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Direct and Reverse Shannon Theorems

Direct Shannon Coding Reverse Shannon Coding

direct capacity C'(N) reverse capacity C'(\)

Bennett, Devetak, Harrow, Shor, Winter (circa 2007-2014)

For a classical channel A/, when shared randomness is free,

CN) = CN).

Shannon's noisy channel coding theorem is a statement about asymptotic
simulability.
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Shannon’s “Channel Inclusion”

As a single-shot, zero-error analogue, Shannon, in A Note on a Partial Ordering
for Communication Channels (1958), defines an exact form of simulability that
he names “inclusion.”

Definition (Inclusion Ordering)

Given two classical channels W : X — Y and W/ : X’ — ), we write

W O W if there exist encodings {€, }a, decodings {D,}., and a
probability distribution pi, such that W' = 3" 14 (Dy oW o &,).
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“Simulability” Orderings
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Degradability

Shannon'’s Inclusion

Quantum Inclusion

N — N N DN N Dq N/
3D : CPTP FHEu}as{Data : CPTP | 3{F}; : CP instrument
and pi, : prob. dist. and {D;}; : CPTP
such that such that such that
N =DoN N' =3 pa(PaoNo&) | N =3 ,(DioNo.s?)

e for degradability, the two channels need to have the same input system; the two
inclusion orderings allow to modify both input and output

e NN — N DN’ = N Dq N’ (all strict implications)
e the “quantum inclusion” ordering D4 allows unlimited free classical forward

communication: it is non-trivial only for quantum channels
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Shannon’s Coding Ordering

In the same paper, Shannon also introduces the following:

Definition (Coding Ordering)

Given two classical channels W : X — Y and W/ : X’ — ), we write

if, for any (M, n) code for W’ and any choice of prior
distribution 7; on codewords, there exists an (M, n) code for W with
average error probability P, = >, mA\; < P/ =", m,.

Note: here \; denotes the conditional probability of error, given that index ¢ was sent.

Fact
WOW — W>W — CW)>CW)

The above definition and theorem can be
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Other “Coding” Orderings

From: J. Kérner and K. Marton, The Comparison of Two Noisy Channels. Topics in
Information Theory, pp.411-423 (1975)

Definition (Capability and Noisiness Orderings)
Given two classical channels W : X — Y and W' : X — Z, we say that

1. Wis than W’ if, for any input random variable X,
H(X|Y) < H(X|Z)
2. Wis than W' if, for any pair of jointly distributed random

variables (U, X), H{U|Y) < H(U|Z)

Theorem (Korner and Marton, 1975)
It holds that

degradable —> less noisy = more capable,

and all implications are strict.
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Reverse Data-Processing Theorems

e two kinds of orderings: simulability orderings (degradability,
Shannon inclusion, quantum inclusion) and coding orderings
(Shannon coding ordering, noisiness and capability orderings)

e simulability orderings = coding orderings: data-processing
theorems

e coding orderings = simulability orderings: reverse data-processing
theorems
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Theorems Are Relevant

e role in statistics: majorization, comparison of statistical models
(Blackwell’s sufficiency and Le Cam’s deficiency), asymptotic
statistical decision theory

e role in physics, esp. quantum theory: channels describe physical
evolutions; hence, reverse-data processing theorems allow the
reformulation of statistical physics in information-theoretic terms

e applications so far: quantum non-equilibrium thermodynamics;
quantum resource theories; quantum entanglement and non-locality;
stochastic processes and open quantum systems dynamics
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Channels Inclusion(s), Falsification, and
Verification



(Two Possible) Quantum Inclusion Orderings

Definition (Q-to-C Inclusion) Definition (C-to-Q Inclusion)

For a given CPTP map For a given classical channel W : X — ),

N :L(Ha) — L(Hp), we denote by we denote by Sa_, (W) the

Sx—y(N) the such
such that that NV(e4) =

W (y|z) = ;a ey Tr[/\f(p;’“) P}_yg“"}’ Za@ ,uapvaOt W(y|z) Tr[e o Pz|a],

where {p’y“}4 o are normalized states where {p%;%}y o are normalized states

and {PY“}, POVMs. and {P%l}, POVMs.

Falsification Verification
To provide experimental evidence for W To provide experimental evidence for
such that W ¢ S(N\) A W such that A/ € S(W)
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Channel Falsification: The Task

4

e A memory is thought of as a black-box with one input (classical or
quantum) and one output (classical or quantum)

e Some hypothesis is made about the black-box, that is, a description
of it in terms of a channel N

While it is impossible to verify the hypothesis A in a device-independent
way, it is possible to falsify it: if a correlation p(y|z) & Sy_y(N) is
observed, the hypothesis NV is falsified in a device-independent way.
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Example: Dimension Falsification

Problem: how to give a lower bound on the dimension of a memory by
observing input/output classical correlations?

Question

Are d-dimensional id and d-dimensional
id? distinguishable in this basic setting?
Equivalently stated, is there a correlation p(y|z) able to falsify idj
id??
d

Theorem (P.E. Frenkel and M. Weiner, CMP, 2015)

No: the identity for all choices of
alphabets X and ).

Remark. Strongest generalization of Holevo theorem for static quantum
memories.
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Other Results

More generally, what can one say about the structure of Sy_,y(N), for
an arbitrary channel /7

e qubit c-q channels: closed analytical form, when Y = {0, 1}
[Dall’Arno, 2017]

e qubit g-c channels (POVMs): closed analytical form in general
[Dall'Arno, Brandsen, FB, Vedral, 2017]

e general channels: closed form for a large class of qubit channels
(including amplitude damping) and d-dimensional universally
covariant channels, when Y = {0, 1} [Dall'Arno, Brandsen, FB,
2017]

Little Corollary About Shannon’s Orderings

Given a quantum channel A : A — B and a classical testing channel
W:x —Y={0,1},

NDOW <<= N >W.
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Quantum Channel Verification: The Task

The “complementary” problem to falsification is that of quantum channel
verification:

Since in the above scheme W can be any classical channel, i.e.,
, channel verification here amounts to verify that the given
channel N : L(H4) — L(Hp) is

——

xj

a-[Ne # lﬁﬂxﬁ

Remark: from now on, we consider that « is included in x. 12/15



Quantum Inclusion

We are naturally led to consider a ,in
which resources are quantum channels and free operations are
pre/post-processings assisted by one-way classical communication.

, ‘ A.'B -
AMB? DDB‘ r—-IB' = AI"’_E_)B'

0
_ C

Definition
Given two CPTP maps V' : A — B and N7 : A’ — B’, we write

whenever there exists a CP instrument {.#}, , ,} and a
family of CPTP maps {D%_, 5, } such that

N’zZDiONOfi

. what is the operational counterpart of the quantum inclusion
ordering? 13/15



Semiquantum Signaling Games

A semiquantum signaling game is a tuple G = [X, ), B, {75}, {w%}, (z,y,b)]:

Cx cig

. la ® B
5;_,/\ ».() PBE

time b

Expected Channel Utility

the referee picks an z € X’ and gives 77
to Alice

Alice does something on it and is able to
store as much classical information as she
likes

the referee then picks a y € ) and gives

y
her wp

the round ends with Alice outputting a
classical outcome b € B

Alice's computed outcome earns or costs
her an amount decided by p(z,y,b) € R

Given the channel N : A — B as a resource for Alice, its expected utility in

game G is given by

paN) =max > p(z,5,0) Tr{ Py [Waosh)(rh) @wh]}

x,y,1,b

where the max is taken over instrument {.% , ,} and POVMs {Pg; 3
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MDI Quantum Memory Verification

Theorem

For any given pair of CPTP maps N : A — B and N' : A’ — B/,
, for all semiquantum signaling games G.

Corollary

1. All EB channels achieve the same expected payoff pE° in all games G.

2. A channel AV is not EB if and only if there exists a semiquantum signaling
game G such that p&(N) > pE.

e that is,

e assumption: the referee trusts the preparation of states 7° and w, but
that is anyway required in the time-like scenario:

e extra feature:

e practicality, tolerance against loss, etc
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Role of “reverse data-processing theorems” in
statistical physics
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