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Guiding idea:
generalized resource theories as order theories for
stochastic (probabilistic) structures



The Precursor: Majorization



Lorenz Curves and Majorization

Lorenz curve for probability distribution

e two probability distributions, p = (p1,...,Dn)

pP= (plv"' 7p7l):
and g = (q1,---,qn)

e truncated sums P(k) = 3% p%L =l |
Q) =Sk g forallk=1,....n

e p majorizes q, i.e., p = q, whenever
P(k) > Q(k), for all k

e minimal element: uniform distribution
e=n"Y(1,1,---,1)

Hardy, Littlewood, and Pdlya (1929)

p>=q < q = Mp, for some bistochastic
matrix M.
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Blackwell’s Extensions



Statistical Decision Problems

S“'gﬂf\' sh cal mode L

d'QC\;S[M

payoff is £(6,u) € R

Definition

A statistical model (or experiment) is a triple w = (O, X', w), a statistical
decision problem (or game) is a triple g = (©,U, ().
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Playing Games with Experiments

. . . 0 explin';ent X U
e the experiment (model) is given,
i.e., it is the “resource” : 3 3
e the decision instead can be
optimized 0 N T U
w(z|0)
Definition

The expected payoff of a statistical model w = (O, X', w) w.r.t. a decision
problem g = (©,U, () is given by

Egw] = ;Ef% 00, u)d(u|z)w(z|0)|0] " .
u,x,0
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Comparing Statistical Models 1/2

First model: w = (O, X', w(x|0))

experiment
S} —

X decision U

w(x|6) d(ulz)

Second model: w' = (0, Y, w'(y|0))

experiment
() —

y decision U

w'(y|0) ' (uly)

For a fixed decision problem g = (0,U, {), the expected payoffs Eq[w] and

Eg[w'] can always be ordered.
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Comparing Statistical Models 2/2

Definition (Information Preorder)

If the model w = (O, X', w) is better than model w' = (O, Y, w’)
, then we say that w is more informative than
w’, and write

w>w .

Problem. Can we visualize the information morphism > more concretely?
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Information Morphism = Statistical Sufficiency

Blackwell-Sherman-Stein Theorem (1948-1953)

Given two experiments with the same parameter space,
w= (0, X, w) and w = (0, ), w'), the condition

w = w’ holds iff there exists a conditional probability
p(y|x) such that w'(y|0) = >_, o(y|lz)w(z|0).

noise

e — Y e — X —= Y
$ $ o= 4 $ $
0 w@) Y 0 w(_w@) r 90@) y David H. Blackwell (1919-2010)
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Special Case: Dichotomies

e two pairs of probability distributions, i.e., two
dichotomies, (p;,py) and (g, qs), of dimension m and
n, respectively

o relabel entries such that ratios p’ /ph and ¢! /¢j are
nonincreasing

e construct the truncated sums P; 2(k) = Zle pjm and

Q1,2(k)

e (p1,p2) = (q1,qy) iff the relative Lorenz curve of the
former is never below that of the latter

Relative Lorenz curves:

Blackwell’s Theorem for Dichotomies (1953) @ge) = (Palk), PL(K))
(p1,P2) = (g1,92) < q; = Mp;, for some stochastic

i 1
matrix M. /3



The Viewpoint of Communication Theory



Statistics vs Information Theory

e Statistical models are mathematically equivalent to noisy channels:

i

e However: while in statistics the input is inaccessible (Nature does not bother
with coding!)

O uen|p= =] 54

e in communication theory a sender does code!

| 9:? wflé) [2 =z ) [= U
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From Decision Problems to Decoding Problems

x w (= :>>’V1Ai
. = o= =9

Definition (Decoding Problems)
Given a channel w = (X, Y, w(y|x)), a is defined by an
encoding e = (M, X, e(z|m)) and the payoff function is the optimum guessing
probability:

o] g 3 dmigulie)e(m| M = 27010

d(mly)



Comparison of Classical Noisy Channels

Consider two discrete noisy channels w and w’ with the same input alphabet

Given the following pre-orders

[N

: there exists p(z2]y): w'(z|z) = >, ¢(z|y)w(y|z)
: for all encodings e = (M, X, e(x|m)), H(M|Y') < H(M|Z)

: for all encodings e = (M, X, e(x|m)), Hmin(M|Y) < Hpin(M|2)

we have: (1) = (2) (data-processing inequality), (2) =% (1) (K&rner and Marton,
1977), but (1) <= (3) (FB, 2016).



Some Classical Channel Morphisms

Output degrading:

z.—.;’\u&@@ :>D=>& = = [z

Input degrading:

wsf_prefwley = “=)=0

Full coding (Shannon’s “channel inclusion”, 1958):
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Extensions to the Quantum Case



Some Quantum Channel Morphisms

Output degrading:

A—aD-—:B—PD-D R = A%D” &

Input degrading:

A ﬁD—a A —9D-—>B = /N""’D-EB

Quantum coding with forward CC:

Sjaatanp®

|

A/-’SI/J’*S/
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Output Degradability



Comparison of Quantum Statistical Models 1/2

Quantum statistical models as cg-channels:

3’#3—)339‘

Formulation below from: A.S. Holevo, Statistical Decision Theory for Quantum Systems, 1973.

classical case

quantum case

e decision problems g = (©,U, ()

e experiments w = (0, X, {w(x]6)})
e decisions d(u|z)

 po(,0) = ¥, d(ulz)u(z|6)[0]

o Eg[w] = max Zﬁ(e,u)pc(u, 0)
d(ul|z)

e decision problems g = (©,U, ()

e quantum experiments & = (O, Mg, {p%})
e POVMs {P¥ :u e U}

® pq(u,0) = Tr[p§ P§] (O]~

o E,[£] = max (6, u u, 0
g[ ] (P} (0,u)pq(u,)



Comparison of Quantum Statistical Models 2/2

What follows is from: FB, Comm. Math. Phys., 2012

e consider two quantum statistical models £ = (0, Hs, {p%}) and
5/ = <@,H5l, {O‘g,}>

e information ordering: & > £’ iff Eg[€] > E,[£'] for all g

o & = &' iff there exists a quantum statistical morphism (essentially, a
PTP map) M : L(Hs) — L(Hs) such that M(p%) = o2, for all 6

e complete information ordering: £ =, &' iff E @ F = & @ F for all
ancillary models F (in fact, one informationally complete model suffices)

o & =, & iff there exists a CPTP map N : L(Hs) — L(Hs) such that
N(p) = o% for all 6
o if £ is abelian, then £ =_. &' iff € = &’
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Comparison of Quantum Channels 1/2

N n
; g

Definition (Quantum Decoding Problems)

Given a quantum channel N’ : A — B, a is defined
by a bipartite state wg4 and the payoff function is the optimum singlet fraction:

E.N] £ mgX@ER’(idR ® Dp_z © NasB)(wra)| L 5)



Comparison of Quantum Channels 2/2

Theorem (FB, 2016)

Given two quantum channels N': A — B and N : A — B’, the following are
equivalent:

1. output degradability: there exists CPTP map C: N' =CoN;

2. coherence preorder: for any bipartite state wra, E,[N] > E,[N’], that is,
Huin (R|B) (dgA)(w) < Hmin(R|B’) (don)(w)-

~ applications to the theory of and, by adding
symmetry constraints, to
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Application 1:
Open Quantum Systems Dynamics



Discrete-Time Stochastic Processes

e let x;, fori =0,1,..., index the state of a system
at time t = t;

e if the system can be initialized at time ¢ = ¢, the
process is fully described by the conditional
distribution p(xn, ..., z1]z0)

e if the system evolving is quantum, we only have a

quantum dynamical mapping {Ngo)%Q } bime
i)i=1,..,N

e the process is divisible if there exist channels D)
such that N+ = DO o N for all ¢

e problem: to provide a fully information-theoretic
characterization of divisibility
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Divisibility as “Quantum Information Flow”

Theorem (2016-2018)

Given an initial open quantum system )y, a quantum dynamical mapping
{NggﬁQi }i>1 is divisibile if and only if, for any initial state wgq,,

Hmin(R|Ql) S Hmin(R‘QQ) S T S Hmin(R|QN) .

7] |
Q >
to £ €, e €y
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Application 2:
Quantum Thermodynamics



Resource Theory of Athermality and Asymmetry

From [FB, arXiv:1505.00535], [FB and Gour, Phys. Rev. A 95, 012110 (2017)],
and [Gour, Jennings, FB, Duan, and Marvian, Nat. Comm. 9, 5352 (2018)]

e idea: to characterize thermal accessibility p — o by comparing the
dichotomies (p,v) and (o, ), for v thermal state

e classically, Blackwell's theorem implies the thermomajorization relation

e in the quantum case, in order to account for coherence, symmetry
constraints can also be added to the Gibbs-preserving map
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Sketch Idea
R—= 3
W, %
— 4= >0 4Bl7 R~

e we compare the singlet fraction of two channels,
iop(®) = (0] @ [0)y + (1] o [1)p", with p' = pand p? =0
e to add symmetry constraints, we compare the two channels for the twirled
quantum codes:

(ot @ =B (rtegaa®

Covamiant
e by varying the input quantum code, we obtain a complete set of entropic
monotones




Quantum Coding:
Probing Quantum Correlations in Space-Time



Part One: Quantum Space-Like Correlations

x p—

e nonlocal games (Bell tests) can be seen here as A‘Qf& a
bipartite decision problems ng = (X, V; A, B; £) played
“in parallel” by non-communicating players

e with a classical source,
pe(a,blz,y) = >\ m(A)da(alz, \)dp(bly, \)

e with a quantum source,

T e (B

Enl#] £ max Y £(z,y;a,b)pe/q(a, blz, y)| XY™
2,y,a,b 21/31



Semiquantum Nonlocal Games

e semiquantum nonlocal games replace classical inputs
with quantum inputs: sqnl = ({7*},{w?}; A, B; {)

e with a classical source, e’
> al\ bIA
pela,blz,y) = X m(N) T (7 @ ) (P @ Q)]

e with a quantum source,

pe(a,blz,y) = Tr[(7% ® pap ® w¥) (PE4 ® Q%y)] O\)‘a’" %OL Pl)

IEfsqnl = = max Z x y Y5 a, b pc/q(a b‘x Yy |X‘ 1D}| !

z,y,a,b
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LOSR Morphisms of Quantum Correlations

Theorem (FB, 2012)

Given two bipartite states pap and o a/p/, the condition (i.e., “nonlocality preorder”)
Esqni[paB] > Esqni[oa'B/]
holds sqnl = ({7}, {w¥}; A, B; £),

iff there exist CPTP maps {® ., .}, {U% . g/}, and distribution w()\) such that

oap =Y TN (@A,0 © Uy, p)(pan) -
X

A—— A/ /A(I

==

—= 8 —— B’ %’



Corollaries

e For any separable state pap,

]Esqnl [pAB] - IEsqnl [pA ® pB] = E::'l)ﬂ )

for all semiquantum nonlocal games sqnl = ({77}, {wY}; A, B; ().

e For any entangled state p,p, there exists a semiquantum nonlocal game
sqnl = ({7°}, {w?}; A, B; ) such that

Esqnl [pAB] > Esep

sqnl °
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Other Properties of Semiquantum Nonlocal Games

From [Branciard, Rosset, Liang, and Gisin, Phys. Rev. Lett. 110, 060405 (2013)]

Semiquantum nonlocal games:

e can be considered as measurement

device-independent entanglement witnesses (i.e.,
MDI-EW)

e can withstand losses in the detectors

e can withstand any amount of classical
communication exchanged between Alice and Bob

e hence, contrarily to conventional Bell tests, ;a % L ‘?ID
. . . _—__‘_
semiquantum nonlocal games are non trivial also W o
when rearranged in time
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Part Two: Quantum Time-Like Correlations

Semiquantum signaling games:
e the duo Alice-Bob becomes ‘Alice now'—Alice later’ b

e the semiquantum nonlocal game Zx
sqnl = ({77}, {wY}; A, B; () is arranged in a
time-like structure

%mﬁ\r xk J’\\
&\l%
e
3aniL

e thus obtaining a semiquantum signaling game sqsg = N .
e with unlimited classical memory, ?ﬁ ,ﬁ}: lg
+ palx y Abla A
pe(a, blz,y) = >, m(A) Tr [TX PX| } Tr [w{, QY‘ } w‘a - ‘*’v’;’;@ \/

e if, moreover, a quantum memory N : A — B is
available?
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Admissible Quantum Strategies

e 7% is fed through an instrument {<I>X_>A} and
outcome a is recorded

e the quantum output of the instrument is fed through
the quantum memory ' : A — B

e the output of the memory, together with wy., are fed

bla,\
into a final measurement {V 5y’ o,

recorded

}, and output b is

(a, bz, y) Zw T ({(Wass 0 82, ) ()} @ i) Wi



Classical vs Quantum Strategies

Classical:

peles o) = 3 m ) T 7% P e 0]

A

Quantum:

(a,blz,5) = > 7N Tr| ({Nass 0 032, )(75)} @t ) W2
A

Classical strategies correspond to the case in which the channel N is
(i.e., “measure and prepare” form):

N()= ¥, |- P
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EB Morphisms of Quantum Channels

Theorem (Rosset, FB, Liang, 2018)

Given two channels N : A — B and N : A" — B’, the condition (i.e., “quantum
signaling preorder”)

Esqsg[V] = Esqsg[\]

holds sasg = ({77}, {w"}: A, B; ),
iff there exist a quantum instrument {®%, , .} and CPTP maps {V%,_, 5, } such that

/
A'—»B' — E :\II%HB/ oNaspo (I)?LVHA .
a

A 4AeD—->B—j]’§B, = A R’
il




A Resource Theory of Quantum Memories:

Some Remarks

e formulation of a resource theory where all and only measure-and-prepare
channels are “free”

e any non entanglement-breaking channel can be witnessed

e perfect analogy between separable states and entanglement-breaking
channels

e relation with Leggett-Garg inequalities: the “clumsiness loophole” (time-like
analogue of communication loophole) can be closed with semiquantum
games

e semiquantum games can treat space-like and time-like correlations on an
equal footing
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Conclusions



Conclusions

e the theory of statistical comparison studies morphisms (preorders) of one
“statistical structure” X into another “statistical structure” Y

e equivalent conditions are given in terms of (finitely or infinitely many)
monotones, e.g., fi(X) > fi(Y)

e such monotones shed light on the “resources” at stake in the operational
framework at hand

e in a sense, statistical comparison is complementary to SDP, which instead
searches for efficiently computable functions like f(X,Y)

e however, SDP does not provide much insight into the resources at stake
(and not all statistical comparisons are equivalent to SDP!)

Thank you
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