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Direct and Reverse Shannon Theorems

Direct Shannon Coding Reverse Shannon Coding

direct capacity C(N ) reverse capacity C(N )

Bennett, Devetak, Harrow, Shor, Winter (circa 2007-2014)

For a classical channel N , when shared randomness is free,
C(N ) = C(N ).

Shannon’s noisy channel coding theorem is a statement about asymptotic
simulability.
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Shannon’s “Channel Inclusion”

As a single-shot, zero-error analogue, Shannon, in A Note on a Partial Ordering

for Communication Channels (1958), defines an exact form of simulability that

he names “inclusion.”

Definition (Inclusion Ordering)

Given two classical channels W : X → Y and W′ : X ′ → Y ′, we write
W ⊇W′ if there exist encodings {Eα}α, decodings {Dα}α, and a
probability distribution µα such that W′ =

∑
α µα(Dα ◦W ◦ Eα).
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“Simulability” Orderings

Degradability Shannon’s Inclusion Quantum Inclusion

N → N ′ N ⊇ N ′ N ⊇q N ′

∃D : CPTP ∃{Eα}α, {Dα}α : CPTP ∃{I i}i : CP instrument
and µα : prob. dist. and {Di}i : CPTP

such that such that such that

N ′ = D ◦ N N ′ =
∑
α µα(Dα ◦ N ◦ Eα) N ′ =

∑
i(Di ◦ N ◦I i)

• for degradability, the two channels need to have the same input system; the two
inclusion orderings allow to modify both input and output

• N → N ′ =⇒ N ⊇ N ′ =⇒ N ⊇q N ′ (all strict implications)

• the “quantum inclusion” ordering ⊇q allows unlimited free classical forward
communication: it is non-trivial only for quantum channels
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Shannon’s Coding Ordering

In the same paper, Shannon also introduces the following:

Definition (Coding Ordering)

Given two classical channels W : X → Y and W′ : X ′ → Y ′, we write
W�W′ if, for any (M,n) code for W′ and any choice of prior
distribution πi on codewords, there exists an (M,n) code for W with
average error probability Pe =

∑
i πiλi ≤ P ′

e =
∑
i πiλ

′
i.

Note: here λi denotes the conditional probability of error, given that index i was sent.

Fact

W ⊇W′ =⇒ W�W′ =⇒ C(W) ≥ C(W′)

The above definition and theorem can be directly extended to quantum
channels and their classical capacity.

4/15



Other “Coding” Orderings

From: J. Körner and K. Marton, The Comparison of Two Noisy Channels. Topics in

Information Theory, pp.411-423 (1975)

Definition (Capability and Noisiness Orderings)

Given two classical channels W : X → Y and W′ : X → Z, we say that

1. W is more capable than W′ if, for any input random variable X,
H(X|Y ) ≤ H(X|Z)

2. W is less noisy than W′ if, for any pair of jointly distributed random
variables (U,X), H(U |Y ) ≤ H(U |Z)

Theorem (Körner and Marton, 1975)

It holds that

degradable =⇒ less noisy =⇒ more capable,

and all implications are strict.
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Reverse Data-Processing Theorems

• two kinds of orderings: simulability orderings (degradability,
Shannon inclusion, quantum inclusion) and coding orderings
(Shannon coding ordering, noisiness and capability orderings)

• simulability orderings =⇒ coding orderings: data-processing
theorems

• coding orderings =⇒ simulability orderings: reverse data-processing
theorems
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Why Reverse Data-Processing Theorems Are Relevant

• role in statistics: majorization, comparison of statistical models
(Blackwell’s sufficiency and Le Cam’s deficiency), asymptotic
statistical decision theory

• role in physics, esp. quantum theory: channels describe physical
evolutions; hence, reverse-data processing theorems allow the
reformulation of statistical physics in information-theoretic terms

• applications so far: quantum non-equilibrium thermodynamics;
quantum resource theories; quantum entanglement and non-locality;
stochastic processes and open quantum systems dynamics
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Channels Inclusion(s), Falsification, and
Verification



(Two Possible) Quantum Inclusion Orderings

Definition (Q-to-C Inclusion)

For a given CPTP map
N : L(HA)→ L(HB), we denote by
SX→Y (N ) the set of all classical
channels W : X → Y such that

W(y|x) =
∑
α µα Tr[N (ρx,αA ) P

y|α
B ],

where {ρx,αA }x,α are normalized states

and {P y|αB }α POVMs.

Definition (C-to-Q Inclusion)

For a given classical channel W : X → Y,
we denote by SA→B(W) the set of all
CPTP maps N : L(HA)→ L(HB) such
that N (•A) =∑
α,x µαρ

y,α
B W(y|x)Tr[•A P

x|α
A ],

where {ρy,αB }y,α are normalized states

and {Px|αA }α POVMs.

Falsification

To provide experimental evidence for ∃W
such that W /∈ S(N )

Verification

To provide experimental evidence for
6 ∃W such that N ∈ S(W)
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Channel Falsification: The Task

• A memory is thought of as a black-box with one input (classical or
quantum) and one output (classical or quantum)

• Some hypothesis is made about the black-box, that is, a description
of it in terms of a channel N

While it is impossible to verify the hypothesis N in a device-independent
way, it is possible to falsify it: if a correlation p(y|x) /∈ SX→Y(N ) is
observed, the hypothesis N is falsified in a device-independent way.
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Example: Dimension Falsification

Problem: how to give a lower bound on the dimension of a memory by

observing input/output classical correlations?

Question

Are d-dimensional classical identity idcd and d-dimensional quantum
identity idqd distinguishable in this basic setting?

Equivalently stated, is there a correlation p(y|x) able to falsify idcd but
not idqd?

Theorem (P.E. Frenkel and M. Weiner, CMP, 2015)

No: the identity SX→Y(id
c
d) = SX→Y(id

q
d) holds for all choices of

alphabets X and Y.

Remark. Strongest generalization of Holevo theorem for static quantum

memories.
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Other Results

More generally, what can one say about the structure of SX→Y(N ), for
an arbitrary channel N ?

• qubit c-q channels: closed analytical form, when Y = {0, 1}
[Dall’Arno, 2017]

• qubit q-c channels (POVMs): closed analytical form in general
[Dall’Arno, Brandsen, FB, Vedral, 2017]

• general channels: closed form for a large class of qubit channels
(including amplitude damping) and d-dimensional universally
covariant channels, when Y = {0, 1} [Dall’Arno, Brandsen, FB,
2017]

Little Corollary About Shannon’s Orderings

Given a quantum channel N : A→ B and a classical testing channel
W : X → Y ≡ {0, 1},

N ⊇W ⇐⇒ N �W .
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Quantum Channel Verification: The Task

The “complementary” problem to falsification is that of quantum channel
verification: how to verify that 6 ∃W such that N ∈ S(W)?

Since in the above scheme W can be any classical channel, i.e., one-way
cc is free, channel verification here amounts to verify that the given
channel N : L(HA)→ L(HB) is not entanglement-breaking.

Remark: from now on, we consider that α is included in x. 12/15



Quantum Inclusion

We are naturally led to consider a resource theory of quantum memories, in

which resources are quantum channels and free operations are

pre/post-processings assisted by one-way classical communication.

Definition

Given two CPTP maps N : A→ B and N ′ : A′ → B′, we write
N ⊇q N ′ whenever there exists a CP instrument {I i

A′→A} and a
family of CPTP maps {DiB→B′} such that

N ′ =
∑
i

Di ◦ N ◦I i

Question: what is the operational counterpart of the quantum inclusion
ordering? 13/15



Semiquantum Signaling Games

A semiquantum signaling game is a tuple G = [X ,Y,B, {τxĀ}, {ω
y

B̄
}, ℘(x, y, b)]:

• the referee picks an x ∈ X and gives τx
Ā

to Alice

• Alice does something on it and is able to
store as much classical information as she
likes

• the referee then picks a y ∈ Y and gives
her ωy

B̄

• the round ends with Alice outputting a
classical outcome b ∈ B

• Alice’s computed outcome earns or costs
her an amount decided by ℘(x, y, b) ∈ R

Expected Channel Utility

Given the channel N : A→ B as a resource for Alice, its expected utility in
game G is given by

℘∗G(N ) = max
∑
x,y,i,b

℘(x, y, b)Tr
{
P
b|i
BB̄

[
(NA ◦I i

Ā)(τ
x
Ā)⊗ ω

y

B̄

]}
,

where the max is taken over instrument {I i
Ā→A} and POVMs {P b|i

BB̄
}i.
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MDI Quantum Memory Verification

Theorem

For any given pair of CPTP maps N : A→ B and N ′ : A′ → B′, N ⊇q N ′
if and only if ℘∗G(N ) ≥ ℘∗G(N ′), for all semiquantum signaling games G.

Corollary

1. All EB channels achieve the same expected payoff ℘EB
G in all games G.

2. A channel N is not EB if and only if there exists a semiquantum signaling
game G such that ℘∗G(N ) > ℘EB

G .

• that is, as long as the quantum memory (channel) N is not EB, there
exists a semiquantum signaling game capable of verifying that

• assumption: the referee trusts the preparation of states τx and ωy, but
that is anyway required in the time-like scenario: no fully
device-independent quantum channel verification [Pusey, 2015]

• extra feature: it is possible to quantify the minimal dimension (Schmidt
rank) of the quantum memory

• practicality, tolerance against loss, etc
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Role of “reverse data-processing theorems” in
statistical physics
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