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The Original Formulation



Statistical Models and Decision Problems

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Definition

• The statistical model is given by: the parameter set Θ, the sample set X ,
and the PDs w(x|θ).

• The statistical decision problem: is given by the parameter set Θ, the action
set U , and the payoff function ` : Θ× U → R.
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How Much Is an Experiment Worth?

• the experiment is given, i.e., it is
the “resource”

• the decision instead can be
optimized

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Definition (Expected Payoff)

The expected payoff of statistical model w = 〈Θ,X , w(x|θ)〉 w.r.t. a decision
problem ` = 〈Θ,U , `(θ, u)〉 is given by

E`[w]
def
= max

d(u|x)

∑
u,x,θ

`(θ, u)d(u|x)w(x|θ)|Θ|−1 .
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Comparing Statistical Models 1/2

First model: w = 〈Θ,X , w(x|θ)〉

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Second model: w′ = 〈Θ,Y , w′(y|θ)〉

Θ
experiment−→ Y decision−→ U

   

θ −→
w′(y|θ)

y −→
d′(u|y)

u

Given a statistical decision problem ` = 〈Θ,U , `(θ, u)〉, if E`[w] ≥ E`[w′], then
one says that model w is more informative than model w′ with respect to
problem `.
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Comparing Statistical Models 2/2

Definition (Information Preorder)

If model w = 〈Θ,X , w(x|θ)〉 is more informative than model
w′ = 〈Θ,Y , w′(y|θ)〉 for all decision problems ` = 〈Θ,U , `(θ, u)〉, then we say
that w is (always) more informative than w′, and write

w � w′ .

Problem. The information preorder is operational, but not really “concrete”.
Can we visualize this better?
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A Fundamental Result

Blackwell-Sherman-Stein (1948-1953)

Given two models with the same parameter space,
w = 〈Θ,X , w(x|θ)〉 and w′ = 〈Θ,Y , w′(y|θ)〉, the
condition w � w′ holds iff w is sufficent for w′, that
is, iff there exists a conditional PD ϕ(y|x) such that
w′(y|θ) =

∑
x ϕ(y|x)w(x|θ).

Θ −→ Y Θ −→ X noise−→ Y

  

=

   

θ −→
w′(y|θ)

y θ −→
w(x|θ)

x −→
ϕ(y|x)

y
David H. Blackwell (1919-2010)
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The Precursor: Majorization



Lorenz Curves and Majorization

• two probability distributions, p and q, of the
same dimension n

• truncated sums P (k) =
∑k

i=1 p
↓
i and

Q(k) =
∑k

i=1 q
↓
i , for all k = 1, . . . , n

• p majorizes q, i.e., p � q, whenever
P (k) ≥ Q(k), for all k

• minimal element: uniform distribution
e = n−1(1, 1, · · · , 1)

Hardy, Littlewood, and Pólya (1934)

p � q ⇐⇒ q = Mp, for some bistochastic
matrix M .

Lorenz curve for probability distribution

p = (p1, · · · , pn):

(xk, yk) = (k/n, P (k)), 1 ≤ k ≤ n
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Generalization: Relative Majorization

• two pairs of probability distributions, (p1,p2) and
(q1, q2), of dimension m and n, respectively

• relabel entries such that ratios pi1/p
i
2 and qj1/q

j
2 are

nonincreasing

• construct the truncated sums P1,2(k) =
∑k

i=1 p
i
1,2 and

Q1,2(k)

• (p1,p2) � (q1, q2) iff the relative Lorenz curve of the
former is never below that of the latter

Blackwell (Theorem for Dichotomies), 1953

(p1,p2) � (q1, q2) ⇐⇒ qi = Mpi, for some stochastic
matrix M .

Relative Lorenz curves:

(xk, yk) = (P2(k), P1(k))
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Formulation in Terms of Channels



Statistics vs Information Theory

Statistical theory
Nature does not bother with coding

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Communication theory
a sender, instead, does code

M encoding−→ Θ
channel−→ X decoding−→ U

    

m −→
e(θ|m)

θ −→
w(x|θ)

x −→
d(u|x)

u
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Statistics vs Information Theory

Statistical theory
Nature does not bother with coding

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Communication theory
a sender, instead, does code

M encoding−→ X channel−→ Y decoding−→ M

    

m −→
e(x|m)

x −→
w(y|x)

y −→
d(m′|y)

m′
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Sufficiency vs Degradability

Sufficiency relation

for statistical experiments

w′(y|θ) =
∑

x ϕ(y|x)w(x|θ)

Degradability relation

for noisy channels

w′(z|x) =
∑

y ϕ(z|y)w(y|x)

Only the labeling convention changes, but the two conditions are absolutely
equivalent.

10/25



Decoding Problems and Codes Fidelities

When dealing with communication channels, it is natural to restrict to particular

decision problems that we name “decoding problems”.

E = {e(x|m)}, N = {w(y|x)}, D = {d(m′|y)}
Code Fidelity

Given a noisy channel N : X → Y , its code fidelity, for any set M and any
coding channel E :M→ X , is defined as

E〈E〉[N ]
def
= max
D:Y→M

1

|M|
∑

m,x,y,m′

e(x|m)w(y|x)d(m′|y)δm,m′
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Comparison of Noisy Channels

Theorem (Coding Problems Are Complete)

Given two noisy channels N : X → Y and N ′ : X → Y ′, N is degradable into
N ′ if and only if

E〈E〉[N ] ≥ E〈E〉[N ′] ,

for all codes E :M→ X , with M∼= Y ′.
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Extensions to the Quantum Case



Extending Decoding Problems

decoding problems

↙ ↘
quantum decoding problems quantum “realignment” problems
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Quantum Decoding Problems

|Φ+
M ′M〉 = 1√

dM

∑dM
i=1 |i〉M |i〉M

Quantum Code Fidelity

Given a quantum channel (i.e., CPTP linear map) N : A→ B, its quantum code
fidelity , for any Hilbert space HM ∼= HM ′ and any quantum coding channel
E : M → A, is defined as

Eq〈E〉[N ]
def
= max
D:B→M

〈Φ+
M ′M |(idM ′ ⊗D ◦ N ◦ E)(Φ+

M ′M )|Φ+
M ′M 〉 = d−1M 2−Hmin(M

′|B)
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Quantum Realignment Problems

Quantum Realignment Fidelity

Given a quantum channel N : A→ B, for any Hilbert space HC ∼= HC′ and any
“misaligning” channel F : A′ → C ′, its quantum realignment fidelity is defined as

Fq〈F〉[N ]
def
= max
D:B→C

〈Φ+
C′C |(FA′ ⊗D ◦ N )(Φ+

A′A)|Φ+
C′C〉 = d−1C 2−Hmin(C

′|B)
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Comparison of Quantum Channels

Theorem (Quantum Coding and Realignment Problems Are Complete)

Given two quantum channels N : A→ B and N ′ : A→ B′, the following are
equivalent:

1. N is degradable into N ′;
2. for any quantum coding channel E : M → A, with HM

∼= HB′ , one has
EqE [N ] ≥ EqE [N ′], or, equivalently, Hmin(M ′|B) ≤ Hmin(M ′|B′);

3. for any quantum misaligning channel F : A′ → C ′, with HC′ ∼= HB′ , one
has FqF [N ] ≥ FqF [N ′], or, equivalently, Hmin(C ′|B) ≤ Hmin(C ′|B′).
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Application to Open Quantum Systems Dynamics



Discrete-Time Stochastic Processes

• Let xi, for i = 0, 1, . . . , index the state of a
system at time t = ti

• if the system can be initialized at time t = t0,
the process is fully described by the conditional
distribution p(xN , . . . , x1|x0)

• if the system evolving is quantum, we only
have a quantum dynamical mapping{
N (i)
Q0→Qi

}
i=1,...,N

• the process is divisible if there exist channels
D(i) such that N (i+1) = D(i) ◦ N (i) for all i
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A “Zoo of Quantum Markovianities”

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. Concepts of quantum

non-Markovianity: a hierarchy. (arXiv:1712.08879 [quant-ph])
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A “Zoo of Quantum Markovianities”

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. Concepts of quantum

non-Markovianity: a hierarchy. (arXiv:1712.08879 [quant-ph])
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Divisibility as “Information Flow”

Theorem

Given a mapping
{
N (i)
Q0→Qi

}
i≥1

, the following are equivalent to divisibility

1. for any quantum code, its fidelity is monotonically non-increasing in time

2. for any misaligning channel, its quantum realignment fidelity is
monotonically non-increasing in time
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Application to Quantum Thermodynamics



3.5 years ago I presented some ideas (arXiv:1505.00535)

that eventually led to (arXiv:1708.04302)
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Thermal Processes

Formulation of quantum thermodynamics as a “resource theory of
out-of-thermal-equilibrium–ness”

• thermal (or Gibbs) distribution: γ = γ(Ĥ, T ) = Z−1e−Ĥ/kT

• thermal processes (Janzing et al, 2000; Horodecki and Oppenheim, 2013)
use free thermal ancillas, total energy-preserving interactions, partial traces:
Eth(ρS) = Tr

[
U(ρS ⊗ γE)U †

]
• thermal =⇒ Gibbs-preserving (but 6⇐= )

• thermal accessibility: ρ
th−→ σ whenever there exists thermal process Eth such

that Eth(ρ) = σ

• thermal monotone: any function f(ρ) such that f(ρ) ≥ f(Eth(ρ)) for any
thermal process Eth (e.g., the free energy)
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Free Energy as Statistical Distinguishability

• fact: the free energy F (ρ) = Tr[ρ H]− kTS(ρ) can be expressed in terms
of the quantum relative entropy as (kT )−1F (ρ) + logZ = D(ρ‖γ)
• hence, F (ρ) measures the statistical distinguishability of ρ from a thermal

background...
• ...and the Second Law is nothing but a data-processing inequality: since
Eth(γ) = γ, one has

ρ
th−→ σ =⇒ D(ρ‖γ) ≥ D(σ‖γ) ⇐⇒ F (ρ) ≥ F (σ)

• problem: to find a complete set of generalized “free energies” Ff (ρ) (i.e.,
generalized divergences Df (ρ‖γ)) such that

ρ
th−→ σ ⇐⇒ Df (ρ‖γ) ≥ Df (σ‖γ),∀Df
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Second Laws as Quantum Relative Majorization

• idea: to characterize “all” statistical distinguishability measures at once...

• ...in terms of one relative majorization relation: (ρ, γ) � (σ, γ)

• as the majorization preorder captures the statistical distinguishability of a
given PD from a uniform background...

• ...so that thermo-majorization preorder captures thermal accessibility

• however: known results only concern classical PDs

• our result: extension of thermo-majorization to deal with non-commuting
density operators
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Conclusions



Conclusions

• statistical comparison was formulated as a generalization of the
“majorization” order

• it constitutes an important foundational tool in mathematical statistics

• in this talk, I argue that it can play an important role also in other areas
where statistical predictions are involved

• most importantly, information theory and quantum mechanics

• applications found in quantum statistical mechanics and quantum
foundations, but more are waiting!

Thank you
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