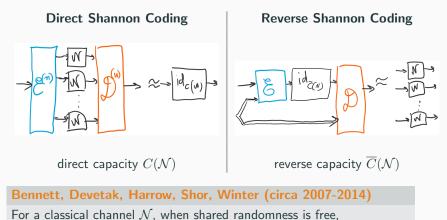
# **Comparison of Noisy Channels and Reverse Data-Processing Theorems**

Francesco Buscemi<sup>1</sup> 2017 IEEE Information Theory Workshop Kaohsiung, 10 November 2017

<sup>1</sup>Dept. of Mathematical Informatics, Nagoya University, buscemi@i.nagoya-u.ac.jp

- 1. Partial orderings of communication channels (simulability orderings and coding orderings)
- 2. Reverse data-processing theorems
- 3. Degradability ordering: equivalent reformulations
- 4. Example application: characterization of memoryless stochastic processes

### **Direct and Reverse Shannon Theorems**



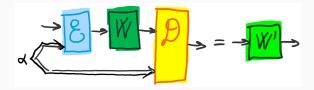
 $C(\mathcal{N}) = \overline{C}(\mathcal{N}).$ 

Shannon's noisy channel coding theorem is a statement about asymptotic simulability.

As a single-shot, zero-error analogue, Shannon, in *A Note on a Partial Ordering for Communication Channels* (1958), defines an exact form of simulability that he names "inclusion."

### **Definition (Inclusion Ordering)**

Given two classical channels  $W : \mathcal{X} \to \mathcal{Y}$  and  $W' : \mathcal{X}' \to \mathcal{Y}'$ , we write  $W \supseteq W'$  if there exist encodings  $\{\mathcal{E}_{\alpha}\}_{\alpha}$ , decodings  $\{\mathcal{D}_{\alpha}\}_{\alpha}$ , and a probability distribution  $\mu_{\alpha}$  such that  $W' = \sum_{\alpha} \mu_{\alpha} (\mathcal{D}_{\alpha} \circ W \circ \mathcal{E}_{\alpha})$ .



# Three "Simulability" Orderings

| $\rightarrow \mathcal{N} \rightarrow \mathcal{D} \rightarrow$ | d Contractions                                                                                                                              |                                                                                                             |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Degradability                                                 | Shannon's Inclusion                                                                                                                         | Quantum Inclusion                                                                                           |
| $\mathcal{N}  ightarrow \mathcal{N}'$                         | $\mathcal{N}\supseteq\mathcal{N}'$                                                                                                          | $\mathcal{N}\supseteq_{\mathrm{q}}\mathcal{N}'$                                                             |
| $\exists \mathcal{D}:CPTP$                                    | $\exists \{ \mathcal{E}_{\alpha} \}_{\alpha}, \{ \mathcal{D}_{\alpha} \}_{\alpha} : CPTP \\ and \ \mu_{\alpha} : prob. \ dist. \end{cases}$ | $\exists \{\mathscr{I}^i\}_i : CP \text{ instrument} \\ \text{and } \{\mathcal{D}_i\}_i : CPTP \end{cases}$ |
| such that                                                     | such that                                                                                                                                   | such that                                                                                                   |
| $\mathcal{N}' = \mathcal{D} \circ \mathcal{N}$                | $\mathcal{N}' = \sum_{\alpha} \mu_{\alpha} (\mathcal{D}_{\alpha} \circ \mathcal{N} \circ \mathcal{E}_{\alpha})$                             | $\mathcal{N}' = \sum_i (\mathcal{D}_i \circ \mathcal{N} \circ \mathscr{I}^i)$                               |

- for degradability, the two channels need to have the same input system; the two inclusion orderings allow to modify both input and output
- $\mathcal{N} \to \mathcal{N}' \implies \mathcal{N} \supseteq \mathcal{N}' \implies \mathcal{N} \supseteq_q \mathcal{N}'$  (all strict implications)
- the "quantum inclusion" ordering  $\supseteq_q$  allows unlimited free classical forward communication: it is non-trivial only for quantum channels

In the same paper, Shannon also introduces the following:

### **Definition (Coding Ordering)**

Given two classical channels  $W : \mathcal{X} \to \mathcal{Y}$  and  $W' : \mathcal{X}' \to \mathcal{Y}'$ , we write  $W \gg W'$  if, for any (M, n) code for W' and any choice of prior distribution  $\pi_i$  on codewords, there exists an (M, n) code for W with average error probability  $P_e = \sum_i \pi_i \lambda_i \leq P'_e = \sum_i \pi_i \lambda'_i$ .

Note:  $\lambda_i$  denotes the conditional probability of error, given that index i was sent.

#### Fact

$$\mathsf{W}\supseteq\mathsf{W}'\implies\mathsf{W}\gg\mathsf{W}'\implies C(\mathsf{W})\geq C(\mathsf{W}')$$

The above definition and theorem can be directly extended to quantum channels and their classical capacity.

# Other "Coding" Orderings

From: J. Körner and K. Marton, *The Comparison of Two Noisy Channels*. Topics in Information Theory, pp.411-423 (1977)

#### Definition (Capability and Noisiness Orderings)

Given two classical channels  $W:\mathcal{X}\to\mathcal{Y}$  and  $W':\mathcal{X}\to\mathcal{Z},$  we say that

- 1. W is more capable than W' if, for any input random variable X,  $H(X|Y) \leq H(X|Z)$
- 2. W is less noisy than W' if, for any pair of jointly distributed random variables (U, X),  $H(U|Y) \le H(U|Z)$

### Theorem (Körner and Marton, 1977)

It holds that

degradable  $\implies$  less noisy  $\implies$  more capable,

and all implications are strict.

- two kinds of orderings: **simulability orderings** (degradability, Shannon inclusion, quantum inclusion) and **coding orderings** (Shannon coding ordering, noisiness and capability orderings)
- $\bullet$  simulability orderings  $\implies$  coding orderings: data-processing theorems
- coding orderings ⇒ simulability orderings: reverse data-processing theorems (the problem discussed in this talk)

- role in statistics: majorization, comparison of statistical models (Blackwell's sufficiency and Le Cam's deficiency), decision theory
- role in physics, esp. quantum theory: channels describe physical evolutions; hence, reverse-data processing theorems allow the reformulation of statistical physics in information-theoretic terms
- applications so far: quantum non-equilibrium thermodynamics; quantum resource theories; quantum entanglement and non-locality; stochastic processes and open quantum systems dynamics

Examples of Reverse Data-Processing Theorems: Equivalent Characterization of Degradability

# A Classical Reverse Data-Processing Theorem...

#### Theorem

Given two classical channels  $W:\mathcal{X}\to\mathcal{Y}$  and  $W':\mathcal{X}\to\mathcal{Z},$  the following are equivalent:

- 1. W can be degraded to W';
- 2. for any pair of jointly distributed random variables (U, X),  $H_{\min}(U|Y) \leq H_{\min}(U|Z)$ .

In fact, in point 2 it suffices to consider only random variables U supported by  $\mathcal{Z}$  and with uniform marginal distribution, i.e.,  $p(u) = \frac{1}{|\mathcal{Z}|}$ .



#### Remarks

- + condition (2) above is Körner's and Marton's noisiness ordering, with Shannon entropy replaced by  $H_{\rm min}$
- by [König, Renner, Schaffner, 2009], W can be degraded to W' if and only if, for any initial joint pair (U, X),  $P_{guess}(U|Y) \ge P_{guess}(U|Z)$  9/15

## ...and Its Quantum Version

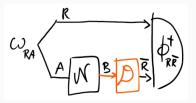
#### Theorem

Given two quantum channels  $\mathcal{N}: A \to B$  and  $\mathcal{N}': A \to B'$ , the following are equivalent:

- 1.  $\mathcal{N}$  can be degraded to  $\mathcal{N}'$ ;
- 2. for any bipartite state  $\omega_{RA}$ ,  $H_{\min}(R|B)_{(\mathrm{id}\otimes\mathcal{N})(\omega)} \leq H_{\min}(R|B')_{(\mathrm{id}\otimes\mathcal{N}')(\omega)}$ .

In fact, in point 2 it suffices to consider only a system  $R \cong B'$  and separable states  $\omega_{RA}$  with maximally mixed marginal  $\omega_R$ .

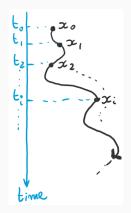
**Remark.** In words, for any initial bipartite state  $\omega_{RA}$ , the maximal singlet fraction of  $(id_R \otimes \mathcal{N}_A)(\omega_{RA})$  is never smaller than that of  $(id_R \otimes \mathcal{N}'_A)(\omega_{RA})$ .



# An Application in Quantum Statistical Mechanics: Quantum Markov Processes

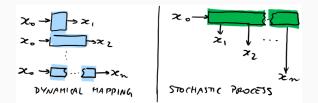
## **Discrete-Time Stochastic Processes**

- Let  $x_i$ , for i = 0, 1, ..., index the state of a system at time  $t = t_i$
- Let  $p(x_i)$  be the state distribution at time  $t = t_i$
- The process is fully described by its joint distribution  $p(x_N, x_{N-1}, \dots, x_1, x_0)$
- If the system can be initialized at time  $t = t_0$ , it is convenient to identify the process with the conditional distribution  $p(x_N, x_{N-1}, \dots, x_1|x_0)$



# From Stochastic Processes to Dynamical Mappings

From a stochastic process  $p(x_N, \ldots, x_1|x_0)$ , we obtain a family of noisy channels  $\{p(x_i|x_0)\}_{i>0}$  by marginalization.



### Definition (Dynamical Mappings)

A dynamical mapping is a family of channels  $\{p(x_i|x_0)\}_{i\geq 1}$ .

#### Remarks.

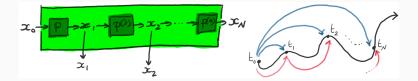
- Each stochastic process induces one dynamical mapping by marginalization; however, the same dynamical mapping can be "embedded" in many different stochastic processes.
- For quantum systems, dynamical mappings are okay, not so stochastic processes (no *N*-point time correlations).

# Markovian Processes and Divisibile Dynamical Mappings

### **Definition (Markovianity)**

A stochastic process  $p(x_N, \cdots, x_1 | x_0)$  is said to be Markovian whenever

 $p(x_N, \cdots, x_1 | x_0) = p^{(N)}(x_N | x_{N-1}) p^{(N-1)}(x_{N-1} | x_{N-2}) \cdots p(x_1 | x_0)$ 



### Definition (Divisibility)

A dynamical mapping  $\{p(x_i|x_0)\}_{i>1}$  is said to be divisible whenever

$$p(x_{i+1}|x_0) = \sum_{x_i} q^{(i+1)}(x_{i+1}|x_i)p(x_i|x_0) , \quad \forall i \ge 1 .$$

Hence, a divisible dynamical mapping can always be embedded in the Markovian process  $q^{(N)}(x_N|x_{N-1})\cdots q^{(2)}(x_2|x_1)p(x_1|x_0)$ .

# Divisibility as "Decreasing Information Flow"

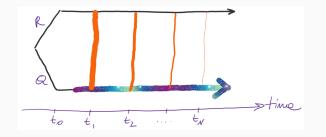
From the reverse data-processing theorems discussed before, we obtain:

### Theorem

Given an initial open quantum system  $Q_0$ , a quantum dynamical mapping  $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i \ge 1}$  is divisibile if and only if, for any initial state  $\omega_{RQ_0}$ ,

 $H_{\min}(R|Q_1) \le H_{\min}(R|Q_2) \le \cdots \le H_{\min}(R|Q_N) .$ 

The same holds, mutatis mutandis, also for classical dynamical mappings.



14/15

Reverse data-processing theorems provide:

- a powerful framework to understand time-evolution in statistical physical systems
- complete (faithful) sets of monotones for generalized resource theories (including quantum non-equilibrium thermodynamics)
- new insights in the structure of noisy channels (e.g., new metrics, etc)

Applications to coding? Complexity theory?