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worried about data remanence?

go on shoot your hard-drive!
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What the Principles Tell Us

• the input is a quantum system Q
• the hiding process is a CPTP map E : Q→ Q′

• the output is also a quantum system Q′

• the eavesdropper holds the environment E purifying
(→ Appendix) the hiding process E

Perfect Hiding

Ideal objective: the initial information, after the
erasure process, is neither in Q′ nor in E.

Question: is this possible?
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No, It’s Not Possible

No-Hiding Theorem (Braunstein, Pati, 2007)

• input: an unknown quantum state |ψ〉 ∈ HQ

• assumption: perfect erasure, i.e., the output
E(|ψ〉〈ψ|) does not depend on |ψ〉
• conclusion: no-hiding, i.e., the initial state |ψ〉 can

be found intact in the environment E

Interpretation. Perfect hiding of quantum information is impossible,

that is, quantum information is preserved: it can only be moved to

the environment (i.e., handed over to the eavesdropper)
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Yes, It Is Possible

• input: an unknown state |ψi〉 chosen from a set of
orthogonal states
• hiding process: measurement on the Fourier

transform basis |ψ̃j〉, i.e., |〈ψ̃j|ψi〉|2 = 1
d

• the corresponding Stinespring-Kraus dilation is
given by

|ψiQ〉 7−→
∑
j

|ψ̃jQ′〉|ψ̃jE〉〈ψ̃
j
Q|︸ ︷︷ ︸

isometry VQ→Q′E

|ψiQ〉 = |BiQ′E〉︸ ︷︷ ︸
max. ent.

,

• perfect hiding has been achieved in this case 3/14



Motivation of This Talk

• whether perfect hiding can be achieved or not,
depends on the “form” of the set of input states
used to encode information

• tantalizing idea: quantum information (the first
example) cannot be hidden, while classical
information (the second example) can; to what
extent is this true?

• problem: to find a framework able to handle general
families of input states
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The Extended Setting

• input: instead of a family of states of Q, one
bipartite state ρRQ, shared with a reference R
• hiding process: an isometry V splitting the input

system Q into output Q′ and junk E
• ideal goal (perfect hiding): σRQ′ = σR ⊗ σQ′

(perfect decoupling) and σRE = σR ⊗ σE (perfect
privacy) 5/14



The Quantum Mutual Information

• define I(X;Y ) , H(X) +H(Y )−H(XY )
• 0 ≤ I(X;Y ) ≤ 2H(X)
• I(X;Y ) ≥ 1

2 ln 2‖ρXY − ρX ⊗ ρY ‖
2
1

Ideal Hiding (Reformulation)

Given an input bipartite state ρRQ, find an isometry V ,
taking Q into Q′E, such that

I(R;Q′) = 0︸ ︷︷ ︸
decoupling

and I(R;E) = 0︸ ︷︷ ︸
privacy

.
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Optimal Hiding of Correlations

Since ideal hiding is in general impossible, we consider a
relaxation of the problem:

Optimal Hiding

Given an input bipartite state ρRQ, its non-hidable or
“intrinsic” correlations are defined by

ξ(ρRQ) , inf
V :Q→Q′E

{
I(R;Q′) + I(R;E)

}
Remark. Perfect hiding for ρRQ is possible if and only if
ξ(ρRQ) = 0.
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No-Hiding Theorem and QMI

The No-Hiding Theorem can be reformulated in terms of
QMI.

• consider an initial bipartite pure state |ΨRQ〉
• any isometry on Q will output a tripartite pure state
|Ψ̃RQ′E〉
• in this case, the balance relation identically holds

ξ(ρRQ) , I(R;Q′) + I(R;E) = I(R;Q)

No-Hiding (reform.): in the pure state case, all
correlations are intrinsic, i.e., decoupling and privacy are
mutually excluding requirements. 8/14



General Bound

Theorem

For any ρRQ, we have

ξ(ρRQ) ≥ 2Ic(Q〉R) ,

where Ic(Q〉R) , H(R)−H(RQ) is the coherent
information.
Proof.

• purify: ρRQ → |ΦR′RQ〉
• apply isometric splitting: |ΦR′RQ〉 → |Φ̃R′RQ′E〉
• by entropic calculus, we have I(R;Q′) ≥ Ic(Q〉R) +H(Q′)−H(E) and
I(R;E) ≥ Ic(Q〉R) +H(E)−H(Q′)

• hence, for any splitting, I(R;Q′) + I(R;E) ≥ 2Ic(Q〉R)
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Some Comments

• for pure states, I(R;Q) = Ic(Q〉R) = H(Q), hence
1
2ξ(ρRQ) equals the entropy of entanglement; in
general, however, it is not an entanglement measure
• it is nonetheless a good entanglement parameter, in

the sense that

1

2
ξ(ρRQ)→ H(Q) ⇐⇒ Ic(Q〉R)→ H(Q)

• it satisfies monogamy, that is, for any tripartite pure
state |ΨRAB〉, 1

2ξ(ρRA) + 1
2ξ(ρRB) ≤ H(R)
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The Asymptotic Scenario

As it is customary in information theory, we consider

ξ∞(ρRQ) , lim
n→∞

1

n
ξ(ρ⊗nRQ) .

Remark. The splitting isometry is in general entangled, that is,

Q⊗n → Q′nEn 6= (Q′E)⊗n.

Theorem (Asymptotic Erasure)

For any initial state ρRQ, ξ
∞(ρRQ) = 2Ic(Q〉R).
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An Attempt at Visualizing

I(R;Q′) + I(R;E) = I(R;Q) I(R;Q′) + I(R;E) = 2Ic(Q〉R)

Hence:

• intrinsic (non-hidable) correlations: 2Ic(Q〉R)� I(R;Q)

• pure-state correlations are all intrinsic: 2Ic(Q〉R) = I(R;Q)

• separable-state correlations are all extrinsic: 2Ic(Q〉R) = 0 12/14



The Role of Randomness

With free private randomness, private quantum
decoupling becomes trivial.

• private randomness: a max. mixed state ωP = 1
dP
IP that we

can trust to be independent of Eve

• hiding process: an isometry V : QP → Q′E

• output state: σRQ′E = (IR ⊗ VQP )(ρRQ ⊗ ωP )(IR ⊗ V †QP )

Example

Since 1
4

∑
i σiρσi = 1

2
I2 for any initial qubit state ρ, the state

ωP = 1
4
I4 and the isometry V : QP → Q′E, given by

V =
∑

i σ
Q→Q′

i ⊗ |iE〉〈iP |, are enough to perfectly hide any

two-qubit correlation. 13/14



Summary

• pure-state correlations cannot be hidden:

I(R;Q′) + I(R;E) = I(R;Q)

• however, in general:

I(R;Q′) + I(R;E) = 2Ic(Q〉R)� I(R;Q)

• private randomness enables perfect hiding
• connections with other protocols in QIT? e.g.,

randomness extraction, private key distribution, etc.

• connections with foundations? e.g., Landauer’s principle,

uncertainty relations, quantumness of correlations, etc.

Thank you 14/14



Appendix: The Stinespring-Kraus Dilation

• consider an input/output quantum process
(CPTP map) E , mapping density matrices
on HQ to density matrices on HQ′

• Kraus operator-sum representation:
E(ρ) =

∑
k EkρE

†
k

• Kraus-Stinespring dilation: each CPTP
map E can be written as
E(ρ) = TrE[V ρV †] (Stinespring) or
E(ρ) = TrE[U(ρQ ⊗ |0〉〈0|E0)U

†] (Kraus)

• in quantum crypto-analyses, the subsystem
E is the eavesdropper’s
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