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Classical Markov chains: some nomenclature

Time convention: t0 ≤ t1 ≤ · · · ≤ tN .

• classical Markov chain:

P (xti |xti−1 ,xti−2 , . . . ,xt0) = P (xti |xti−1), ∀i ∈ [1, N ]

• physical divisibility (Markov equation):

P (xtN ,xtN−1 , . . . ,xt0) = P (xtN |xtN−1) · · ·P (xt1 |xt0)P (xt0)

• stochastic divisibility (Chapman-Kolmogorov equation):

P (xtk |xti) =
∑
xtj

P (xtk |xtj )P (xtj |xti), ∀k ≥ j ≥ i

• physical divisibility =⇒
6⇐=

stochastic divisibility
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The Problem with Quantum Systems

Quantum stochastic processes are like sealed black boxes: an
observation at some time t1 generally disturbs the process thus
“spoiling” any subsequent observation made at later times t2 ≥ t1.

Figure 1: Here t0 is an initial time, at which the quantum system can be
prepared (fully controlled). There is no direct quantum analogue of the
N -time joint distribution P (xtN , . . . ,xt0).
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Quantum Dynamical Mappings

How to describe quantum stochastic processes then?

• time convention: t0 ≤ t1 ≤ · · · ≤ tN
• open quantum systems formalism:

ρS(ti) := TrE

{
Ut0→ti [ρS(0)⊗ ρE(0)] U †t0→ti

}
• if the system is fully controlled at t0, we obtain a sequence of

CPTP linear maps by discarding the bath:

Φi(•S) := TrE

{
Ut0→ti [•S ⊗ ρE(0)] U †t0→ti

}
Definition

A quantum dynamical mapping (QDM) is a sequence of CPTP
linear maps (Φi)0≤i≤N satisfying Φ0 = idS (consistency
condition).
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Two Approaches to Quantum Markovianity

• Global (extrinsic) picture: Markovianity is a property of the
whole system+bath compound (like, e.g., singular coupling
regime, approximate factorizability, etc)

• Reduced (intrinsic) picture: Markovianity is a property of
the resulting quantum dynamical mapping alone (like, e.g.,
information decrease, divisibility, etc)
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A “Zoo” of Quantum Markovianities

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. Concepts of quantum

non-Markovianity: a hierarchy. (arXiv:1712.08879 [quant-ph])
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Decreasing System Distinguishability (DSD)

• introduced in [Breuer, Laine, Piilo; PRL 2009], it provides the
bridge between physical and information-theoretic
Markovianity

• for any pair of possible initial states of the system, say, ρ1S(0)
and ρ2S(0), consider the same pair evolved at later times
ti > t0:

ρ1,2S (ti) := Φi

[
ρ1,2S (0)

]
• DSD condition:

‖ρ1S(ti)− ρ2S(ti)‖1 ≥ ‖ρ1S(tj)− ρ2S(tj)‖1 , ∀i ≤ j

• interpretation: revival of distinguishability =⇒ back-flow of
information =⇒ memory effects =⇒ non-Markovianity
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Divisibility (DIV)

• extends the idea of dynamical semigroups: t 7→ Φt such that
Φs ◦ Φt = Φt+s

• a QDM (Φi)i is CPTP divisible if there exist CPTP linear
maps (Ei→j)i≤j , which we call propagators, such that
Φj = Ei→j ◦ Φi, for all 0 ≤ i ≤ j ≤ N

• DIV constitutes a quantum analogue of the
Chapman-Kolmogorov equation (i.e., stochastic divisibility)
• very well captures the property of being memoryless, which is

a crucial (the crucial?) property of Markovian processes
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DIV =⇒
6⇐=

DSD

can we make these equivalent?
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DSD, DIV, and Reverse Data-Processing Theorems

• DIV is equivalent to the property of degradability: channel Φ
is said to be degradable into channel Φ′ whenever there exists
a third channel E such that Φ′ = E ◦ Φ
• hence, “DIV =⇒ DSD” is a consequence of the

data-processing inequality for the trace norm: for any pair
of states (ρ1S , ρ

2
S),

‖Φ′(ρ1S)− Φ′(ρ2S)‖1 = ‖(E ◦ Φ)(ρ1S)− (E ◦ Φ)(ρ2S)‖1
≤ ‖Φ(ρ1S)− Φ(ρ2S)‖1

• in fact, the data-processing inequality is satisfied by most
(all?) distinguishability measures
• hence, it is interesting to seek for possible alternative

(stronger) definitions of DSD, maintaining the same
“intuitive meaning”, but leading to the sought after
equivalence: DSD ⇐⇒ DIV
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Strengthening DSD

Theorem (Chruściński, Kossakowski, and Rivas, 2011;
Chruściński and Maniscalco, 2014; Wißman, Breuer,
Vacchini, 2015)

Let Φ : A→ B and Φ′ : A→ B′ be two quantum channels, with Φ
invertible (as a linear map). Then, Φ is degradable into Φ′ with a
k-positive TP map E : B → B′, if and only if, for all p ∈ [0, 1] and all
pairs of k-extended states ρ1k,A, ρ

2
k,A ∈ L(Ck ⊗HA),

‖p(idk ⊗ Φ′)(ρ1k,A)− (1− p)(idk ⊗ Φ′)(ρ2k,A)‖1
≤ ‖p(idk ⊗ Φ)(ρ1k,A)− (1− p)(idk ⊗ Φ)(ρ1k,A)‖1
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Statistical Distinguishability
in Mathematical Statistics
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Statistical Models and Decision Problems

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Formal Definitions

• A statistical model is given by: a parameter set Θ, a sample
set X , and a family of PDs {wθ(x)} ≡ w(x|θ).

• A statistical decision problem is given by: a parameter set Θ,
an “action” set U , and a payoff function ` : Θ× U → R.
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How Much Is a Statistical Model Worth?

Each decision problem implicitly defines a statistical distinguishability
measure for the PDs {wθ(x)}.

• the model w = {wθ(x)}
represents info in X about θ

• the decision d(u|x) optimally
extracts from X information
about θ, and uses this to
decide the best action

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Definition (Expected Payoff)

The expected payoff of statistical model w = {wθ(x)} w.r.t.
decision problem ` = {`(θ, u)} is given by

E`[w] , max
d(u|x)

∑
u,x,θ

`(θ, u)d(u|x)w(x|θ)|Θ|−1 .

Intuition: the higher the payoff, the more information about θ the
PDs wθ(x) carry, the more “distinguishable” they are.



Comparing Statistical Models 1/2

First model: w = {wθ(x)}

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

Second model: w′ = {w′θ(y)}

Θ
experiment−→ Y decision−→ U

   

θ −→
w′(y|θ)

y −→
d′(u|y)

u

Given a statistical decision problem ` = {`(θ, u)}, if
E`[w] ≥ E`[w

′], then one says that model w is “more informative”
(or “broader”, or “more distinguishable”) than model w′, with
respect to problem `.
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Comparing Statistical Models 2/2

Definition (Information Preorder)

If model w = {wθ(x)} is more informative than model
w′ = {w′θ(y)} for all decision problems ` = {`(θ, u)}, then we
say that w is (always) more informative than w′, and write

w � w′ .

Intuition: w � w′ means that the PDs {wθ(x)} are always more
distinguishable than {w′θ(y)}.

Problem. The information preorder is operational, but not really
“concrete”. Can we visualize this better?
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The Fundamental Equivalence

Blackwell-Sherman-Stein (1948-1953)

Given two statistical models w = {wθ(x)}
and w′ = {w′θ(y)}, the following are
equivalent:

1. w is more informative than w′, i.e.,
w � w′;

2. w is sufficent for w′, i.e., there exists a
conditional PD ϕ(y|x) such that
w′(y|θ) =

∑
x ϕ(y|x)w(x|θ).

Θ −→ Y Θ −→ X noise−→ Y

  

=

   

θ −→
w′(y|θ)

y θ −→
w(x|θ)

x −→
ϕ(y|x)

y

David H. Blackwell

(1919-2010)
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statistical sufficiency
≈

better distinguishability w.r.t. all operational
distinguishability measures
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Paramount Example: Majorization and Lorenz Curves

• two probability distributions, p and q,
of the same dimension n

• truncated sums P (k) =
∑k
i=1 p

↓
i and

Q(k) =
∑k
i=1 q

↓
i , for all k = 1, . . . , n

• p majorizes q, i.e., p � q, whenever
P (k) ≥ Q(k), for all k

• minimal element: uniform distribution
e = n−1(1, 1, · · · , 1)

Hardy, Littlewood, and Pólya
(1934)

p � q ⇐⇒ q = Mp, for some
bistochastic matrix M .

(xk, yk) = (k/n, P (k)), 1 ≤ k ≤ n

Intuition: p � q means that p is always more distinguishable than
q from the uniform e. 16/24



Generalization: Relative Majorization

• two pairs of probability distributions, (p1,p2)
and (q1, q2), of dimension m and n,
respectively

• relabel entries such that ratios pi1/p
i
2 and

qj1/q
j
2 are nonincreasing

• construct the truncated sums
P1,2(k) =

∑k
i=1 p

i
1,2 and Q1,2(k)

• (p1,p2) � (q1, q2) iff the curve of the former
is never below that of the latter

Blackwell Thm for Dichotomies, 1953

(p1,p2) � (q1, q2) ⇐⇒ qi = Mpi, for some
stochastic matrix M .

Relative Lorenz curves:

(xk, yk) = (P2(k), P1(k))

Intuition: (p1,p2) � (q1, q2) means that (p1,p2) are always more
distinguishable than (q1, q2).
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observation: discrete noisy channels

Φ :

{
X → Y
x 7→ px(y)

are equivalent to statistical models
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Statistical Distinguishability Measures for Noisy Channels

guessing problems quantum decoding problems

simple guess singlet extraction

extended guess encoding-decoding
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Ordering Channels by Guessing Problems

• given two quantum channels (CPTP linear maps) Φ : A→ B
and Φ′ : A→ B′, we say that Φ is less noisy than Φ′, i.e.,
Φ ⊇ Φ′, whenever, for any input ensemble {px, ρxA},

Pguess({px,Φ(ρxA)}) ≥ Pguess({px,Φ′(ρxA)})

• Φ ⊇k Φ′ ⇐⇒ idk ⊗ Φ ⊇ idk ⊗ Φ′ (idk: identity channel on
L(Ck))
• Φ ⊇∞ Φ′ ⇐⇒ idB′ ⊗ Φ ⊇ idB′ ⊗ Φ′

• the identity channel can be replaced by any fixed, though
arbitrary, invertible channel (possibly entanglement-breaking)

Theorem

• Φ ⊇k Φ′ ⇐⇒ ∃ k-statistical morphismM: Φ′ =M◦ Φ

• Φ ⊇∞ Φ′ ⇐⇒ ∃ quantum channel E : Φ′ = E ◦ Φ
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Ordering Channels by Quantum Decoding Problems

• given a quantum channel Φ : A→ B, for any input bipartite state
ωRA, the transmitted singlet fraction is defined as

F (ωRA|ΦA) := sup
D:CPTP

〈Φ+
RR′ |(idR ⊗DB ◦ Φ)(ωRA)|Φ+

RR′〉 ,

where |Φ+
RR′〉 denotes the maximally entangled state (R′ ∼= R)

• given two quantum channels Φ : A→ B and Φ′ : A→ B′, we write
Φ � Φ′, whenever F (ωRA|ΦA) ≥ F (ωRA|Φ′A) for all ωRA
(R ∼= B′ is enough)

Theorem

• Φ � Φ′ ⇐⇒ Φ � Φ′ only for separable ωRA ⇐⇒ ∃
quantum channel E : Φ′ = E ◦ Φ

• Φ � Φ′ only for classical-quantum
ωRA =

∑
x px|x〉〈x|R ⊗ ρxA ⇐⇒ ∃ statistical morphismM:

Φ′ =M◦ Φ
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Application to Quantum Dynamical Mappings

Figure 2: The varying thickness of the green lines depict the singlet
fraction at any time.

• a QDM (Φi)i is CP-divisible iff Φi � Φj for all j ≥ i and all initial
separable states

• a QDM (Φi)i P-divisible iff Φi � Φj for all j ≥ i and all initial
classical-quantum states

• in terms of entropies: Hmin(R|Si) ≤ Hmin(R|Sj), for all j ≥ i
21/24



Some Final Remarks
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Meaning of DIV

Why the propagators (Ei→j)i≤j are assumed to be CPTP?

CP-divisibility is equivalent to saying that the open evolution is
“collisional,” in the sense that it can be realized by summoning a
“fresh environment” at each time step.
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To Strengthen DSD or to Relax DIV?

Do the propagators (Ei→j)i≤j really need to be linear CPTP?

• linearity is necessary (QDMs are linear)

• trace-preservation (a linear constraint) also

• CP perhaps not: propagators could be just P or even less
(e.g., statistical morphisms), and yet be related to important
physical/computational/thermodynamical properties (like,
e.g., the “locality” or “causality” of the evolution)
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Possible Ideas to Think About

• classical correlations can witness P-indivisibility but not
CP-indivisibility

• for that, separable states are required: discord/coherence, anyone?

• it is known that CP-DIV can be decided by SDP: way to design
efficient tests?

• robustness to small deviations (ε-DIV ⇐⇒ ε-DSD)

• to impose extra properties to DIV, e.g., thermality or
group-covariance

• to understand P-DIV in a generalized circuit formalism (no
extension possible, however no problem, because not in the
black-box picture)

• to understand the information-theoretic and computational
capabilities of such generalized circuit models, e.g., data-processing
inequalities, computational/thermodynamical aspects, etc


