The Theory of Quantum Statistical Comparison and Some Applications in Quantum Information Sciences

Francesco Buscemi (Nagoya U)

The 39th Quantum Information Technologies Symposium (QIT). RCAST, The University of Tokyo, 27 November 2018

The Original Formulation

Statistical Models and Decision Problems

Definition

- The statistical model is given by: the parameter set Θ , the sample set \mathcal{X} , and the PDs $w(x|\theta)$.
- The statistical decision problem: is given by the parameter set Θ, the action set U, and the payoff function ℓ : Θ × U → ℝ.

How Much Is an Experiment Worth?

- the experiment *is given*, i.e., it is the "resource"
- the decision instead *can be optimized*

.

Definition (Expected Payoff)

The expected payoff of statistical model $\mathbf{w} = \langle \Theta, \mathcal{X}, w(x|\theta) \rangle$ w.r.t. a decision problem $\boldsymbol{\ell} = \langle \Theta, \mathcal{U}, \ell(\theta, u) \rangle$ is given by

$$\mathbb{E}_{\boldsymbol{\ell}}[\mathbf{w}] \stackrel{\text{\tiny def}}{=} \max_{d(u|x)} \sum_{u,x,\theta} \ell(\theta, u) d(u|x) w(x|\theta) |\Theta|^{-1}$$

Comparing Statistical Models 1/2

 First model: $\mathbf{w} = \langle \Theta, \mathcal{X}, w(x|\theta) \rangle$ Second model: $\mathbf{w}' = \langle \Theta, \mathcal{Y}, w'(y|\theta) \rangle$
 $\Theta \xrightarrow{\text{experiment}} \mathcal{X} \xrightarrow{\text{decision}} \mathcal{U}$ $\Theta \xrightarrow{\text{experiment}} \mathcal{Y} \xrightarrow{\text{decision}} \mathcal{U}$
 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $\downarrow \qquad \downarrow \qquad \downarrow$
 $\theta \xrightarrow{w(x|\theta)} x \xrightarrow{d(u|x)} u$ $\theta \xrightarrow{w'(y|\theta)} y \xrightarrow{d'(u|y)} u$

Given a statistical decision problem $\ell = \langle \Theta, \mathcal{U}, \ell(\theta, u) \rangle$, if $\mathbb{E}_{\ell}[\mathbf{w}] \geq \mathbb{E}_{\ell}[\mathbf{w}']$, then one says that model \mathbf{w} is *more informative than* model \mathbf{w}' with respect to problem ℓ .

Definition (Information Preorder)

If model $\mathbf{w} = \langle \Theta, \mathcal{X}, w(x|\theta) \rangle$ is more informative than model $\mathbf{w}' = \langle \Theta, \mathcal{Y}, w'(y|\theta) \rangle$ for all decision problems $\boldsymbol{\ell} = \langle \Theta, \mathcal{U}, \boldsymbol{\ell}(\theta, u) \rangle$, then we say that \mathbf{w} is *(always) more informative* than \mathbf{w}' , and write

$$\mathbf{w} \succeq \mathbf{w}'$$
 .

Problem. The information preorder is operational, but not really "concrete". Can we visualize this better?

A Fundamental Result

Blackwell-Sherman-Stein (1948-1953)

Given two models with the same parameter space, $\mathbf{w} = \langle \Theta, \mathcal{X}, w(x|\theta) \rangle$ and $\mathbf{w}' = \langle \Theta, \mathcal{Y}, w'(y|\theta) \rangle$, the condition $\mathbf{w} \succeq \mathbf{w}'$ holds *iff* \mathbf{w} is sufficient for \mathbf{w}' , that is, iff there exists a conditional PD $\varphi(y|x)$ such that $w'(y|\theta) = \sum_{x} \varphi(y|x)w(x|\theta)$.

David H. Blackwell (1919-2010)

The Precursor: Majorization

Lorenz Curves and Majorization

• two probability distributions, *p* and *q*, of the same dimension *n*

• truncated sums
$$P(k) = \sum_{i=1}^{k} p_i^{\downarrow}$$
 and $Q(k) = \sum_{i=1}^{k} q_i^{\downarrow}$, for all $k = 1, \dots, n$

- p majorizes q, i.e., $p \succeq q$, whenever $P(k) \ge Q(k)$, for all k
- minimal element: uniform distribution $e = n^{-1}(1, 1, \cdots, 1)$

Hardy, Littlewood, and Pólya (1934) $p \succeq q \iff q = Mp$, for some bistochastic matrix M. Lorenz curve for probability distribution

$$\boldsymbol{p}=(p_1,\cdots,p_n)$$
:

 $(x_k, y_k) = (k/n, P(k)), \quad 1 \le k \le n$

Generalization: Relative Majorization

- two *pairs* of probability distributions, (p_1, p_2) and (q_1, q_2) , of dimension m and n, respectively
- relabel entries such that ratios p_1^i/p_2^i and q_1^j/q_2^j are nonincreasing
- construct the truncated sums $P_{1,2}(k) = \sum_{i=1}^k p_{1,2}^i$ and $Q_{1,2}(k)$
- $(p_1, p_2) \succeq (q_1, q_2)$ iff the relative Lorenz curve of the former is never below that of the latter

Blackwell (Theorem for Dichotomies), 1953 $(n_1, n_2) \succeq (n_1, n_2) \iff n_1 = Mn_1$, for some stochast

Relative Lorenz curves:

 $(x_k, y_k) = (P_2(k), P_1(k))$

Formulation in Terms of Channels

Statistical theory Nature does not bother with coding

Communication theory

a sender, instead, does code

Statistical theory Nature does not bother with coding

Communication theory

a sender, instead, does code

Sufficiency vs Degradability

Sufficiency relation for statistical experiments

$$\theta \rightarrow w' \rightarrow y$$

 $\theta \rightarrow w \rightarrow x \rightarrow \varphi \rightarrow y$

Degradability relation for noisy channels

 $w'(y|\theta) = \sum_{x} \varphi(y|x) w(x|\theta) \qquad \qquad w'(z|x) = \sum_{y} \varphi(z|y) w(y|x)$

Only the labeling convention changes, but the two conditions are absolutely equivalent.

Decoding Problems and Codes Fidelities

When dealing with communication channels, it is natural to restrict to particular decision problems that we name "decoding problems".

$$m \rightarrow \mathcal{E} \rightarrow \mathcal{X} \rightarrow \mathcal{N} \rightarrow \mathcal{D} \rightarrow \mathcal{M}'$$

$$\mathcal{E} = \{e(x|m)\}, \ \mathcal{N} = \{w(y|x)\}, \ \mathcal{D} = \{d(m'|y)\}$$

Code Fidelity

Given a noisy channel $\mathcal{N} : \mathcal{X} \to \mathcal{Y}$, its *code fidelity*, for any set \mathcal{M} and any coding channel $\mathcal{E} : \mathcal{M} \to \mathcal{X}$, is defined as

$$\mathbb{E}_{\langle \mathcal{E} \rangle}[\mathcal{N}] \stackrel{\text{def}}{=} \max_{\mathcal{D}: \mathcal{Y} \to \mathcal{M}} \frac{1}{|\mathcal{M}|} \sum_{m, x, y, m'} e(x|m) w(y|x) d(m'|y) \delta_{m, m'}$$

Theorem (Coding Problems Are Complete)

Given two noisy channels $\mathcal{N}: \mathcal{X} \to \mathcal{Y}$ and $\mathcal{N}': \mathcal{X} \to \mathcal{Y}'$, \mathcal{N} is degradable into \mathcal{N}' if and only if

$$\mathbb{E}_{\langle \mathcal{E} \rangle}[\mathcal{N}] \geq \mathbb{E}_{\langle \mathcal{E} \rangle}[\mathcal{N}'] \; ,$$

for all codes $\mathcal{E}: \mathcal{M} \to \mathcal{X}$, with $\mathcal{M} \cong \mathcal{Y}'$.

Extensions to the Quantum Case

Extending Decoding Problems

quantum

"н'н

$$M \rightarrow \underbrace{\mathcal{E}}_{\mathcal{A}} \underbrace{\mathcal{K}}_{\mathcal{B}} \underbrace{\mathcal{K}}_{\mathcal{A}} \underbrace{\mathcal{K}}_{\mathcal{B}} \underbrace{\mathcal{K}}_{\mathcal{A}} \underbrace{\mathcal{K}}_{\mathcal{K}} \underbrace{\mathcal{K}} \underbrace{\mathcal{K}}$$

A

13/25

C (

Quantum Decoding Problems

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} H' \\ H' \\ H' \\ H \\ \end{array} \end{array} \end{array} \end{array} \xrightarrow{H} \\ \begin{array}{c} H' \\ H' \\ \end{array} \end{array} \xrightarrow{H} \\ \begin{array}{c} H' \\ H' \\ \end{array} \end{array} \end{array} \xrightarrow{H' \\ H' \\ H' \\ \end{array} \end{array} \xrightarrow{H' \\ H' \\ H' \\ \end{array} } \left| \Phi^+_{M'M} \right\rangle = \frac{1}{\sqrt{d_M}} \sum_{i=1}^{d_M} |i\rangle_M |i\rangle_M$$

Quantum Code Fidelity

Given a quantum channel (i.e., CPTP linear map) $\mathcal{N} : A \to B$, its quantum code fidelity, for any Hilbert space $\mathcal{H}_M \cong \mathcal{H}_{M'}$ and any quantum coding channel $\mathcal{E} : M \to A$, is defined as

$$\mathbb{E}^{q}_{\langle \mathcal{E} \rangle}[\mathcal{N}] \stackrel{\text{def}}{=} \max_{\mathcal{D}: B \to M} \langle \Phi^{+}_{M'M} | (\mathsf{id}_{M'} \otimes \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}) (\Phi^{+}_{M'M}) | \Phi^{+}_{M'M} \rangle = d_{M}^{-1} 2^{-H_{\min}(M'|B)}$$

Quantum Realignment Problems

Quantum Realignment Fidelity

Given a quantum channel $\mathcal{N}: A \to B$, for any Hilbert space $\mathcal{H}_C \cong \mathcal{H}_{C'}$ and any "misaligning" channel $\mathcal{F}: A' \to C'$, its *quantum realignment fidelity* is defined as

$$\mathbb{F}^{q}_{\langle \mathcal{F} \rangle}[\mathcal{N}] \stackrel{\text{def}}{=} \max_{\mathcal{D}: B \to C} \langle \Phi^{+}_{C'C} | (\mathcal{F}_{A'} \otimes \mathcal{D} \circ \mathcal{N})(\Phi^{+}_{A'A}) | \Phi^{+}_{C'C} \rangle = d_{C}^{-1} 2^{-H_{\min}(C'|B)}$$

Theorem (Quantum Coding and Realignment Problems Are Complete) Given two quantum channels $\mathcal{N} : A \to B$ and $\mathcal{N}' : A \to B'$, the following are equivalent:

- 1. \mathcal{N} is degradable into \mathcal{N}' ;
- 2. for any quantum coding channel $\mathcal{E} : M \to A$, with $\mathcal{H}_M \cong \mathcal{H}_{B'}$, one has $\mathbb{E}^q_{\mathcal{E}}[\mathcal{N}] \geq \mathbb{E}^q_{\mathcal{E}}[\mathcal{N}']$, or, equivalently, $H_{\min}(M'|B) \leq H_{\min}(M'|B')$;
- 3. for any quantum misaligning channel $\mathcal{F} : A' \to C'$, with $\mathcal{H}_{C'} \cong \mathcal{H}_{B'}$, one has $\mathbb{F}^q_{\mathcal{F}}[\mathcal{N}] \ge \mathbb{F}^q_{\mathcal{F}}[\mathcal{N}']$, or, equivalently, $H_{\min}(C'|B) \le H_{\min}(C'|B')$.

Application to Open Quantum Systems Dynamics

Discrete-Time Stochastic Processes

- Let x_i , for i = 0, 1, ..., index the state of a system at time $t = t_i$
- if the system can be initialized at time $t = t_0$, the process is fully described by the conditional distribution $p(x_N, \ldots, x_1 | x_0)$
- if the system evolving is quantum, we only have a quantum dynamical mapping $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i=1,\ldots,N}$
- the process is divisible if there exist channels $\mathcal{D}^{(i)}$ such that $\mathcal{N}^{(i+1)} = \mathcal{D}^{(i)} \circ \mathcal{N}^{(i)}$ for all i

A "Zoo of Quantum Markovianities"

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. *Concepts of quantum non-Markovianity: a hierarchy.* (arXiv:1712.08879 [quant-ph])

A "Zoo of Quantum Markovianities"

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. *Concepts of quantum non-Markovianity: a hierarchy.* (arXiv:1712.08879 [quant-ph])

19/25

Divisibility as "Information Flow"

Theorem

Given a mapping $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i \ge 1}$, the following are equivalent to divisibility

- 1. for any quantum code, its fidelity is monotonically non-increasing in time
- 2. for any misaligning channel, its quantum realignment fidelity is monotonically non-increasing in time

Application to Quantum Thermodynamics

3.5 years ago I presented some ideas (arXiv:1505.00535)

that eventually led to (arXiv:1708.04302)

Quantum majorization and a complete set of entropic conditions for quantum thermodynamics

Gilad Gour,^{1, 2, *} David Jennings,^{3, 4, †} Francesco Buscemi,⁵ Runyao Duan,⁶ and Iman Marvian⁷

Thermal Processes

Formulation of quantum thermodynamics as a "resource theory of out-of-thermal-equilibrium–*ness*"

- thermal (or Gibbs) distribution: $\gamma = \gamma(\hat{H}, T) = Z^{-1}e^{-\hat{H}/kT}$
- thermal processes (Janzing et al, 2000; Horodecki and Oppenheim, 2013) use free thermal ancillas, total energy-preserving interactions, partial traces: $\mathcal{E}_{th}(\rho_S) = \operatorname{Tr}\left[U(\rho_S \otimes \gamma_E)U^{\dagger}\right]$
- thermal \implies Gibbs-preserving (but \Leftarrow)
- thermal accessibility: $\rho \xrightarrow{th} \sigma$ whenever there exists thermal process \mathcal{E}_{th} such that $\mathcal{E}_{th}(\rho) = \sigma$
- thermal monotone: any function $f(\rho)$ such that $f(\rho) \ge f(\mathcal{E}_{th}(\rho))$ for any thermal process \mathcal{E}_{th} (e.g., the free energy)

Free Energy as Statistical Distinguishability

- fact: the free energy $F(\rho) = \text{Tr}[\rho \ H] kTS(\rho)$ can be expressed in terms of the quantum relative entropy as $(kT)^{-1}F(\rho) + \log Z = D(\rho \| \gamma)$
- hence, $F(\rho)$ measures the statistical distinguishability of ρ from a thermal background...
- ...and the Second Law is nothing but a data-processing inequality: since $\mathcal{E}_{th}(\gamma) = \gamma$, one has

$$\rho \xrightarrow{th} \sigma \implies D(\rho \| \gamma) \ge D(\sigma \| \gamma) \iff F(\rho) \ge F(\sigma)$$

• problem: to find a complete set of generalized "free energies" $F_f(\rho)$ (i.e., generalized divergences $D_f(\rho || \gamma)$) such that

$$\rho \xrightarrow{th} \sigma \iff D_f(\rho \| \gamma) \ge D_f(\sigma \| \gamma), \forall D_f$$

Second Laws as Quantum Relative Majorization

- idea: to characterize "all" statistical distinguishability measures at once...
- ...in terms of one relative majorization relation: $(\rho, \gamma) \succeq (\sigma, \gamma)$
- as the majorization preorder captures the statistical distinguishability of a given PD from a uniform background...
- ...so that thermo-majorization preorder captures thermal accessibility
- however: known results only concern classical PDs
- our result: extension of thermo-majorization to deal with non-commuting density operators

Conclusions

Conclusions

- statistical comparison was formulated as a generalization of the "majorization" order
- it constitutes an important foundational tool in mathematical statistics
- in this talk, I argue that it can play an important role also in other areas where statistical predictions are involved
- most importantly, information theory and quantum mechanics
- applications found in quantum statistical mechanics and quantum foundations, but more are waiting!

