The Theory of Statistical Comparison in Quantum Information and Foundations

Francesco Buscemi*

Modern Topics in Quantum Information: Quantum Foundations and Quantum Information.

International Institute of Physics (Natal, Brazil), 31 July 2018

*Dept. of Mathematical Informatics, Nagoya University, buscemi@i.nagoya-u.ac.jp

The Birth in Mathematical Statistics

Statistical Decision Problems

Definition (Statistical Models and Decisions Problems)

A statistical experiment (i.e., statistical model) is a triple $\langle \Theta, \mathcal{X}, w \rangle$, a statistical decision problem (i.e., statistical game) is a triple $\langle \Theta, \mathcal{U}, \ell \rangle$.

How Much Is an Experiment Worth?

- the experiment *is given*, i.e., it is the "resource"
- the decision instead *can* be optimized

Θ	$\overset{experiment}{\longrightarrow}$	\mathcal{X}	decision	\mathcal{U}
}		}		\$
θ	$\xrightarrow{w(x \theta)}$	x	$\xrightarrow{d(u x)}$	u

Definition (Expected Payoff)

The expected payoff of a statistical experiment

 $\mathbf{w} = \langle \Theta, \mathcal{X}, w \rangle$ w.r.t. a decision problem $\langle \Theta, \mathcal{U}, \ell \rangle$ is given by

$$\mathbb{E}_{\langle\Theta,\mathcal{U},\ell\rangle}[\mathbf{w}] \stackrel{\text{def}}{=} \max_{d(u|x)} \sum_{u,x,\theta} \ell(\theta,u) d(u|x) w(x|\theta) |\Theta|^{-1} \ .$$

Comparing Experiments 1/2

First experiment:
$$\mathbf{w} = \langle \Theta, \mathcal{X}, w(x|\theta) \rangle$$

$$\Theta \xrightarrow{\text{experiment}} \mathcal{X} \xrightarrow{\text{decision}} \mathcal{U}$$

If $\mathbb{E}_{\langle\Theta,\mathcal{U},\ell\rangle}[\mathbf{w}] \geq \mathbb{E}_{\langle\Theta,\mathcal{U},\ell\rangle}[\mathbf{w}']$, then experiment $\langle\Theta,\mathcal{X},w\rangle$ is better than experiment $\langle\Theta,\mathcal{Y},w'\rangle$ for problem $\langle\Theta,\mathcal{U},\ell\rangle$.

Comparing Experiments 2/2

Definition (Information Preorder)

If the experiment $\langle \Theta, \mathcal{X}, w \rangle$ is better than experiment $\langle \Theta, \mathcal{Y}, w' \rangle$ for all decision problems $\langle \Theta, \mathcal{U}, \ell \rangle$, then we say that $\langle \Theta, \mathcal{X}, w \rangle$ is more informative than $\langle \Theta, \mathcal{Y}, w' \rangle$, and write

$$\langle \Theta, \mathcal{X}, w \rangle \succeq \langle \Theta, \mathcal{Y}, w' \rangle$$
.

Problem. The information preorder is operational, but not really "concrete". Can we visualize this better?

Blackwell's Theorem (1948-1953)

Blackwell-Sherman-Stein Theorem

Given two experiments with the same parameter space, $\langle \Theta, \mathcal{X}, w \rangle$ and $\langle \Theta, \mathcal{Y}, w' \rangle$, the condition $\langle \Theta, \mathcal{X}, w \rangle \succeq \langle \Theta, \mathcal{Y}, w' \rangle$ holds iff there exists a conditional probability $\varphi(y|x)$ such that $w'(y|\theta) = \sum_x \varphi(y|x)w(x|\theta)$.

Θ	\longrightarrow	\mathcal{Y}		Θ	\longrightarrow	\mathcal{X}	noise →	\mathcal{Y}
\$		\$	=	\$		\$		}
θ	$\overrightarrow{w'(y \theta)}$	y		θ	$\overrightarrow{w(x \theta)}$	x	$\xrightarrow{\varphi(y x)}$	y

David H. Blackwell (1919-2010)

The Precursor: Majorization

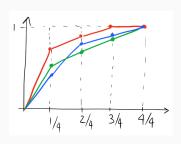
Lorenz Curves and Majorization

- two probability distributions, p and q, of the same dimension n
- truncated sums $P(k) = \sum_{i=1}^k p_i^{\downarrow}$ and $Q(k) = \sum_{i=1}^k q_i^{\downarrow}$, for all $k=1,\ldots,n$
- p majorizes q, i.e., $p \succeq q$, whenever $P(k) \geq Q(k)$, for all k
- minimal element: uniform distribution $e = n^{-1}(1, 1, \dots, 1)$

Hardy, Littlewood, and Pólya

 $p \succeq q \iff q = Mp$, for some bistochastic matrix M.

Lorenz curve for probability distribution $p = (p_1, \dots, p_n)$:



$$(x_k, y_k) = (k/n, P(k)), \quad 1 \le k \le n$$

Generalization: Relative Lorenz Curves

- two pairs of probability distributions, (p_1, p_2) and (q_1, q_2) , of dimension m and n, respectively
- relabel entries such that ratios p_1^i/p_2^i and q_1^j/q_2^j are nonincreasing
- construct the truncated sums $P_{1,2}(k) = \sum_{i=1}^k p_{1,2}^i$ and $Q_{1,2}(k)$
- $(p_1, p_2) \succeq (q_1, q_2)$ iff the relative Lorenz curve of the former is never below that of the latter

Blackwell (Theorem for Dichotomies)

 $(p_1,p_2)\succeq (q_1,q_2)\iff q_i=Mp_i$, for some stochastic matrix M.

Relative Lorenz curves:

$$(x_k, y_k) = (P_2(k), P_1(k))$$

Extension to the Quantum Case

Quantum Decision Theory

A.S. Holevo, Statistical Decision Theory for Quantum Systems, 1973.

classical case	quantum case		
$ullet$ decision problems $\langle \Theta, \mathcal{U}, \ell \rangle$	$ullet$ decision problems $\langle\Theta,\mathcal{U},\ell angle$		
\bullet experiments $\mathbf{w} = \langle \Theta, \mathcal{X}, \{w(x \theta)\} \rangle$	$ullet$ quantum experiments $\mathcal{E} = \left\langle \Theta, \mathcal{H}_S, \{ ho_S^{ heta} \} ight angle$		
ullet decisions $d(u x)$	$\bullet \; POVMs \; \{P^u_S : u \in \mathcal{U}\}$		
• $p_c(u,\theta) = \sum_x d(u x)w(x \theta) \Theta ^{-1}$	• $p_q(u,\theta) = \text{Tr}[\rho_S^{\theta} P_S^u] \Theta ^{-1}$		
• $\mathbb{E}_{\langle\Theta,\mathcal{U},\ell\rangle}[\mathbf{w}] = \max_{d(u x)} \sum \ell(\theta,u) p_c(u,\theta)$	$\bullet \mathbb{E}_{\langle \Theta, \mathcal{U}, \ell \rangle}[\mathcal{E}] = \max_{\{P_u^u\}} \sum \ell(\theta, u) p_q(u, \theta)$		

Hence, it is possible, for example, to compare quantum experiments with classical experiments, and introduce the information preorder as done before.

Example: Semiquantum Blackwell Theorem

Theorem (FB, 2012)

Consider two quantum experiments $\mathcal{E} = \langle \Theta, \mathcal{H}_S, \{ \rho_S^{\theta} \} \rangle$ and $\mathcal{E}' = \langle \Theta, \mathcal{H}_{S'}, \{ \sigma_{S'}^{\theta} \} \rangle$, and assume that the σ 's all commute. Then, $\mathcal{E} \succeq \mathcal{E}'$ holds iff there exists a quantum channel (CPTP map) $\Phi : \mathcal{L}(\mathcal{H}_S) \to \mathcal{L}(\mathcal{H}_{S'})$ such that $\Phi(\rho_S^{\theta}) = \sigma_{S'}^{\theta}$, for all $\theta \in \Theta$.

Developments

- fully quantum information preorder
- quantum relative majorization
- statistical comparison of quantum measurements (compatibility preorder)
- statistical comparison of quantum channels (input-degradability preorder, output-degradability preorder, coding preorder, etc)
- applications: quantum information theory, quantum thermodynamics, open quantum systems dynamics, quantum resource theories, quantum foundations, ...

The Viewpoint of Communication

Theory

Statistics vs Information Theory

Statistical theory: Nature does not bother with coding

Communication theory: a sender, instead, does code

$$\mathcal{M} \stackrel{\mathsf{encoding}}{\longrightarrow} \Theta \stackrel{\mathsf{channel}}{\longrightarrow} \mathcal{X} \stackrel{\mathsf{decoding}}{\longrightarrow} \mathcal{U}$$

$$\ \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad$$

From Decision Problems to Decoding Problems

Definition (Decoding Problems)

Given a channel $\langle \mathcal{X}, \mathcal{Y}, w(y|x) \rangle$, a decoding problem is defined by an encoding $\langle \mathcal{M}, \mathcal{X}, e(x|m) \rangle$ and the payoff function is the optimum guessing probability:

$$\begin{split} \mathbb{E}_{\langle \mathcal{M}, \mathcal{X}, e(x|m) \rangle} [\langle \mathcal{X}, \mathcal{Y}, w(y|x) \rangle] &\stackrel{\text{def}}{=} \max_{d(m|y)} \sum_{m, x, y} d(m|y) w(y|x) e(x|m) |\mathcal{M}|^{-1} \\ &= 2^{-H_{\min}(M|Y)} \end{split}$$

$$\mathcal{M} \stackrel{\mathsf{encoding}}{\longrightarrow} \mathcal{X} \stackrel{\mathsf{channel}}{\longrightarrow} \mathcal{Y} \stackrel{\mathsf{decoding}}{\longrightarrow} \mathcal{M}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$m \stackrel{\mathsf{e}(x|m)}{\longrightarrow} x \stackrel{\mathsf{decoding}}{\longrightarrow} \hat{m}$$

Comparison of Classical Noisy Channels

$$\mathcal{M} \stackrel{\mathsf{encoding}}{\longrightarrow} \mathcal{X} \stackrel{\mathsf{channel}}{\longrightarrow} \mathcal{Y} \qquad \mathcal{M} \stackrel{\mathsf{encoding}}{\longrightarrow} \mathcal{X} \stackrel{\mathsf{channel}}{\longrightarrow} \mathcal{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

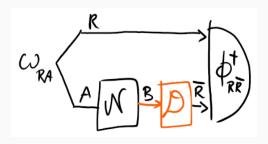
Theorem (FB, 2016)

The following are equivalent:

- 1. there exists $\varphi(z|y)$: $w'(x|z) = \sum_{y} \varphi(z|y)w(y|x)$ (stochastic degradability);
- 2. for all codes $\langle \mathcal{M}, \mathcal{X}, e(x|m) \rangle$, $H_{\min}(M|Y) \leq H_{\min}(M|Z)$ (ambiguity preorder).

The above strictly imply $H(M|Y) \leq H(M|Z)$ (Körner's and Marton's noisiness preorder).

Decoding Quantum Codes



Definition (Quantum Decoding Problems)

Given a quantum channel $\mathcal{N}:A\to B$, a quantum decoding problem is defined by a bipartite state ω_{RA} and the payoff function is the optimum singlet fraction:

$$\mathbb{E}_{\omega}[\mathcal{N}] \stackrel{\text{\tiny def}}{=} \max_{\mathcal{D}} \langle \Phi_{R\bar{R}}^{+} | (\mathsf{id}_{R} \otimes \mathcal{D}_{B \to \bar{R}} \circ \mathcal{N}_{A \to B})(\omega_{RA}) | \Phi_{R\bar{R}}^{+} \rangle$$

Comparison of Quantum Noisy Channels

Theorem

Given two quantum channels $\mathcal{N}:A\to B$ and $\mathcal{N}':A\to B'$, the following are equivalent:

- 1. there exists CPTP map \mathcal{C} : $\mathcal{N}' = \mathcal{C} \circ \mathcal{N}$ (degradability preorder);
- 2. for any bipartite state ω_{RA} , $\mathbb{E}_{\omega}[\mathcal{N}] \geq \mathbb{E}_{\omega}[\mathcal{N}']$ (coherence preorder);
- 3. for any bipartite state ω_{RA} , $H_{\min}(R|B)_{(\mathrm{id}\otimes\mathcal{N})(\omega)} \leq H_{\min}(R|B')_{(\mathrm{id}\otimes\mathcal{N}')(\omega)}$.

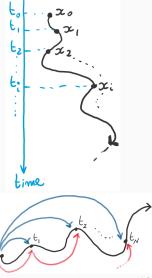
→ by adding symmetry constraints, we have applications in quantum thermodynamics

Systems Dynamics

Application to Open Quantum

Discrete-Time Stochastic Processes

- Let x_i , for $i=0,1,\ldots$, index the state of a system at time $t=t_i$
- if the system can be initialized at time $t=t_0$, the process is fully described by the conditional distribution $p(x_N,\ldots,x_1|x_0)$
- if the system evolving is quantum, we only have a quantum dynamical mapping $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i=1,\dots,N}$
- the process is divisible if there exist channels $\mathcal{D}^{(i)}$ such that $\mathcal{N}^{(i+1)} = \mathcal{D}^{(i)} \circ \mathcal{N}^{(i)}$ for all i

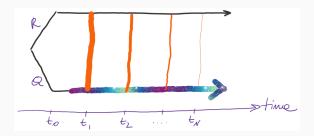


Divisibility as "Entanglement Flow"

Theorem (2016-2018)

Given an initial open quantum system Q_0 , a quantum dynamical mapping $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i \geq 1}$ is divisibile if and only if, for any initial state ω_{RQ_0} ,

$$H_{\min}(R|Q_1) \le H_{\min}(R|Q_2) \le \cdots \le H_{\min}(R|Q_N)$$
.

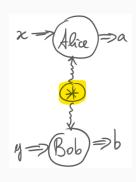


Application to Quantum Foundations: Probing Quantum Correlations in

Space-Time

Part One: Quantum Space-Like Correlations

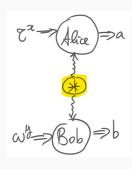
- nonlocal games (Bell tests) can be seen as bipartite decision problems $\langle \mathcal{X}, \mathcal{Y}; \mathcal{A}, \mathcal{B}; \ell \rangle$ played "in parallel" by non-communicating players
- with a classical source, $p_c(a,b|x,y) = \sum_{\lambda} \pi(\lambda) d_A(a|x,\lambda) d_B(b|y,\lambda)$
- with a quantum source, $p_q(a,b|x,y) = \text{Tr}\Big[\rho_{AB}\ (P_A^{a|x}\otimes Q_B^{b|y})\Big]$



$$\mathbb{E}_{\langle \mathcal{X}, \mathcal{Y}; \mathcal{A}, \mathcal{B}; \ell \rangle}[*] \stackrel{\text{def}}{=} \max \sum_{x, y, a, b} \ell(x, y; a, b) p_{c/q}(a, b|x, y) |\mathcal{X}|^{-1} |\mathcal{Y}|^{-1}$$

Semiquantum Nonlocal Games

- semiquantum nonlocal games replace classical inputs with quantum inputs: $\langle \{\tau^x\}, \{\omega^y\}; \mathcal{A}, \mathcal{B}; \ell \rangle$
- with a classical source, $p_c(a, b|x, y) = \sum_{\lambda} \pi(\lambda) \operatorname{Tr} \left[(\tau_X^x \otimes \omega_Y^y) \ (P_X^{a|\lambda} \otimes Q_Y^{b|\lambda}) \right]$
- with a quantum source, $p_q(a,b|x,y) = \text{Tr} \left[(\tau_X^x \otimes \rho_{AB} \otimes \omega_Y^y) \ (P_{XA}^a \otimes Q_{BY}^b) \right]$



$$\mathbb{E}_{\langle \{\tau^x\}, \{\omega^y\}; \mathcal{A}, \mathcal{B}; \ell\rangle}[*] \stackrel{\text{def}}{=} \max \sum_{x,y,a,b} \ell(x,y;a,b) p_{c/q}(a,b|x,y) |\mathcal{X}|^{-1} |\mathcal{Y}|^{-1}$$

A Blackwell Theorem for Bipartite States

Theorem (FB, 2012)

Given two bipartite states ρ_{AB} and $\sigma_{A'B'}$, the condition (i.e., "nonlocality preorder")

$$\mathbb{E}_{\langle \{\tau^x\}, \{\omega^y\}; \mathcal{A}, \mathcal{B}; \ell\rangle}[\rho_{AB}] \geq \mathbb{E}_{\langle \{\tau^x\}, \{\omega^y\}; \mathcal{A}, \mathcal{B}; \ell\rangle}[\sigma_{A'B'}]$$

holds for all semiquantum nonlocal games, iff there exist CPTP maps $\Phi^{\lambda}_{A \to A'}$, $\Psi^{\lambda}_{B \to B'}$, and distribution $\pi(\lambda)$ such that

$$\sigma_{A'B'} = \sum_{\lambda} \pi(\lambda) (\Phi_{A \to A'}^{\lambda} \otimes \Psi_{B \to B'}^{\lambda}) (\rho_{AB}) .$$

Corollaries

• For any separable state ρ_{AB} ,

$$\mathbb{E}_{\langle \{\tau^x\}, \{\omega^y\}; \mathcal{A}, \mathcal{B}; \ell \rangle}[\rho_{AB}] = \mathbb{E}_{\langle \{\tau^x\}, \{\omega^y\}; \mathcal{A}, \mathcal{B}; \ell \rangle}[\rho_A \otimes \rho_B]$$
$$= \mathbb{E}_{\langle \{\tau^x\}, \{\omega^y\}; \mathcal{A}, \mathcal{B}; \ell \rangle}^{\mathsf{sep}} ,$$

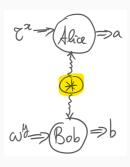
for all semiquantum nonlocal games.

• For any entangled state ρ_{AB} , there exists a semiquantum nonlocal game $\langle \{\tau^x\}, \{\omega^y\}; \mathcal{A}, \mathcal{B}; \ell \rangle$ such that

$$\mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[\rho_{AB}] > \mathbb{E}^{\text{sep}}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle} \; .$$

Other Properties of Semiquantum Nonlocal Games

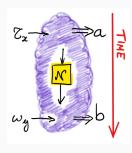
- can be considered as measurement device-independent entanglement witnesses (i.e., MDI-EW)
- can withstand losses in the detectors
- can withstand any amount of classical communication exchanged between Alice and Bob (not so conventional nonlocal games!)



Part Two: Quantum Time-Like Correlations

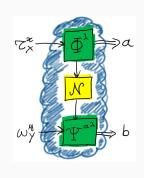
Semiquantum Nonlocality "in Time"

- Alice–Bob becomes 'Alice now'–'Alice later'
- with unlimited classical memory, $p_c(a,b|x,y) = \\ \sum_{\lambda} \pi(\lambda) \operatorname{Tr} \left[\tau_X^x \ P_X^{a|\lambda} \right] \operatorname{Tr} \left[\omega_Y^y \ Q_Y^{b|a,\lambda}) \right]$
- if, moreover, a quantum memory $\mathcal{N}:A\to B$ is available?



Admissible Quantum Strategies

- au_X^x is fed through an instrument $\{\Phi_{X o A}^{a|\lambda}\}$, and outcome a is recorded
- the quantum output of the instrument is fed through the quantum memory $\mathcal{N}:A \to B$
- the output of the memory, together with ω_Y^y , are fed into a final measurement $\{\Psi_{BY}^{b|a,\lambda}\}$, and output b is recorded



$$p_q(a,b|x,y) = \sum_{\lambda} \pi(\lambda) \operatorname{Tr} \left[\left(\left\{ (\mathcal{N}_{A \to B} \circ \Phi_{X \to A}^{a|\lambda})(\tau_X^x) \right\} \otimes \omega_Y^y \right) \Psi_{BY}^{b|a,\lambda} \right]$$

Classical vs Quantum Strategies

Classical:

$$p_c(a, b|x, y) = \sum_{\lambda} \pi(\lambda) \operatorname{Tr} \left[\tau_X^x P_X^{a|\lambda} \right] \operatorname{Tr} \left[\omega_Y^y Q_Y^{b|a,\lambda} \right) \right]$$

Quantum:

$$p_q(a,b|x,y) = \sum_{\lambda} \pi(\lambda) \operatorname{Tr} \left[\left(\left\{ (\mathcal{N}_{A \to B} \circ \Phi_{X \to A}^{a|\lambda})(\tau_X^x) \right\} \otimes \omega_Y^y \right) \Psi_{BY}^{b|a,\lambda} \right]$$

Classical vs Quantum

Classical strategies correspond to the case in which the channel $\mathcal N$ is entanglement-breaking (i.e., "measure and prepare" form): $\mathcal N(\cdot) = \sum_i \rho_i \operatorname{Tr}[\cdot P_i]$.

Statistical Comparison of Quantum Channels

Theorem (Rosset, FB, Liang, 2018)

Given two channels $\mathcal{N}:A\to B$ and $\mathcal{N}':A'\to B'$, the condition (i.e., "signaling preorder")

$$\mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[\mathcal{N}] \geq \mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[\mathcal{N}']$$

holds for all semiquantum signaling games, iff there exist a quantum instrument $\{\Phi^a_{A'\to A}\}$ and CPTP maps $\Psi^a_{B\to B'}$ such that

$$\mathcal{N}'_{A'\to B'} = \sum_{a} \Psi^a_{B\to B'} \circ \mathcal{N}_{A\to B} \circ \Phi^a_{A'\to A} .$$

$$\frac{A'}{N'} = \frac{A'}{\sqrt{a}} \sqrt{\frac{B'}{a}} = \frac{A'}{\sqrt{a}} \sqrt{\frac{B'}{a}} \sqrt{$$

Remarks

- formulation of a resource theory where all and only measure-and-prepare channels are "free"
- any non entanglement-breaking channel can be witnessed
- perfect analogy between separable states and entanglement-breaking channels
- relation with Leggett-Garg inequalities: the "clumsiness loophole" (time-like analogue of communication loophole) can be closed with semiquantum games
- semiquantum games can treat space-like and time-like correlations on an equal footing

Conclusions

Conclusions

- \bullet the theory of statistical comparison studies transformations of one "statistical structure" X into another "statistical structure" Y
- equivalent conditions are given in terms of (finitely or infinitely many) *monotones*, e.g., $f_i(X) \ge f_i(Y)$
- such monotones shed light on the "resources" at stake in the operational framework at hand
- in a sense, statistical comparison is complementary to SDP, which instead searches for efficiently computable functions like f(X,Y)
- however, SDP does not provide much insight into the resources at stake (and not all statistical comparisons are equivalent to SDP!)

Thank you