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worried about data remanence?
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What Quantum Theory Tells Us

• the input (information carrier) is a quantum system Q

• the hiding process is a CPTP map E : Q→ Q′

• the eavesdropper holds the environment E purifying (→
Appendix) the hiding process E

Perfect Hiding

Ideal objective: the initial information, after the erasure process,
is neither in Q′ nor in E.

Question: is this possible?

1/16



No, It’s Not Possible

No-Hiding Theorem (Braunstein, Pati, 2007)

• input: an unknown quantum state |ψ〉 ∈ HQ

• assumption: perfect erasure, i.e., the output E(|ψ〉〈ψ|) does
not depend on |ψ〉
• conclusion: no-hiding, i.e., the initial state |ψ〉 can be found

intact in the environment E

Interpretation. Perfect hiding of quantum information is impossible, that is,

quantum information is preserved: it can only be moved to the environment (i.e.,

handed over to the eavesdropper)
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Yes, It Is Possible

• input: an unknown state |ψi〉 chosen from a set of orthogonal
states

• hiding process: measurement on the Fourier transform basis
|ψ̃j〉, i.e., |〈ψ̃j|ψi〉|2 = 1

d

• the corresponding Stinespring-Kraus dilation is given by

|ψiQ〉 7−→
∑
j

|ψ̃jQ′〉|ψ̃
j
E〉〈ψ̃

j
Q|︸ ︷︷ ︸

isometry VQ→Q′E

|ψiQ〉 = |BiQ′E〉︸ ︷︷ ︸
max. ent.

,

• perfect hiding has been achieved in this case
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Motivation of This Talk

• whether perfect hiding can be achieved or not, depends on the
“form” of the set of input states used to encode information

• tantalizing idea: quantum information (the first example)
cannot be hidden, while classical information (the second
example) can; to what extent is this true?

• problem: to find a framework able to handle general sets of
input states
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Private Quantum Decoupling



The Extended Setting

• input: instead of a set of states of Q, we consider one
bipartite state ρRQ, shared with a reference R
• hiding process: an isometry V splitting the input system Q

into output Q′ and junk E
• ideal goal (perfect hiding): σRQ′ = σR ⊗ σQ′ (perfect

decoupling) and σRE = σR ⊗ σE (perfect privacy)
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Relation with The Conventional Setting

• original question is single-partite: are all states ρQ in set S
hidable?
• but is any set S “reasonable”?
• preparability assumption: there must exist an input system
X and a CP (maybe not TP) map S : X → Q such that S is
the image of S
• fact: a set is preparable if and only if there exists a bipartite

state ρRQ such that S is recovered by steering from R:

∀ρQ ∈ S, ∃πR ≥ 0 : ρQ =
TrR[ρRQ (πR ⊗ IQ)]

Tr[ρRQ (πR ⊗ IQ)]

• hence, from now on, instead of considering a set of possible
input states, we consider a single bipartite state 6/16



The Quantum Mutual Information (QMI)

• define I(X;Y )
def

= H(X) +H(Y )−H(XY )

• 0 ≤ I(X;Y ) ≤ 2H(X)

• I(X;Y ) ≥ 1
2 ln 2‖ρXY − ρX ⊗ ρY ‖

2
1

Ideal Hiding (Reformulation)

Given an input bipartite state ρRQ, find an isometry V , taking Q
into Q′E, such that

I(R;Q′) = 0︸ ︷︷ ︸
decoupling

and I(R;E) = 0︸ ︷︷ ︸
privacy

.
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Reformulation of No-Hiding Using QMI

• consider an initial bipartite pure state |ΨRQ〉
• any isometry on Q will output a tripartite pure state |Ψ̃RQ′E〉
• in this case, the balance relation identically holds

I(R;Q′)︸ ︷︷ ︸
decoupling

+ I(R;E)︸ ︷︷ ︸
privacy

= 2H(R)

No-Hiding (reform.): in the pure state case, all correlations are
intrinsic, i.e., decoupling and privacy are mutually incompatible
requirements.

Remark. In particular, the original Braunstein-Pati theorem is recovered for

|ΨRQ〉 maximally entangled.
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Optimal Hiding

Since ideal hiding is in general impossible, we consider a relaxation
of the problem:

Definition (Symmetric Case)

Given an input bipartite state ρRQ, its intrinsic (or
“non-hidable”) correlations are defined by

ξ(ρRQ)
def

= inf
V :Q→Q′E

{
I(R;Q′) + I(R;E)

2

}

Remark. Perfect hiding for ρRQ is possible if and only if ξ(ρRQ) = 0.

Remark. One can also consider ξε(ρRQ)
def
= infV :Q→Q′E {I(R;Q′) : I(R;E) ≤ ε}

or ξ′(ρRQ)
def
= infV :Q→Q′E {I(R;Q′) : I(R;E) ≤ I(R;Q′)}.

9/16



General Bound

Theorem

For any ρRQ, we have

Ic(Q〉R) ≤ ξ(ρRQ) ≤ 1

2
I(R;Q) ,

where Ic(Q〉R)
def

= H(R)−H(RQ) is the coherent information.

• for pure states, ξ(ρRQ) equals the entropy of entanglement H(R); in general,
however, it is not an entanglement measure

• it is nonetheless a good entanglement parameter, in the sense that

ξ(ρRQ)→ H(Q) ⇐⇒ Ic(Q〉R)→ H(Q)

• it satisfies monogamy, that is, for any tripartite pure state |ΨSRQ〉,
ξ(ρSR) + ξ(ρRQ) ≤ H(R) 10/16



More About Monogamy

• given a tripartite density matrix σxyz, its quantum conditional mutual
information (QCMI) is defined as
I(x; y|z) = H(x|z) +H(y|z)−H(xy|z) = H(x|z)−H(x|yz)

• let w be the purifying system for xyz; then −H(x|yz) = H(x|w)

• this implies that 2H(x)− I(x; y|z) = I(x; z) + I(x;w)

• in our case: ρRQ
purify−−−→ |ΨSRQ〉

V :Q→Q′E−−−−−−→ |Ψ̃SRQ′E〉

• by substituting (w, x, y, z)→ (E,R, S,Q′) we obtain

H(R)− 1

2
I(R;S|Q′) =

{
I(R;Q′) + I(R;E)

2

}
,

which holds for any bipartite splitting.

11/16



Relations with Entanglement

From the identity
{
I(R;Q′)+I(R;E)

2

}
= H(R)− 1

2I(R;S|Q′), we have that

• inf
V :Q→Q′E

{
I(R;Q′) + I(R;E)

2

}
︸ ︷︷ ︸

intrinsic correlations ξ(ρRQ)

= H(R)− sup
V :Q→Q′E

1

2
I(R;S|Q′)︸ ︷︷ ︸

“puffed” entanglement Esq(ρRS)

;

• sup
V :Q→Q′E

{
I(R;Q′) + I(R;E)

2

}
︸ ︷︷ ︸

“extrinsic” correlations ξ(ρRQ)

= H(R)− inf
V :Q→Q′E

1

2
I(R;S|Q′)︸ ︷︷ ︸

squashed entanglement Esq(ρRS)

.

Theorem. For any tripartite pure state |ΨSRQ〉 the following hold:

• ξ(ρRQ) + Esq(ρRS) = H(R) and

• ξ(ρRQ) + Esq(ρRS) = H(R) .
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The Asymptotic Scenario

As it is customary in information theory, we consider the regularized
quantity:

ξ∞(ρRQ)
def

= lim
n→∞

1

n
ξ(ρ⊗nRQ)

= lim
n→∞

1

n
inf

V :Q⊗n→Q′nEn

{
I(R⊗n;Q′n) + I(R⊗n;En)

2

}
Remark. The splitting isometry is in general entangled, that is,

Q⊗n → Q′nEn 6= (Q′E)⊗n.

Theorem (Asymptotic Hiding)

For any initial state ρRQ, ξ
∞(ρRQ) = 2Ic(Q〉R).
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An Attempt at Visualizing

I(R;Q′) + I(R;E) = I(R;Q) I(R;Q′) + I(R;E) = 2Ic(Q〉R)

Hence:

• intrinsic (non-hidable) correlations: 2Ic(Q〉R)� I(R;Q)

• pure-state correlations are all intrinsic: 2Ic(Q〉R) = I(R;Q)

• separable-state correlations are all perfectly hidable: 2Ic(Q〉R) = 0
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Side Remark: The Role of Randomness

With free private randomness, private quantum decoupling becomes
trivial.

• private randomness: a max. mixed state ωP = 1
dP
IP that we can trust to

be independent of Eve

• hiding process: an isometry V : QP → Q′E

• output state: σRQ′E = (IR ⊗ VQP )(ρRQ ⊗ ωP )(IR ⊗ V †QP )

Example

Since 1
4

∑
i σiρσi = 1

2
I2 for any initial qubit state ρ, the state ωP = 1

4
I4 and

the isometry V : QP → Q′E, given by V =
∑

i σ
Q→Q′

i ⊗ |iE〉〈iP |, are enough

to perfectly hide any two-qubit correlation.
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Summary

• pure-state correlations cannot be hidden: I(R;Q′) + I(R;E) = I(R;Q)

• however, in general: ξ(ρRQ)
def
= infQ→Q′E

1
2
{I(R;Q′) + I(R;E)} � I(R;Q)

• monogamy 1: intrinsic correlations are dual to “puffed” entanglement, i.e.,
ξ(ρRQ) + Esq(ρRS) = H(R), for all pure |ΨSRQ〉

• monogamy 2: squashed entanglement is dual to “extrinsic” correlations,
i.e., ξ(ρRQ) + Esq(ρRS) = H(R), for all pure |ΨSRQ〉

• private randomness enables perfect hiding

• connections with other protocols in QIT? e.g., randomness extraction, private key

distribution, etc.

• connections with foundations? e.g., Landauer’s principle, uncertainty relations,

quantumness of correlations, black holes information, etc.

Thank you 16/16



Appendix: The Stinespring-Kraus Dilation

• consider an input/output quantum process (CPTP
map) E , mapping density matrices on HQ to
density matrices on HQ′

• Kraus operator-sum representation:
E(ρ) =

∑
k EkρE

†
k

• Kraus-Stinespring dilation: each CPTP map E
can be written as E(ρ) = TrE[V ρV †] (Stinespring)
or E(ρ) = TrE[U(ρQ ⊗ |0〉〈0|E0)U

†] (Kraus)

• in quantum crypto-analyses, the subsystem E is
the eavesdropper’s
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