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Classical Markov chains: some nomenclature

Time convention: top <t; <--- <tpn.

e classical Markov chain:
Pz |xe, |, T, o, .. xt,) = Play|xe, ), Vie[l,N]
e physical divisibility (Markov equation):
P(xiy, @iy yy- - Tty) = Plaiy @iy, ) - Plae, |2, ) P(2t,)
e stochastic divisibility (Chapman-Kolmogorov equation):

P(xy, |zy,) ZP xy |2, ) P2 |2e,), Vh>jG2>1

e physical divisibility = stochastic divisibility
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The Problem with Quantum Systems

Quantum stochastic processes are like sealed black boxes: an
observation at some time t; generally disturbs the process thus
“spoiling” any subsequent observation made at later times to > ;.

v

Figure 1: Here ty is an initial time, at which the quantum system can be
prepared (fully controlled). There is no direct quantum analogue of the
N-time joint distribution P(x,,...,T,).
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Quantum Dynamical Mappings

How to describe quantum stochastic processes then?

e time convention: top <t; < --- <ty
e open quantum systems formalism:
ps(ts) i= Tr {Uig-st, 105(0) © pe(0)] U}, }

e if the system is fully controlled at tg, we obtain a sequence of
CPTP linear maps by discarding the bath:

Di(os) = Tr {Ugort; [o5 © pu(0)] Uy, |

Definition

A quantum dynamical mapping (QDM) is a sequence of CPTP
linear maps (®;)o<i<n satisfying o = idg (consistency
condition).
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Two Approaches to Quantum Markovianity

e Global (extrinsic) picture: Markovianity is a property of the
whole system+bath compound (like, e.g., singular coupling
regime, approximate factorizability, etc)

e Reduced (intrinsic) picture: Markovianity is a property of
the resulting quantum dynamical mapping alone (like, e.g.,
information decrease, divisibility, etc)
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A “Zoo” of Quantum Markovia

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. Concepts of quantum
non-Markovianity: a hierarchy. (arXiv:1712.08879 [quant-ph])
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A “Zoo” of Quantum Markovianities

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. Concepts of quantum
non-Markovianity: a hierarchy. (arXiv:1712.08879 [quant-ph])

Decreasing
Sys. Disting.
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Decreasing System Distinguishability (DSD)

e introduced in [Breuer, Laine, Piilo; PRL 2009], it provides the
bridge between physical and information-theoretic
Markovianity

e for any pair of possible initial states of the system, say, p(0)
and p%(0), consider the same pair evolved at later times
t; > to:

ps’(ti) = @ [P}gg(O)}
e DSD condition:
los(ts) — p5(t)llL > llps(t;) — pa(ti)llL, Vi<j

e interpretation: revival of distinguishability = back-flow of
information = memory effects = non-Markovianity
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Divisibility (DIV)

e extends the idea of dynamical semigroups: ¢ — ®; such that
D,0d, = Py

e a QDM (®;); is CPTP divisible if there exist CPTP linear
maps (£;—;)i<;j, which we call propagators, such that
(I)j:gi—m’oq)i. fOI’Ei”OSiSjSN

e DIV constitutes a quantum analogue of the
Chapman-Kolmogorov equation (i.e., stochastic divisibility)
e very well captures the property of being memoryless, which is

a crucial (the crucial?) property of Markovian processes 8/24



DIV — DSD
ot

can we make these equivalent?



DSD, DIV, and Reverse Data-Processing Theorems

e DIV is equivalent to the property of degradability: channel ®
is said to be degradable into channel @’ whenever there exists
a third channel € such that ' =€ o0 ®

e hence, “DIV — DSD" is a consequence of the
data-processing inequality for the trace norm: for any pair
of states (p}, p2%),

12'(p5) — @' (p3)ll = lI(€ © 2)(ps) — (€ © 2)(p3)I1
< [|®(ps) — 2(p3)Ih

e in fact, the data-processing inequality is satisfied by most
(all?) distinguishability measures

e hence, it is interesting to seek for possible alternative
(stronger) definitions of DSD, maintaining the same
“intuitive meaning”, but leading to the sought after

equivalence: DSD <= DIV
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Strengthening DSD

Let ®: A— Band ® : A — B’ be two quantum channels, with ®
invertible (as a linear map). Then, ® is degradable into ®" with a
k-positive TP map € : B — B’, if and only if, for all p € [0,1] and all
pairs of k-extended states pj 4, pp 4 € L(C* @ Ha),

Ip(id ® @) (pk,4) — (1 = p)(idx ® ') (P% a) 1
< lp(idk ® ®)(pk.a) — (1 = p)(idi @ ®)(pk a)lln

if Sha, ("P)_S’ZAg /\>
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Statistical Distinguishability
in Mathematical Statistics



Statistical Models and Decision Problems

o experiment X decision U
$ $ $
0 — T —  u

w(x|6) d(ul|z)

Formal Definitions

o A statistical model is given by: a parameter set ©, a sample
set X, and a family of PDs {wy(z)} = w(x|0).

e A statistical decision problem is given by: a parameter set O,
an “action” set U, and a payoff function £: © x U/ — R.
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How Much Is a Statistical Model Worth?

Each decision problem implicitly defines a statistical distinguishability
measure for the PDs {wy(x)}.

e the model w :_{wg(.r)} @ Tesriment 4, decsion
represents info in X about 6
e the decision d(u|x) optimally § $ $
extracts from X information
about 6, and uses this to 0 - z — U
w(z|0) d(u|x)

decide the best action
Definition (Expected Payoff)
The expected payoff of statistical model w = {wg(z)} w.r.t.
decision problem £ = {{(0,u)} is given by

Eo[w] = max 00, u)d(u|z)w(z|0)|O©] " .

Intuition: the higher the payoff, the more information about 6 the
PDs wy(x) carry, the more “distinguishable” they are.



Comparing Statistical Models 1/2

First model: w = {wy(x)} Second model: w' = {w)(y)}
o expﬂent X deisi;)n U o expﬂ;ent y decﬂ?n U
$ $ $ $ $ $
0 — x —  u 0 — Y — U

w(x|0) d(u|z) w’(y|0) d’ (uly)

Given a statistical decision problem £ = {{(6,u)}, if

E¢[w] > Eg[w'], then one says that model w is “more informative”
(or “broader”, or “more distinguishable”) than model w’, with
respect to problem £.
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Comparing Statistical Models 2/2

Definition (Information Preorder)

If model w = {wp(x)} is more informative than model
w' = {wy(y)} , then we
say that w is (always) more informative than w', and write

wiw’.

Intuition: w > w’ means that the PDs {wy(x)} are
than {wp(y)}.

Problem. The information preorder is operational, but not really
“concrete”. Can we visualize this better?
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The Fundamental Equivalence

Blackwell-Sherman-Stein (1948-1953)
Given two statistical models w = {wy(z)}

and w' = {w)(y)}, the following are
equivalent:

1. w is more informative than w’, i.e.,
w > w';

2. w is sufficent for w’, i.e., there exists a
conditional PD ¢(y|x) such that
w'(yl0) = 3, p(ylz)w(x|0).

e — Y e — x =Yy David H. Blackwell
(1919-2010)

$ i = 3 $

0 — 06 — x — y

)
w’(y|0) w(z|0) e(ylz) 15/24



statistical sufficiency

~~
~

better distinguishability w.r.t. all operational
distinguishability measures



Paramount Example: Majorization and Lorenz Curves

e two probability distributions, p and q,
of the same dimension n

e truncated sums P(k) = Zle pr and -
Q(k) :Zle qii, forall k=1,...,n "

e p majorizes q, i.e., p = q, whenever
P(k) > Q(k), for all k

'
I (

e minimal element: uniform distribution

‘ .‘
e=n"1(1,1,---,1) | "/4 '1/4 3 s

Hardy, Littlewood, and Pdlya (zk,yx) = (k/n, P(k)), 1<k<n
(1934)

p > q < q= Mp, for some
bistochastic matrix M.

Intuition: p > g means that p is always more distinguishable than
g from the uniform e. 16/24



Generalization: Relative Majorization

e two pairs of probability distributions, (p;,ps)
and (g, q,), of dimension m and n,
respectively

e relabel entries such that ratios p} /p} and '

q] /5 are nonincreasing

e construct the truncated sums
& )
P172(k) = 21‘:1 p11,2 and Ql,Q(k)

e (p1,py) = (qq,q,) iff the curve of the former
is never below that of the latter

Relative Lorenz curves:

Blackwell Thm for Dichotomies, 1953 (@ 9x) = (Pa(k), P1(K))

(P1,P2) = (q1,92) <= q, = Mp;, for some
stochastic matrix M.

Intuition: (py,p,) = (q;,q,) means that (p;,py) are always more

distinguishable than (g, q5). y
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observation: discrete noisy channels
X —
D : Y
T = pe(y)

are equivalent to statistical models



Statistical Distinguishability Measures for Noisy Channels

guessing problems

quantum decoding problems

simple guess

fpsi @@L s

singlet extraction

R

Wiy <_A_@_”L, @&;

extended guess

—

id
4B

fpu giaf— @ g

k

encoding-decoding

@g‘* EEAD
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Ordering Channels by Guessing Problems

e given two quantum channels (CPTP linear maps) ®: A — B
and ' : A — B’ we say that @ is less noisy than @', i.e.,
® D @', whenever, for any input ensemble {p;, p%},

Pouess({Pzs P(p%)}) 2 Peuess({Pz ‘P/(Pi)})

e DO, P <— idp® P Didy ® P’ (idg: identity channel on
L(CH)

e PO P < idp®®Didp @ P’

e the identity channel can be replaced by any fixed, though
arbitrary, invertible channel (possibly entanglement-breaking)

Theorem
e & D, & <= 3T k-statistical morphism M: ® = Mo ®
e & DO & <= I quantum channel £: ' =E o P
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Ordering Channels by Quantum Decoding Problems

e given a quantum channel ® : A — B, for any input bipartite state
WRA, the is defined as

T (wWra|®a) == sup (Dhp|(idr @ Dp o ®)(wra)|Phz) .
D:CPTP

where |®F /) denotes the maximally entangled state (R’ & R)

e given two quantum channels ® : A — B and ®' : A — B’, we write
® = &', whenever F (wra|Pa) > F(wra|®y) for all wra
(R = B’ is enough)

Theorem

e &> «— &> d only for WRA +— 3
quantum channel £: ® = £ o0 ®
e & = & only for
WRA = ), Pz|T){x|r ® pYy <= 3 statistical morphism M:
O =Mod
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Application to Quantum Dynamical Mappings

IR S S S L
<

Figure 2: The varying thickness of the green lines depict the singlet
fraction at any time.

e a QDM (®;); is CP-divisible iff ®; = &, for all j > i and all initial
separable states
e a QDM (®;); P-divisible iff ®; = ®; for all j > 7 and all initial
classical-quantum states
e in terms of entropies: Hyin(R|S;) < Hmin(R|S;), for all j > i
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Some Final Remarks



Meaning of DIV

Why the propagators (€;_;)i<; are assumed to be CPTP?

CP-divisibility is equivalent to saying that the open evolution is
“collisional,” in the sense that it can be realized by summoning a
“fresh environment” at each time step.
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To Strengthen DSD or to Relax DIV?

Do the propagators (£;—;)i<j really need to be linear CPTP?

e linearity is necessary (QDMs are linear)
e trace-preservation (a linear constraint) also

e CP perhaps not: propagators could be just P or even less
(e.g., statistical morphisms), and yet be related to important
physical /computational /thermodynamical properties (like,
e.g., the “locality” or “causality” of the evolution)
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Possible Ideas to Think A t

e classical correlations can witness P-indivisibility but not
CP-indivisibility
e for that, separable states are required: discord/coherence, anyone?

e it is known that CP-DIV can be decided by SDP: way to design
efficient tests?

e robustness to small deviations (e-DIV <= e-DSD)

e to impose extra properties to DIV, e.g., thermality or
group-covariance

e to understand P-DIV in a generalized circuit formalism (no
extension possible, however no problem, because not in the
black-box picture)

e to understand the information-theoretic and computational
capabilities of such generalized circuit models, e.g., data-processing
inequalities, computational /thermodynamical aspects, etc




