsic (or
“non-hidable™) correlations are defined by

{f(R; Q) - I(R; E) }

def

&(pre) =, éng, .

Remark. Perfect hiding for pre is possible if and only if {(prg) = 0.
Remark. One can also consider £5(pre) = infy.gos {I(R; Q') : I(R; E) < €}

or &'(pro) = infy.guor {I(R;Q) : I(R;E) < I(R;Q")}. -



General Bound

Theorem

For any prg, we have

1(Q)R) < &(pro) < SI1(R; Q) ,

N | —

where I.(Q)R) = H(R) — H(RQ) is the coherent information.

o for pure states, {(prg) equals the entropy of entanglement H(R); in general,
however, it is not an entanglement measure

e it is nonetheless a good entanglement parameter, in the sense that
§(pre) = H(Q) < IL(Q)R) — H(Q)

e it satisfies , that is, for any tripartite pure state |¥srq),
£(psr) +€&(prg) < H(R) 10/16



More About Monogamy

given a tripartite density matrix 0,,, its quantum conditional mutual
information (QCMI) is defined as
I(w;y]z) = H(z|2) + H(y|2) — H(zy|z) = H(z[2) — H(z|yz)

let w be the purifying system for xyz; then —H (z|yz) = H(x|w)
this implies that 2H (z) — I(z;y|2) = I(x; 2) + [(z;w)

in our case: prqg LA |Wsro) LECRCEN \‘i’SRQ'E>

by substituting (w,z,y,z) — (E, R, S, Q") we obtain
I(R; Q) + I(R; E)}

H(R) - 31(Ri51Q) = { {9

which holds for any bipartite splitting.
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Relations with Entanglement

From the identity {W} = H(R) — $1(R; S|Q’), we have that

5 {I(R;Q’HI(R;E)

. bomm - s rRSQ)

V:Q—Q'E

intrinsic correlations £(prq)

1 I(R;Q) + I(R; E)
° sup { 5

“puffed” entanglement Esq(prs)

}:H(R)_ inf  Lr(R;s|Q)

V:Q—=Q'E V:Q—-Q'E 2

“extrinsic” correlations £(prq) squashed entanglement Esq(prs)

Theorem. For any tripartite pure state |Wsrp) the following hold:

i

H(R) and
H(R) .

(Pr@) + Esq(prs)
g E(pRQ) + Esq(PRS)
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The Asymptotic Scenario

As it is customary in information theory, we consider the regularized
quantity:

awr .1
§*(pro) = lim —¢(ppp)

n—oo M,

1 I Xn. N/ ®mn.
Sl (IR IRE)
n—o0o N V:Q®"—=Q' E, 2

Remark. The splitting isometry is in general entangled, that is,
Q" — Q, B, # (Q'E)*".

Theorem (Asymptotic Hiding)

For any initial state prg, £*(prg) = 21.(Q)R).
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An Attempt at Visualizing

I(R;«2)
I(R;E)

PURE STATES
I(R;Q)+ (R E) = 1(R; Q)

Hence:

HIXED STATES
I(R;Q) + I(R; E) = 2I.(Q)R)

e intrinsic (non-hidable) correlations: 21.(Q)R) < I(R;Q)
e pure-state correlations are all intrinsic: 2I.(Q)R) = I(R; Q)
e separable-state correlations are all perfectly hidable: 27.(Q)R) =0
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Side Remark: The Role of Randomness

With free private randomness, private quantum decoupling becomes

trivial.
° : a max. mixed state wp = élp that we can trust to
be independent of Eve
° : an isometry V : QP — Q'F
. - orge = (Ir ® Vop)(pro ® wp)(Ir ® Vip)

Since }lzz oipo; = %IQ for any initial qubit state p, the state wp = }114 and
the isometry V : QP — Q'E, given by V =5, 097 @ |ig)(ip|, are enough
to perfectly hide any two-qubit correlation.
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Summary

e pure-state correlations cannot be hidden: I(R; Q')+ I(R; E) = I(R; Q)
e however, in general: £(pro) = info ,om H{I(R;Q)+I(RE)} < I(R; Q)

e monogamy 1: intrinsic correlations are dual to “puffed” entanglement, i.e.,
£(prq) + Esq(prs) = H(R), for all pure |Ugrg)

e monogamy 2: squashed entanglement is dual to “extrinsic” correlations,
i.e., £(prg) + Esq(prs) = H(R), for all pure |Ugpg)

e private randomness enables perfect hiding

e connections with other protocols in QIT? e.g., randomness extraction, private key
distribution, etc.

e connections with foundations? e.g., Landauer’s principle, uncertainty relations,
quantumness of correlations, black holes information, etc.

Thank YOU i6/16



Appendix: The Stinespring-Kraus Dilation

e consider an input/output quantum process (CPTP

map) &, mapping density matrices on H, to ,
B . ) @
ensity matrices on H ¢y

e Kraus operator-sum representation:

E(p) = Xy BunB] @ in ‘
~V Bl

e Kraus-Stinespring dilation: each CPTP map £
can be written as £(p) = Trg[VpVT] (Stinespring) Q@ — @’

or E(p) = Trg[U(pg ® |0)(0|g,)U1] (Kraus) E,,—»___L_L _ %

e in quantum crypto-analyses, the subsystem F' is
the eavesdropper's
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