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Guiding idea:
generalized resource theories as order theories for

stochastic (probabilistic) structures

0/31



The Precursor: Majorization



Lorenz Curves and Majorization

• two probability distributions, p = (p1, . . . , pn)
and q = (q1, . . . , qn)

• truncated sums P (k) =
∑k

i=1 p
↓
i and

Q(k) =
∑k

i=1 q
↓
i , for all k = 1, . . . , n

• p majorizes q, i.e., p � q, whenever
P (k) ≥ Q(k), for all k

• minimal element: uniform distribution
e = n−1(1, 1, · · · , 1)

Hardy, Littlewood, and Pólya (1929)

p � q ⇐⇒ q = Mp, for some bistochastic
matrix M .

Lorenz curve for probability distribution

p = (p1, · · · , pn):

(xk, yk) = (k/n, P (k)), 1 ≤ k ≤ n
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Blackwell’s Extensions



Statistical Decision Problems

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

payoff is `(θ, u) ∈ R

Definition

A statistical model (or experiment) is a triple w = 〈Θ,X , w〉, a statistical
decision problem (or game) is a triple g = 〈Θ,U , `〉.

2/31



Playing Games with Experiments

• the experiment (model) is given,
i.e., it is the “resource”

• the decision instead can be
optimized

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Definition

The expected payoff of a statistical model w = 〈Θ,X , w〉 w.r.t. a decision
problem g = 〈Θ,U , `〉 is given by

Eg[w]
def
= max

d(u|x)

∑
u,x,θ

`(θ, u)d(u|x)w(x|θ)|Θ|−1 .
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Comparing Statistical Models 1/2

First model: w = 〈Θ,X , w(x|θ)〉

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Second model: w′ = 〈Θ,Y , w′(y|θ)〉

Θ
experiment−→ Y decision−→ U

   

θ −→
w′(y|θ)

x −→
d′(u|y)

u

For a fixed decision problem g = 〈Θ,U , `〉, the expected payoffs Eg[w] and
Eg[w′] can always be ordered.
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Comparing Statistical Models 2/2

Definition (Information Preorder)

If the model w = 〈Θ,X , w〉 is better than model w′ = 〈Θ,Y , w′〉 for all
decision problems g = 〈Θ,U , `〉, then we say that w is more informative than
w′, and write

w � w′ .

Problem. Can we visualize the information morphism � more concretely?
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Information Morphism = Statistical Sufficiency

Blackwell-Sherman-Stein Theorem (1948-1953)

Given two experiments with the same parameter space,
w = 〈Θ,X , w〉 and w′ = 〈Θ,Y , w′〉, the condition
w � w′ holds iff there exists a conditional probability
ϕ(y|x) such that w′(y|θ) =

∑
x ϕ(y|x)w(x|θ).

Θ −→ Y Θ −→ X noise−→ Y

  

=

   

θ −→
w′(y|θ)

y θ −→
w(x|θ)

x −→
ϕ(y|x)

y
David H. Blackwell (1919-2010)
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Special Case: Dichotomies

• two pairs of probability distributions, i.e., two
dichotomies, (p1,p2) and (q1, q2), of dimension m and
n, respectively

• relabel entries such that ratios pi1/p
i
2 and qj1/q

j
2 are

nonincreasing

• construct the truncated sums P1,2(k) =
∑k

i=1 p
i
1,2 and

Q1,2(k)

• (p1,p2) � (q1, q2) iff the relative Lorenz curve of the
former is never below that of the latter

Blackwell’s Theorem for Dichotomies (1953)

(p1,p2) � (q1, q2) ⇐⇒ qi = Mpi, for some stochastic
matrix M .

Relative Lorenz curves:

(xk, yk) = (P2(k), P1(k))
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The Viewpoint of Communication Theory



Statistics vs Information Theory

• Statistical models are mathematically equivalent to noisy channels:

• However: while in statistics the input is inaccessible (Nature does not bother
with coding!)

• in communication theory a sender does code!
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From Decision Problems to Decoding Problems

Definition (Decoding Problems)

Given a channel w = 〈X ,Y , w(y|x)〉, a decoding problem is defined by an
encoding e = 〈M,X , e(x|m)〉 and the payoff function is the optimum guessing
probability:

Ee[w]
def
= max

d(m|y)

∑
m,x,y

d(m|y)w(y|x)e(x|m)|M|−1 = 2−Hmin(M |Y )



Comparison of Classical Noisy Channels

Consider two discrete noisy channels w and w′ with the same input alphabet

Theorem

Given the following pre-orders

1. degradability: there exists ϕ(z|y): w′(x|z) =
∑

y ϕ(z|y)w(y|x)

2. noisiness: for all encodings e = 〈M,X , e(x|m)〉, H(M |Y ) ≤ H(M |Z)

3. ambiguity: for all encodings e = 〈M,X , e(x|m)〉, Hmin(M |Y ) ≤ Hmin(M |Z)

we have: (1) =⇒ (2) (data-processing inequality), (2) 6=⇒ (1) (Körner and Marton,

1977), but (1)⇐⇒ (3) (FB, 2016).



Some Classical Channel Morphisms

Output degrading:

Input degrading:

Full coding (Shannon’s “channel inclusion”, 1958):
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Extensions to the Quantum Case



Some Quantum Channel Morphisms

Output degrading:

Input degrading:

Quantum coding with forward CC:
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Output Degradability



Comparison of Quantum Statistical Models 1/2

Quantum statistical models as cq-channels:

Formulation below from: A.S. Holevo, Statistical Decision Theory for Quantum Systems, 1973.

classical case quantum case

• decision problems g = 〈Θ,U , `〉 • decision problems g = 〈Θ,U , `〉

• experiments w = 〈Θ,X , {w(x|θ)}〉 • quantum experiments E =
〈
Θ,HS , {ρθS}

〉
• decisions d(u|x) • POVMs {PuS : u ∈ U}

• pc(u, θ) =
∑
x d(u|x)w(x|θ)|Θ|−1 • pq(u, θ) = Tr

[
ρθS P

u
S

]
|Θ|−1

• Eg[w] = max
d(u|x)

∑
`(θ, u)pc(u, θ) • Eg[E ] = max

{Pu
S }

∑
`(θ, u)pq(u, θ)



Comparison of Quantum Statistical Models 2/2

What follows is from: FB, Comm. Math. Phys., 2012

• consider two quantum statistical models E =
〈
Θ,HS, {ρθS}

〉
and

E ′ =
〈
Θ,HS′ , {σθS′}

〉
• information ordering: E � E ′ iff Eg[E ] ≥ Eg[E ′] for all g

• E � E ′ iff there exists a quantum statistical morphism (essentially, a
PTP map) M : L(HS)→ L(HS′) such that M(ρθS) = σθS′ for all θ

• complete information ordering: E �c E ′ iff E ⊗ F � E ′ ⊗F for all
ancillary models F (in fact, one informationally complete model suffices)

• E �c E ′ iff there exists a CPTP map N : L(HS)→ L(HS′) such that
N (ρθS) = σθS′ for all θ

• if E ′ is abelian, then E �c E ′ iff E � E ′
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Comparison of Quantum Channels 1/2

Definition (Quantum Decoding Problems)

Given a quantum channel N : A→ B, a quantum decoding problem is defined
by a bipartite state ωRA and the payoff function is the optimum singlet fraction:

Eω[N ]
def
= max

D
〈Φ+

RR̄
|(idR ⊗DB→R̄ ◦ NA→B)(ωRA)|Φ+

RR̄
〉



Comparison of Quantum Channels 2/2

Theorem (FB, 2016)

Given two quantum channels N : A→ B and N ′ : A→ B′, the following are
equivalent:

1. output degradability: there exists CPTP map C: N ′ = C ◦ N ;

2. coherence preorder: for any bipartite state ωRA, Eω[N ] ≥ Eω[N ′], that is,
Hmin(R|B)(id⊗N )(ω) ≤ Hmin(R|B′)(id⊗N ′)(ω).

 applications to the theory of open quantum systems dynamics and, by adding

symmetry constraints, to quantum thermodynamics

16/31



Application 1:
Open Quantum Systems Dynamics



Discrete-Time Stochastic Processes

• Let xi, for i = 0, 1, . . . , index the state of a system
at time t = ti

• if the system can be initialized at time t = t0, the
process is fully described by the conditional
distribution p(xN , . . . , x1|x0)

• if the system evolving is quantum, we only have a

quantum dynamical mapping
{
N (i)
Q0→Qi

}
i=1,...,N

• the process is divisible if there exist channels D(i)

such that N (i+1) = D(i) ◦ N (i) for all i

• problem: to provide a fully information-theoretic
characterization of divisibility
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Divisibility as “Quantum Information Flow”

Theorem (2016-2018)

Given an initial open quantum system Q0, a quantum dynamical mapping{
N (i)
Q0→Qi

}
i≥1

is divisibile if and only if, for any initial state ωRQ0 ,

Hmin(R|Q1) ≤ Hmin(R|Q2) ≤ · · · ≤ Hmin(R|QN) .
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Application 2:
Quantum Thermodynamics



Resource Theory of Athermality and Asymmetry

From [FB, arXiv:1505.00535], [FB and Gour, Phys. Rev. A 95, 012110 (2017)],
and [Gour, Jennings, FB, Duan, and Marvian, Nat. Comm. 9, 5352 (2018)]

• idea: to characterize thermal accessibility ρ→ σ by comparing the
dichotomies (ρ, γ) and (σ, γ), for γ thermal state

• classically, Blackwell’s theorem implies the thermomajorization relation

• in the quantum case, in order to account for coherence, symmetry
constraints can also be added to the Gibbs-preserving map
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Sketch Idea

• we compare the singlet fraction of two channels,
N i
A→B(•) = 〈0| • |0〉γ + 〈1| • |1〉ρi, with ρ1 ≡ ρ and ρ2 ≡ σ

• to add symmetry constraints, we compare the two channels for the twirled
quantum codes:

• by varying the input quantum code, we obtain a complete set of entropic
monotones



Quantum Coding:
Probing Quantum Correlations in Space-Time



Part One: Quantum Space-Like Correlations

• nonlocal games (Bell tests) can be seen here as
bipartite decision problems ng = 〈X ,Y;A,B; `〉 played
“in parallel” by non-communicating players

• with a classical source,
pc(a, b|x, y) =

∑
λ π(λ)dA(a|x, λ)dB(b|y, λ)

• with a quantum source,

pq(a, b|x, y) = Tr
[
ρAB (P

a|x
A ⊗Qb|yB )

]
Enl[∗]

def
= max

∑
x,y,a,b

`(x, y; a, b)pc/q(a, b|x, y)|X |−1|Y|−1
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Semiquantum Nonlocal Games

• semiquantum nonlocal games replace classical inputs
with quantum inputs: sqnl = 〈{τx}, {ωy};A,B; `〉

• with a classical source,

pc(a, b|x, y) =
∑

λ π(λ) Tr
[
(τxX ⊗ ω

y
Y ) (P

a|λ
X ⊗Qb|λY )

]
• with a quantum source,
pq(a, b|x, y) = Tr

[
(τxX ⊗ ρAB ⊗ ω

y
Y ) (P aXA ⊗QbBY )

]
Esqnl[∗]

def
= max

∑
x,y,a,b

`(x, y; a, b)pc/q(a, b|x, y)|X |−1|Y|−1
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LOSR Morphisms of Quantum Correlations

Theorem (FB, 2012)

Given two bipartite states ρAB and σA′B′ , the condition (i.e., “nonlocality preorder”)

Esqnl[ρAB] ≥ Esqnl[σA′B′ ]

holds for all semiquantum nonlocal games sqnl = 〈{τx}, {ωy};A,B; `〉,
iff there exist CPTP maps {Φλ

A→A′}, {Ψλ
B→B′}, and distribution π(λ) such that

σA′B′ =
∑
λ

π(λ)(Φλ
A→A′ ⊗Ψλ

B→B′)(ρAB) .



Corollaries

• For any separable state ρAB,

Esqnl[ρAB] = Esqnl[ρA ⊗ ρB] = Esep
sqnl ,

for all semiquantum nonlocal games sqnl = 〈{τx}, {ωy};A,B; `〉.
• For any entangled state ρAB, there exists a semiquantum nonlocal game

sqnl = 〈{τx}, {ωy};A,B; `〉 such that

Esqnl[ρAB] > Esep
sqnl .
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Other Properties of Semiquantum Nonlocal Games

From [Branciard, Rosset, Liang, and Gisin, Phys. Rev. Lett. 110, 060405 (2013)]

Semiquantum nonlocal games:

• can be considered as measurement
device-independent entanglement witnesses (i.e.,
MDI-EW)

• can withstand losses in the detectors

• can withstand any amount of classical
communication exchanged between Alice and Bob

• hence, contrarily to conventional Bell tests,
semiquantum nonlocal games are non trivial also
when rearranged in time
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Part Two: Quantum Time-Like Correlations

Semiquantum signaling games:

• the duo Alice–Bob becomes ‘Alice now’–‘Alice later’

• the semiquantum nonlocal game
sqnl = 〈{τx}, {ωy};A,B; `〉 is arranged in a
time-like structure

• thus obtaining a semiquantum signaling game sqsg

• with unlimited classical memory,

pc(a, b|x, y) =
∑

λ π(λ) Tr
[
τxX P

a|λ
X

]
Tr
[
ωyY Q

b|a,λ
Y

]
• if, moreover, a quantum memory N : A→ B is

available?
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Admissible Quantum Strategies

• τxX is fed through an instrument {Φa|λ
X→A}, and

outcome a is recorded

• the quantum output of the instrument is fed through
the quantum memory N : A→ B

• the output of the memory, together with ωyY , are fed

into a final measurement {Ψb|a,λ
BY }, and output b is

recorded

pq(a, b|x, y) =
∑
λ

π(λ) Tr
[(
{(NA→B ◦ Φ

a|λ
X→A)(τxX)} ⊗ ωyY

)
Ψ
b|a,λ
BY

]



Classical vs Quantum Strategies

Classical:
pc(a, b|x, y) =

∑
λ

π(λ) Tr
[
τxX P

a|λ
X

]
Tr
[
ωyY Q

b|a,λ
Y

]
Quantum:

pq(a, b|x, y) =
∑
λ

π(λ) Tr
[(
{(NA→B ◦ Φ

a|λ
X→A)(τxX)} ⊗ ωyY

)
Ψ
b|a,λ
BY

]

Classical vs Quantum

Classical strategies correspond to the case in which the channel N is
entanglement-breaking (i.e., “measure and prepare” form):
N (·) =

∑
i ρi Tr[· Pi] .
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EB Morphisms of Quantum Channels

Theorem (Rosset, FB, Liang, 2018)

Given two channels N : A→ B and N ′ : A′ → B′, the condition (i.e., “quantum
signaling preorder”)

Esqsg[N ] ≥ Esqsg[N ′]

holds for all semiquantum signaling games sqsg = 〈{τx}, {ωy};A,B; `〉,
iff there exist a quantum instrument {Φa

A′→A} and CPTP maps {Ψa
B→B′} such that

N ′A′→B′ =
∑
a

Ψa
B→B′ ◦ NA→B ◦ Φa

A′→A .



A Resource Theory of Quantum Memories:
Some Remarks

• formulation of a resource theory where all and only measure-and-prepare
channels are “free”

• any non entanglement-breaking channel can be witnessed

• perfect analogy between separable states and entanglement-breaking
channels

• relation with Leggett-Garg inequalities: the “clumsiness loophole” (time-like
analogue of communication loophole) can be closed with semiquantum
games

• semiquantum games can treat space-like and time-like correlations on an
equal footing
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Conclusions



Conclusions

• the theory of statistical comparison studies morphisms (preorders) of one
“statistical structure” X into another “statistical structure” Y

• equivalent conditions are given in terms of (finitely or infinitely many)
monotones, e.g., fi(X) ≥ fi(Y )

• such monotones shed light on the “resources” at stake in the operational
framework at hand

• in a sense, statistical comparison is complementary to SDP, which instead
searches for efficiently computable functions like f(X, Y )

• however, SDP does not provide much insight into the resources at stake
(and not all statistical comparisons are equivalent to SDP!)

Thank you
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