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What the Principles Tell Us

e the IS a quantum system ()

o the isa CPTPmap £:Q —

e the is also a quantum system ()’

e the holds the environment E purifying

(— Appendix) the hiding process £

Ideal objective: the initial information, after the
erasure process, is neither in Q' nor in E.

. is this possible?
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No, It’s Not Possible

input: an unknown quantum state |¢)) € H
assumption: perfect erasure, i.e., the output
E(|)(1]) does not depend on |1))

conclusion: no-hiding, i.e., the initial state |¢)) can
be found intact in the environment E

Perfect hiding of quantum information is impossible,
that is, quantum information is preserved: it can only be moved to

the environment (i.e., handed over to the eavesdropper)
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Yes, It Is Possible

e input: an unknown state [¢)') chosen from a set of
orthogonal states

e hiding process: measurement on the Fourier
transform basis [¢7), i.e., |(¢7|¢)]? = 2

e the corresponding Stinespring-Kraus dilation is

given by
[$g) — ; |4 ) (| |vG) = r\fégi ,

~

isometry Vo, o/ g

e perfect hiding has been achieved in this case 3/14



Motivation of This Talk

e whether perfect hiding can be achieved or not,
depends on the “form” of the set of input states
used to encode information

e tantalizing idea: quantum information (the first
example) cannot be hidden, while classical

information (the second example) can; to what
extent is this true?

e problem: to find a framework able to handle general
families of input states
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The Extended Setting

ﬁ___ﬂz

3y

e input: instead of a family of states of (), one
bipartite state prg, shared with a reference R

e hiding process: an isometry V splitting the input
system () into output )’ and junk E

o ideal goal (perfect hiding): grg = or ® gg
(perfect decoupling) and orp = o ® o (perfect
privacy) 5/14




The Quantum Mutual Information

o define I(X;Y) = HX)+ H(Y) — H(XY)
¢ 0<I(X;Y) < 2H(X)
o I(X;Y) 2 gislloxy — px ® pyll}

Given an input bipartite state prg, find an isometry V',
taking @) into Q'E, such that

I(R;Q)=0 and I(R;E)=0 .

decoupling privacy
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Optimal Hiding of Correlations

Since ideal hiding is in general impossible, we consider a
relaxation of the problem:

Given an input bipartite state pp(, its non-hidable or
“intrinsic” correlations are defined by

2 inf {I(R;Q’)H(R;E)}

‘f(ﬂRQ) V:Q—Q'E

Remark. Perfect hiding for prg is possible if and only if
f(pRQ) = 0. 7/14



No-Hiding Theorem and QMI

The No-Hiding Theorem can be reformulated in terms of
QMI.

e consider an initial bipartite pure state |Urp)

e any isometry on () will output a tripartite pure state
VR B)

e in this case, the balance relation identically holds

Eprg) = 1(R; Q")+ I(R; E) = I(R; Q)

No-Hiding (reform.): in the pure state case, all
correlations are intrinsic, i.e., decoupling and privacy are
mutually excluding requirements. 8/14



General Bound

Theorem

For any prg, we have

§(prq) = 21.(Q)R) ,

where I.(Q)R) = H(R) — H(RQ) is the coherent
information.
Proof.

o purify: prg — |Pr rQ)

o apply isometric splitting: |®r rg) — @R/RQ/E>

e by entropic calculus, we have I(R; Q') > I.(Q)R) + H(Q') — H(E) and
I(R; E) 2 I(Q)R) + H(E) — H(Q')

e hence, for any splitting, I(R; Q') + I(R; E) > 2I.(Q)R) o/14



Some Comments

e for pure states, I(R; Q) = I.(Q)R) = H(Q), hence
%f(pRQ) equals the entropy of entanglement; in
general, however, it is not an entanglement measure

e it is nonetheless a good entanglement parameter, in
the sense that

%f(pRQ) - H@Q) <= L@Q)R) — HQ)

e it satisfies monogamy, that is, for any tripartite pure
state [Wrap), 3¢(ora) + 5€(prB) < H(R)
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The Asymptotic Scenario

As it is customary in information theory, we consider

&% (pro) = lim €(pRQ)

n—o00 N,

Remark. The splitting isometry is in general entangled, that is,

Q" = QL E, # (QE)™".

Theorem (Asymptotic Erasure)

For any initial state prg, £*(prg) = 21.(Q)R).
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An Attempt at Visualizing

PURE STATES HIXED STATES
I(R; Q)+ I(R; E) = I(R; Q) I(R; Q)+ I(R; E) = 21(Q)R)

Hence:

e intrinsic (non-hidable) correlations: 2/.(Q)R) < I(R;Q)
e pure-state correlations are all intrinsic: 2I.(Q)R) = I(R; Q)

e separable-state correlations are all extrinsic: 2I.(Q)R) =0 12/14



The Role of Randomness

With free private randomness, private quantum
decoupling becomes trivial.

° : a max. mixed state wp = é[p that we
can trust to be independent of Eve

° :an isometry V : QP — Q'E

° © ORQ'E = (IR®VQP)(pRQ®WP>(IR®VQTP)

Since 1 >, 0ip0; = 31, for any initial qubit state p, the state
wp = 41114 and the isometry V : QP — Q'FE, given by
V=3, 0979 @ |ig)(ip|, are enough to perfectly hide any

two-qubit correlation. 13/14



e pure-state correlations cannot be hidden:
I(R; Q") + (R E) = I(R; Q)
e however, in general:
[(B; Q) + (R E) = 2L.(Q)R) < (1, Q)

e private randomness enables perfect hiding

e connections with other protocols in QIT? eg.,
randomness extraction, private key distribution, etc.

e connections with foundations? e.g., Landauer's principle,
uncertainty relations, quantumness of correlations, etc.

Thank you ,,,



Appendix: The Stinespring-Kraus Dilation

e consider an input/output quantum process
(CPTP map) &, mapping density matrices

on H to density matrices on H¢y 62—).—'@'

e Kraus operator-sum representation:
E(p) = X, BxpE} 0 —’Eji %
e Kraus-Stinespring dilation: each CPTP E &
map £ can be written as Q—> @/
E(p) = Trg[VpV1] (Stinespring) or E %E,:—ﬂ%
€(p) = Trp[U(pq ® |0){0]5,)U'] (Kraus) €

e in quantum crypto-analyses, the subsystem
E is the eavesdropper's




	Private Quantum Decoupling
	Appendix

