The Role of Statistical Comparison Theory in the Study of Open Quantum Systems

Francesco Buscemi (Nagoya U)

Advances in open systems and fundamental tests of quantum mechanics
684th WE-Heraeus-Seminar, Bad Honnef (Germany), 4 December 2018
Classical Markov chains: some nomenclature

Time convention: \(t_0 \leq t_1 \leq \cdots \leq t_N \).

- classical Markov chain:
 \[
 P(x_{t_i} | x_{t_{i-1}}, x_{t_{i-2}}, \ldots, x_{t_0}) = P(x_{t_i} | x_{t_{i-1}}), \quad \forall i \in [1, N]
 \]

- physical divisibility (Markov equation):
 \[
 P(x_{t_N}, x_{t_{N-1}}, \ldots, x_{t_0}) = P(x_{t_N} | x_{t_{N-1}}) \cdots P(x_{t_1} | x_{t_0}) P(x_{t_0})
 \]

- stochastic divisibility (Chapman-Kolmogorov equation):
 \[
 P(x_{t_k} | x_{t_i}) = \sum_{x_{t_j}} P(x_{t_k} | x_{t_j}) P(x_{t_j} | x_{t_i}), \quad \forall k \geq j \geq i
 \]

- physical divisibility \(\iff \) stochastic divisibility
The Problem with Quantum Systems

Quantum stochastic processes are like sealed black boxes: an observation at some time t_1 generally disturbs the process thus “spoiling” any subsequent observation made at later times $t_2 \geq t_1$.

![Figure 1](image)

Figure 1: Here t_0 is an initial time, at which the quantum system can be prepared (fully controlled). There is no direct quantum analogue of the N-time joint distribution $P(x_{t_N}, \ldots, x_{t_0})$.
Quantum Dynamical Mappings

How to describe *quantum* stochastic processes then?

- time convention: \(t_0 \leq t_1 \leq \cdots \leq t_N \)
- open quantum systems formalism:
 \[
 \rho_S(t_i) := \text{Tr}_E \left\{ U_{t_0 \rightarrow t_i} \left[\rho_S(0) \otimes \rho_E(0) \right] U_{t_0 \rightarrow t_i}^\dagger \right\}
 \]
- if the system is fully controlled at \(t_0 \), we obtain a sequence of CPTP linear maps by discarding the bath:
 \[
 \Phi_i(\bullet_S) := \text{Tr}_E \left\{ U_{t_0 \rightarrow t_i} \left[\bullet_S \otimes \rho_E(0) \right] U_{t_0 \rightarrow t_i}^\dagger \right\}
 \]

Definition

A *quantum dynamical mapping (QDM)* is a sequence of CPTP linear maps \((\Phi_i)_{0 \leq i \leq N} \) satisfying \(\Phi_0 = \text{id}_S \) (consistency condition).
Two Approaches to Quantum Markovianity

- **Global (extrinsic) picture**: Markovianity is a property of the whole system+bath compound (like, e.g., singular coupling regime, approximate factorizability, etc)

- **Reduced (intrinsic) picture**: Markovianity is a property of the resulting quantum dynamical mapping alone (like, e.g., information decrease, divisibility, etc)
A “Zoo” of Quantum Markovianities

A “Zoo” of Quantum Markovianities

Decreasing System Distinguishability (DSD)

- introduced in [Breuer, Laine, Piilo; PRL 2009], it provides the bridge between physical and information-theoretic Markovianity

- for any pair of possible initial states of the system, say, $\rho^1_S(0)$ and $\rho^2_S(0)$, consider the same pair evolved at later times $t_i > t_0$:

$$\rho^{1,2}_S(t_i) := \Phi_i[\rho^{1,2}_S(0)]$$

- DSD condition:

$$\|\rho^1_S(t_i) - \rho^2_S(t_i)\|_1 \geq \|\rho^1_S(t_j) - \rho^2_S(t_j)\|_1, \quad \forall i \leq j$$

- interpretation: revival of distinguishability \implies back-flow of information \implies memory effects \implies non-Markovianity
Divisibility (DIV)

- extends the idea of dynamical semigroups: $t \mapsto \Phi_t$ such that $\Phi_s \circ \Phi_t = \Phi_{t+s}$
- a QDM $(\Phi_i)_i$ is **CPTP divisible** if there exist CPTP linear maps $(\mathcal{E}_{i \rightarrow j})_{i \leq j}$, which we call **propagators**, such that $\Phi_j = \mathcal{E}_{i \rightarrow j} \circ \Phi_i$, for all $0 \leq i \leq j \leq N$

- DIV constitutes a **quantum analogue of the Chapman-Kolmogorov equation** (i.e., stochastic divisibility)
- very well captures the property of being **memoryless**, which is a crucial (**the crucial?**) property of Markovian processes
can we make these equivalent?
• DIV is equivalent to the property of **degradability**: channel Φ is said to be degradable into channel Φ' whenever there exists a third channel \mathcal{E} such that $\Phi' = \mathcal{E} \circ \Phi$

• hence, “DIV \implies DSD” is a consequence of the **data-processing inequality for the trace norm**: for any pair of states (ρ^1_S, ρ^2_S),

$$\|\Phi'(\rho^1_S) - \Phi'(\rho^2_S)\|_1 = \|(\mathcal{E} \circ \Phi)(\rho^1_S) - (\mathcal{E} \circ \Phi)(\rho^2_S)\|_1 \leq \|\Phi(\rho^1_S) - \Phi(\rho^2_S)\|_1$$

• in fact, the data-processing inequality is satisfied by most (all?) distinguishability measures

• hence, it is interesting to seek for possible **alternative (stronger) definitions of DSD**, maintaining the same “intuitive meaning”, but leading to the sought after equivalence: $\text{DSD} \iff \text{DIV}$
Theorem (Chruściński, Kossakowski, and Rivas, 2011; Chruściński and Maniscalco, 2014; Wißman, Breuer, Vacchini, 2015)

Let $\Phi : A \rightarrow B$ and $\Phi' : A \rightarrow B'$ be two quantum channels, with Φ invertible (as a linear map). Then, Φ is degradable into Φ' with a k-positive TP map $E : B \rightarrow B'$, if and only if, for all $p \in [0, 1]$ and all pairs of k-extended states $\rho_{k,A}^1, \rho_{k,A}^2 \in L(\mathbb{C}^k \otimes \mathcal{H}_A)$,

\[
\|p(\text{id}_k \otimes \Phi')(\rho_{k,A}^1) - (1 - p)(\text{id}_k \otimes \Phi')(\rho_{k,A}^2)\|_1 \\
\leq \|p(\text{id}_k \otimes \Phi)(\rho_{k,A}^1) - (1 - p)(\text{id}_k \otimes \Phi)(\rho_{k,A}^1)\|_1
\]
Statistical Distinguishability in Mathematical Statistics
A statistical model is given by: a parameter set Θ, a sample set \mathcal{X}, and a family of PDs $\{w_\theta(x)\} \equiv w(x|\theta)$.

A statistical decision problem is given by: a parameter set Θ, an “action” set \mathcal{U}, and a payoff function $\ell : \Theta \times \mathcal{U} \rightarrow \mathbb{R}$.

Formal Definitions
How Much Is a Statistical Model Worth?

Each decision problem implicitly defines a **statistical distinguishability measure** for the PDs \(\{w_\theta(x)\} \).

- the model \(w = \{w_\theta(x)\} \) represents info in \(X \) about \(\theta \)
- the decision \(d(u|x) \) optimally extracts from \(X \) information about \(\theta \), and uses this to decide the best action

Definition (Expected Payoff)

The expected payoff of statistical model \(w = \{w_\theta(x)\} \) w.r.t. decision problem \(\ell = \{\ell(\theta, u)\} \) is given by

\[
\mathbb{E}_\ell[w] \triangleq \max_{d(u|x)} \sum_{u,x,\theta} \ell(\theta, u)d(u|x)w(x|\theta)|\Theta|^{-1}.
\]

Intuition: the higher the payoff, the more information about \(\theta \) the PDs \(w_\theta(x) \) carry, the more “distinguishable” they are.
Comparing Statistical Models 1/2

First model: \(w = \{ w_\theta(x) \} \)

<table>
<thead>
<tr>
<th>(\Theta)</th>
<th>experiment</th>
<th></th>
<th>(\chi)</th>
<th>decision</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\downarrow)</td>
</tr>
<tr>
<td>(\theta)</td>
<td></td>
<td>(x)</td>
<td></td>
<td>(d(u</td>
<td>x))</td>
</tr>
<tr>
<td>(w(x</td>
<td>\theta))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second model: \(w' = \{ w'_\theta(y) \} \)

<table>
<thead>
<tr>
<th>(\Theta)</th>
<th>experiment</th>
<th></th>
<th>(\chi)</th>
<th>decision</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\downarrow)</td>
</tr>
<tr>
<td>(\theta)</td>
<td></td>
<td>(y)</td>
<td></td>
<td>(d'(u</td>
<td>y))</td>
</tr>
<tr>
<td>(w'(y</td>
<td>\theta))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Given a statistical decision problem \(\ell = \{ \ell(\theta, u) \} \), if \(\mathbb{E}_\ell[w] \geq \mathbb{E}_\ell[w'] \), then one says that model \(w \) is “more informative” (or “broader”, or “more distinguishable”) than model \(w' \), with respect to problem \(\ell \).
Definition (Information Preorder)

If model \(w = \{w_\theta(x)\} \) is more informative than model \(w' = \{w'_\theta(y)\} \) for all decision problems \(\ell = \{\ell(\theta, u)\} \), then we say that \(w \) is (always) more informative than \(w' \), and write

\[
w \succeq w'.
\]

Intuition: \(w \succeq w' \) means that the PDs \(\{w_\theta(x)\} \) are always more distinguishable than \(\{w'_\theta(y)\} \).

Problem. The information preorder is operational, but not really “concrete”. Can we visualize this better?
The Fundamental Equivalence

Blackwell-Sherman-Stein (1948-1953)

Given two statistical models \(w = \{ w_\theta(x) \} \) and \(w' = \{ w'_\theta(y) \} \), the following are equivalent:

1. \(w \) is more informative than \(w' \), i.e.,\(w \succeq w' \);
2. \(w \) is sufficient for \(w' \), i.e., there exists a conditional PD \(\varphi(y|x) \) such that
 \[
 w'(y|\theta) = \sum_x \varphi(y|x) w(x|\theta).
 \]

Diagram:

\[
\begin{align*}
\Theta & \rightarrow \ Y \\
\Theta & \rightarrow \ X & \text{noise} & \rightarrow & \ Y \\
\downarrow & = & \downarrow & \downarrow \\
\theta & \rightarrow y & \theta & \rightarrow x & \varphi(y|x) \\
& \quad w'(y|\theta) & & w(x|\theta) & y
\end{align*}
\]

David H. Blackwell
(1919-2010)
statistical sufficiency

≈

better distinguishability w.r.t. all operational distinguishability measures
Paramount Example: Majorization and Lorenz Curves

- two probability distributions, p and q, of the same dimension n
- truncated sums $P(k) = \sum_{i=1}^{k} p_i \downarrow$ and $Q(k) = \sum_{i=1}^{k} q_i \downarrow$, for all $k = 1, \ldots, n$
- p majorizes q, i.e., $p \succeq q$, whenever $P(k) \geq Q(k)$, for all k
- minimal element: uniform distribution $e = n^{-1}(1, 1, \cdots, 1)$

Hardy, Littlewood, and Pólya (1934)

$p \succeq q \iff q = Mp$, for some bistochastic matrix M.

Intuition: $p \succeq q$ means that p is always more distinguishable than q from the uniform e.

$(x_k, y_k) = (k/n, P(k)), \quad 1 \leq k \leq n$
Generalization: Relative Majorization

- two pairs of probability distributions, \((p_1, p_2)\) and \((q_1, q_2)\), of dimension \(m\) and \(n\), respectively

- relabel entries such that ratios \(p_1^i/p_2^i\) and \(q_1^j/q_2^j\) are nonincreasing

- construct the truncated sums
 \[P_{1,2}(k) = \sum_{i=1}^{k} p_{1,2}^i \text{ and } Q_{1,2}(k) \]

- \((p_1, p_2) \succeq (q_1, q_2)\) iff the curve of the former is never below that of the latter

Blackwell Thm for Dichotomies, 1953

\[(p_1, p_2) \succeq (q_1, q_2) \iff q_i = Mp_i, \text{ for some stochastic matrix } M.\]

Intuition: \((p_1, p_2) \succeq (q_1, q_2)\) means that \((p_1, p_2)\) are always more distinguishable than \((q_1, q_2)\).
observation: discrete noisy channels

\[\Phi : \begin{cases} \mathcal{X} \to \mathcal{Y} \\ x \mapsto p_x(y) \end{cases} \]

are equivalent to statistical models
<table>
<thead>
<tr>
<th>guessing problems</th>
<th>quantum decoding problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple guess</td>
<td>singlet extraction</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>extended guess</td>
<td>encoding-decoding</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• given two quantum channels (CPTP linear maps) $\Phi : A \rightarrow B$ and $\Phi' : A \rightarrow B'$, we say that Φ is less noisy than Φ', i.e., $\Phi \supseteq \Phi'$, whenever, for any input ensemble $\{p_x, \rho_A^x\}$,

$$P_{\text{guess}}(\{p_x, \Phi(\rho_A^x)\}) \geq P_{\text{guess}}(\{p_x, \Phi'(\rho_A^x)\})$$

• $\Phi \supseteq_k \Phi' \iff \text{id}_k \otimes \Phi \supseteq \text{id}_k \otimes \Phi'$ (id_k: identity channel on \mathbb{C}^k)

• $\Phi \supseteq_\infty \Phi' \iff \text{id}_{B'} \otimes \Phi \supseteq \text{id}_{B'} \otimes \Phi'$

• the identity channel can be replaced by any fixed, though arbitrary, invertible channel (possibly entanglement-breaking)

Theorem

• $\Phi \supseteq_k \Phi' \iff \exists$ k-statistical morphism \mathcal{M}: $\Phi' = \mathcal{M} \circ \Phi$

• $\Phi \supseteq_\infty \Phi' \iff \exists$ quantum channel \mathcal{E}: $\Phi' = \mathcal{E} \circ \Phi$
• given a quantum channel \(\Phi : A \rightarrow B \), for any input bipartite state \(\omega_{RA} \), the transmitted singlet fraction is defined as

\[
\mathcal{F}(\omega_{RA}|\Phi_A) := \sup_{D: \text{CPTP}} \langle \Phi_{RR'}^+ | (\text{id}_R \otimes D_B \circ \Phi)(\omega_{RA}) | \Phi_{RR'}^+ \rangle,
\]

where \(|\Phi_{RR'}^+\rangle \) denotes the maximally entangled state (\(R' \cong R \))

• given two quantum channels \(\Phi : A \rightarrow B \) and \(\Phi' : A \rightarrow B' \), we write \(\Phi \geq \Phi' \), whenever \(\mathcal{F}(\omega_{RA}|\Phi_A) \geq \mathcal{F}(\omega_{RA}|\Phi'_A) \) for all \(\omega_{RA} \) (\(R \cong B' \) is enough)

Theorem

• \(\Phi \geq \Phi' \iff \Phi \geq \Phi' \text{ only for separable } \omega_{RA} \iff \exists \text{ quantum channel } \mathcal{E} : \Phi' = \mathcal{E} \circ \Phi \)

• \(\Phi \geq \Phi' \text{ only for classical-quantum} \)

\[
\omega_{RA} = \sum_x p_x |x\rangle\langle x|_R \otimes \rho_A^x \iff \exists \text{ statistical morphism } \mathcal{M} : \Phi' = \mathcal{M} \circ \Phi
\]
Application to Quantum Dynamical Mappings

Figure 2: The varying thickness of the green lines depict the singlet fraction at any time.

- a QDM \((\Phi_i)_i\) is **CP-divisible** iff \(\Phi_i \succeq \Phi_j\) for all \(j \geq i\) and all initial **separable** states
- a QDM \((\Phi_i)_i\) **P-divisible** iff \(\Phi_i \succeq \Phi_j\) for all \(j \geq i\) and all initial **classical-quantum** states
- in terms of entropies: \(H_{\min}(R|S_i) \leq H_{\min}(R|S_j), \text{ for all } j \geq i\)
Some Final Remarks
Meaning of DIV

Why the propagators $(\mathcal{E}_{i \to j})_{i \leq j}$ are assumed to be CPTP?

CP-divisibility is equivalent to saying that the open evolution is “collisional,” in the sense that it can be realized by summoning a “fresh environment” at each time step.
Do the propagators \((\mathcal{E}_{i \rightarrow j})_{i \leq j}\) really need to be linear CPTP?

- linearity is necessary (QDMs are linear)
- trace-preservation (a linear constraint) also

CP perhaps not: propagators could be just P or even less (e.g., statistical morphisms), and yet be related to important physical/computational/thermodynamical properties (like, e.g., the “locality” or “causality” of the evolution)
Possible Ideas to Think About

- classical correlations can witness P-indivisibility but not CP-indivisibility
- for that, separable states are required: discord/coherence, anyone?
- it is known that CP-DIV can be decided by SDP: way to design efficient tests?
- robustness to small deviations (ϵ-DIV \iff ϵ-DSD)
- to impose extra properties to DIV, e.g., thermality or group-covariance
- to understand P-DIV in a generalized circuit formalism (no extension possible, however no problem, because not in the black-box picture)
- to understand the information-theoretic and computational capabilities of such generalized circuit models, e.g., data-processing inequalities, computational/thermodynamical aspects, etc