Channels inclusion, falsification, and verification

Francesco Buscemi¹ in coll. with: S. Brandsen, M. Dall'Arno, Y.-C. Liang, D. Rosset, V. Vedral **QCQIP 2017**, Chinese Academy of Sciences, Beijing, 14 November 2017

¹Dept. of Mathematical Informatics, Nagoya University, buscemi@i.nagoya-u.ac.jp

Direct and Reverse Shannon Theorems

 $C(\mathcal{N}) = \overline{C}(\mathcal{N}).$

Shannon's noisy channel coding theorem is a statement about asymptotic simulability.

As a single-shot, zero-error analogue, Shannon, in *A Note on a Partial Ordering for Communication Channels* (1958), defines an exact form of simulability that he names "inclusion."

Definition (Inclusion Ordering)

Given two classical channels $W : \mathcal{X} \to \mathcal{Y}$ and $W' : \mathcal{X}' \to \mathcal{Y}'$, we write $W \supseteq W'$ if there exist encodings $\{\mathcal{E}_{\alpha}\}_{\alpha}$, decodings $\{\mathcal{D}_{\alpha}\}_{\alpha}$, and a probability distribution μ_{α} such that $W' = \sum_{\alpha} \mu_{\alpha} (\mathcal{D}_{\alpha} \circ W \circ \mathcal{E}_{\alpha})$.

"Simulability" Orderings

$\rightarrow \mathbb{N} \rightarrow \mathbb{D} \rightarrow$	d Contractions	
Degradability	Shannon's Inclusion	Quantum Inclusion
$\mathcal{N} ightarrow \mathcal{N}'$	$\mathcal{N}\supseteq\mathcal{N}'$	$\mathcal{N}\supseteq_{\mathrm{q}}\mathcal{N}'$
$\exists \mathcal{D}: CPTP$	$\exists \{ \mathcal{E}_{\alpha} \}_{\alpha}, \{ \mathcal{D}_{\alpha} \}_{\alpha} : CPTP$	$\exists \{\mathscr{I}^i\}_i : CP \text{ instrument}$
such that	and μ_{lpha} : prob. dist. such that	and $\{\mathcal{D}_i\}_i: CPTP$ such that
$\mathcal{N}' = \mathcal{D} \circ \mathcal{N}$	$\mathcal{N}' = \sum_{\alpha} \mu_{\alpha} (\mathcal{D}_{\alpha} \circ \mathcal{N} \circ \mathcal{E}_{\alpha})$	$\mathcal{N}' = \sum_i (\mathcal{D}_i \circ \mathcal{N} \circ \mathscr{I}^i)$

- for degradability, the two channels need to have the same input system; the two inclusion orderings allow to modify both input and output
- $\mathcal{N} \to \mathcal{N}' \implies \mathcal{N} \supseteq \mathcal{N}' \implies \mathcal{N} \supseteq_q \mathcal{N}'$ (all strict implications)
- the "quantum inclusion" ordering \supseteq_q allows unlimited free classical forward communication: it is non-trivial only for quantum channels

In the same paper, Shannon also introduces the following:

Definition (Coding Ordering)

Given two classical channels W : $\mathcal{X} \to \mathcal{Y}$ and W' : $\mathcal{X}' \to \mathcal{Y}'$, we write $W \gg W'$ if, for any (M, n) code for W' and any choice of prior distribution π_i on codewords, there exists an (M, n) code for W with average error probability $P_e = \sum_i \pi_i \lambda_i \leq P'_e = \sum_i \pi_i \lambda'_i$.

Note: here λ_i denotes the conditional probability of error, given that index i was sent.

Fact

$$\mathsf{W}\supseteq\mathsf{W}'\implies\mathsf{W}\gg\mathsf{W}'\implies C(\mathsf{W})\geq C(\mathsf{W}')$$

The above definition and theorem can be directly extended to quantum channels and their classical capacity.

Other "Coding" Orderings

From: J. Körner and K. Marton, *The Comparison of Two Noisy Channels*. Topics in Information Theory, pp.411-423 (1975)

Definition (Capability and Noisiness Orderings)

Given two classical channels $W:\mathcal{X}\to\mathcal{Y}$ and $W':\mathcal{X}\to\mathcal{Z},$ we say that

- 1. W is more capable than W' if, for any input random variable X, $H(X|Y) \leq H(X|Z)$
- 2. W is less noisy than W' if, for any pair of jointly distributed random variables (U, X), $H(U|Y) \le H(U|Z)$

Theorem (Körner and Marton, 1975)

It holds that

degradable \implies less noisy \implies more capable,

and all implications are strict.

- two kinds of orderings: **simulability orderings** (degradability, Shannon inclusion, quantum inclusion) and **coding orderings** (Shannon coding ordering, noisiness and capability orderings)
- simulability orderings ⇒ coding orderings: data-processing theorems
- coding orderings ⇒ simulability orderings: reverse data-processing theorems

- role in statistics: majorization, comparison of statistical models (Blackwell's sufficiency and Le Cam's deficiency), asymptotic statistical decision theory
- role in physics, esp. quantum theory: channels describe physical evolutions; hence, reverse-data processing theorems allow the reformulation of statistical physics in information-theoretic terms
- applications so far: quantum non-equilibrium thermodynamics; quantum resource theories; quantum entanglement and non-locality; stochastic processes and open quantum systems dynamics

Channels Inclusion(s), Falsification, and Verification

(Two Possible) Quantum Inclusion Orderings

Definition (Q-to-C Inclusion)

For a given CPTP map $\mathcal{N}: \mathsf{L}(\mathcal{H}_A) \to \mathsf{L}(\mathcal{H}_B)$, we denote by $S_{\mathcal{X} \to \mathcal{Y}}(\mathcal{N})$ the set of all classical channels $\mathsf{W}: \mathcal{X} \to \mathcal{Y}$ such that $\mathsf{W}(y|x) = \sum_{\alpha,\alpha} \mu_{\alpha} \operatorname{Tr}[\mathcal{N}(\rho_A^{x,\alpha}) P_B^{y|\alpha}]$, where $\{\rho_A^{x,\alpha}\}_{x,\alpha}$ are normalized states and $\{P_B^{y|\alpha}\}_{\alpha}$ POVMs.

Definition (C-to-Q Inclusion)

For a given classical channel W : $\mathcal{X} \to \mathcal{Y}$, we denote by $S_{A \to B}(W)$ the set of all CPTP maps $\mathcal{N} : L(\mathcal{H}_A) \to L(\mathcal{H}_B)$ such that $\mathcal{N}(\bullet_A) = \sum_{\alpha,x} \mu_{\alpha} \rho_B^{y,\alpha} W(y|x) \operatorname{Tr}[\bullet_A P_A^{x|\alpha}]$, where $\{\rho_B^{y,\alpha}\}_{y,\alpha}$ are normalized states and $\{P_A^{x|\alpha}\}_{\alpha}$ POVMs.

Falsification

To provide experimental evidence for $\exists W$ such that $W \notin S(\mathcal{N})$

Verification

To provide experimental evidence for $\not\supseteq \mathsf{W}$ such that $\mathcal{N} \in S(\mathsf{W})$

Channel Falsification: The Task

- A memory is thought of as a black-box with one input (classical or quantum) and one output (classical or quantum)
- Some hypothesis is made about the black-box, that is, a description of it in terms of a channel ${\cal N}$

While it is impossible to verify the hypothesis \mathcal{N} in a device-independent way, it is possible to *falsify* it: if a correlation $p(y|x) \notin S_{\mathcal{X} \to \mathcal{Y}}(\mathcal{N})$ is observed, the hypothesis \mathcal{N} is falsified in a device-independent way.

Problem: how to give a lower bound on the dimension of a memory by observing input/output classical correlations?

Question

Are *d*-dimensional classical identity id_d^c and *d*-dimensional quantum identity id_d^q distinguishable in this basic setting?

Equivalently stated, is there a correlation p(y|x) able to falsify id_d^c but not $\mathrm{id}_d^q?$

Theorem (P.E. Frenkel and M. Weiner, CMP, 2015)

No: the identity $S_{\mathcal{X}\to\mathcal{Y}}(\mathrm{id}_d^c) = S_{\mathcal{X}\to\mathcal{Y}}(\mathrm{id}_d^q)$ holds for all choices of alphabets \mathcal{X} and \mathcal{Y} .

Remark. Strongest generalization of Holevo theorem for static quantum memories.

Other Results

More generally, what can one say about the structure of $S_{\mathcal{X}\to\mathcal{Y}}(\mathcal{N})$, for an arbitrary channel \mathcal{N} ?

- qubit c-q channels: closed analytical form, when $\mathcal{Y} = \{0, 1\}$ [Dall'Arno, 2017]
- qubit q-c channels (POVMs): closed analytical form in general [Dall'Arno, Brandsen, FB, Vedral, 2017]
- general channels: closed form for a large class of qubit channels (including amplitude damping) and *d*-dimensional universally covariant channels, when $\mathcal{Y} = \{0, 1\}$ [Dall'Arno, Brandsen, FB, 2017]

Little Corollary About Shannon's Orderings

Given a quantum channel $\mathcal{N}: A \to B$ and a classical testing channel $W: \mathcal{X} \to \mathcal{Y} \equiv \{0, 1\}$,

$$\mathcal{N} \supseteq \mathsf{W} \iff \mathcal{N} \gg \mathsf{W}$$
.

Quantum Channel Verification: The Task

The "complementary" problem to falsification is that of *quantum channel* verification: how to verify that $\not\exists$ W such that $\mathcal{N} \in S(W)$?

Since in the above scheme W can be any classical channel, i.e., one-way cc is free, channel verification here amounts to verify that the given channel $\mathcal{N} : L(\mathcal{H}_A) \to L(\mathcal{H}_B)$ is not entanglement-breaking.

$$A \rightarrow M \rightarrow B \neq A \rightarrow P_A \xrightarrow{z} P_B^{z_A} \rightarrow B$$

Remark: from now on, we consider that α is included in x.

Quantum Inclusion

We are naturally led to consider a resource theory of quantum memories, in which resources are quantum channels and free operations are pre/post-processings assisted by one-way classical communication.

$$A' \xrightarrow{\mu_i} A \xrightarrow{B} \mathcal{D}_B' = A' \xrightarrow{N'} B'$$

Definition

Given two CPTP maps $\mathcal{N}: A \to B$ and $\mathcal{N}': A' \to B'$, we write $\mathcal{N} \supseteq_{\mathbf{q}} \mathcal{N}'$ whenever there exists a CP instrument $\{\mathscr{I}^i_{A' \to A}\}$ and a family of CPTP maps $\{\mathcal{D}^i_{B \to B'}\}$ such that

$$\mathcal{N}' = \sum_i \mathcal{D}^i \circ \mathcal{N} \circ \mathscr{I}^i$$

Question: what is the *operational* counterpart of the quantum inclusion ordering?

13/15

Semiquantum Signaling Games

A semiquantum signaling game is a tuple $\mathbb{G} = [\mathcal{X}, \mathcal{Y}, \mathcal{B}, \{\tau_{\bar{A}}^x\}, \{\omega_{\bar{B}}^y\}, \wp(x, y, b)]$:

- the referee picks an $x \in \mathcal{X}$ and gives $\tau^x_{\bar{A}}$ to Alice
- Alice does something on it and is able to store as much classical information as she likes
- the referee then picks a $y\in \mathcal{Y}$ and gives her $\omega^y_{\overline{B}}$
- the round ends with Alice outputting a classical outcome $b \in \mathcal{B}$
- Alice's computed outcome earns or costs her an amount decided by $\wp(x,y,b) \in \mathbb{R}$

Expected Channel Utility

Given the channel $\mathcal{N}:A\to B$ as a resource for Alice, its expected utility in game $\mathbb G$ is given by

$$\wp_{\mathbb{G}}^{*}(\mathcal{N}) = \max \sum_{x,y,i,b} \wp(x,y,b) \operatorname{Tr} \left\{ P_{B\bar{B}}^{b|i} \left[(\mathcal{N}_{A} \circ \mathscr{I}_{\bar{A}}^{i})(\tau_{\bar{A}}^{x}) \otimes \omega_{\bar{B}}^{y} \right] \right\} ,$$

where the max is taken over instrument $\{\mathscr{I}_{\bar{A}\to A}^i\}$ and POVMs $\{P_{B\bar{B}}^{b|i}\}_{i}$.

MDI Quantum Memory Verification

Theorem

For any given pair of CPTP maps $\mathcal{N} : A \to B$ and $\mathcal{N}' : A' \to B'$, $\mathcal{N} \supseteq_{\mathbf{q}} \mathcal{N}'$ if and only if $\wp_{\mathbb{G}}^*(\mathcal{N}) \ge \wp_{\mathbb{G}}^*(\mathcal{N}')$, for all semiquantum signaling games \mathbb{G} .

Corollary

- 1. All EB channels achieve the same expected payoff $\wp_{\mathbb{G}}^{\mathrm{EB}}$ in all games \mathbb{G} .
- 2. A channel \mathcal{N} is not EB if and only if there exists a semiquantum signaling game \mathbb{G} such that $\wp_{\mathbb{G}}^*(\mathcal{N}) > \wp_{\mathbb{G}}^{\mathrm{EB}}$.
- that is, as long as the quantum memory (channel) ${\cal N}$ is not EB, there exists a semiquantum signaling game capable of verifying that
- assumption: the referee trusts the preparation of states τ^x and ω^y , but that is anyway required in the time-like scenario: no fully device-independent quantum channel verification [Pusey, 2015]
- extra feature: it is possible to *quantify* the minimal dimension (Schmidt rank) of the quantum memory
- practicality, tolerance against loss, etc

Role of "reverse data-processing theorems" in statistical physics