The Role of Statistical Comparison Theory in the Study of Open Quantum Systems

Francesco Buscemi (Nagoya U)

Advances in open systems and fundamental tests of quantum mechanics 684th WE-Heraeus-Seminar, Bad Honnef (Germany), 4 December 2018

Classical Markov chains: some nomenclature

Time convention: $t_0 \leq t_1 \leq \cdots \leq t_N$.

• classical Markov chain:

 $P(\boldsymbol{x}_{t_i}|\boldsymbol{x}_{t_{i-1}}, \boldsymbol{x}_{t_{i-2}}, \dots, \boldsymbol{x}_{t_0}) = P(\boldsymbol{x}_{t_i}|\boldsymbol{x}_{t_{i-1}}), \quad \forall i \in [1, N]$

• physical divisibility (Markov equation):

$$P(x_{t_N}, x_{t_{N-1}}, \dots, x_{t_0}) = P(x_{t_N} | x_{t_{N-1}}) \cdots P(x_{t_1} | x_{t_0}) P(x_{t_0})$$

• stochastic divisibility (Chapman-Kolmogorov equation):

$$P(\boldsymbol{x}_{t_k}|\boldsymbol{x}_{t_i}) = \sum_{\boldsymbol{x}_{t_j}} P(\boldsymbol{x}_{t_k}|\boldsymbol{x}_{t_j}) P(\boldsymbol{x}_{t_j}|\boldsymbol{x}_{t_i}), \quad \forall k \ge j \ge i$$

• physical divisibility \implies stochastic divisibility

The Problem with Quantum Systems

Quantum stochastic processes are like sealed black boxes: an observation at some time t_1 generally disturbs the process thus "spoiling" any subsequent observation made at later times $t_2 \ge t_1$.

Figure 1: Here t_0 is an initial time, at which the quantum system can be prepared (fully controlled). There is no *direct* quantum analogue of the *N*-time joint distribution $P(\boldsymbol{x}_{t_N}, \ldots, \boldsymbol{x}_{t_0})$.

How to describe quantum stochastic processes then?

- time convention: $t_0 \leq t_1 \leq \cdots \leq t_N$
- open quantum systems formalism: $\rho_S(t_i) := \operatorname{Tr}_E \left\{ U_{t_0 \to t_i} \left[\rho_S(0) \otimes \rho_E(0) \right] U_{t_0 \to t_i}^{\dagger} \right\}$
- if the system is fully controlled at t_0 , we obtain a sequence of CPTP linear maps by discarding the bath: $\Phi_i(\bullet_S) := \operatorname{Tr}_E \left\{ U_{t_0 \to t_i} \left[\bullet_S \otimes \rho_E(0) \right] U_{t_0 \to t_i}^{\dagger} \right\}$

Definition

A quantum dynamical mapping (QDM) is a sequence of CPTP linear maps $(\Phi_i)_{0 \le i \le N}$ satisfying $\Phi_0 = id_S$ (consistency condition).

• Global (extrinsic) picture: Markovianity is a property of the whole system+bath compound (like, e.g., singular coupling regime, approximate factorizability, etc)

 Reduced (intrinsic) picture: Markovianity is a property of the resulting quantum dynamical mapping alone (like, e.g., information decrease, divisibility, etc)

A "Zoo" of Quantum Markovianities

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. *Concepts of quantum non-Markovianity: a hierarchy.* (arXiv:1712.08879 [quant-ph])

A "Zoo" of Quantum Markovianities

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. *Concepts of quantum non-Markovianity: a hierarchy.* (arXiv:1712.08879 [quant-ph])

Decreasing System Distinguishability (DSD)

- introduced in [Breuer, Laine, Piilo; PRL 2009], it provides the bridge between physical and information-theoretic Markovianity
- for any pair of possible initial states of the system, say, $\rho_S^1(0)$ and $\rho_S^2(0)$, consider the same pair evolved at later times $t_i > t_0$:

$$\rho_S^{1,2}(t_i) := \Phi_i \Big[\rho_S^{1,2}(0) \Big]$$

• DSD condition:

$$\|\rho_S^1(t_i) - \rho_S^2(t_i)\|_1 \ge \|\rho_S^1(t_j) - \rho_S^2(t_j)\|_1, \quad \forall i \le j$$

 interpretation: revival of distinguishability ⇒ back-flow of information ⇒ memory effects ⇒ non-Markovianity

Divisibility (DIV)

- extends the idea of dynamical semigroups: $t\mapsto \Phi_t$ such that $\Phi_s\circ \Phi_t=\Phi_{t+s}$
- a QDM (Φ_i)_i is CPTP divisible if there exist CPTP linear maps (E_{i→j})_{i≤j}, which we call propagators, such that Φ_j = E_{i→j} Φ_i, for all 0 ≤ i ≤ j ≤ N

- DIV constitutes a quantum analogue of the Chapman-Kolmogorov equation (i.e., stochastic divisibility)
- very well captures the property of being memoryless, which is a crucial (*the* crucial?) property of Markovian processes

can we make these equivalent?

DSD, DIV, and Reverse Data-Processing Theorems

- DIV is equivalent to the property of **degradability**: channel Φ is said to be degradable into channel Φ' whenever there exists a third channel \mathcal{E} such that $\Phi' = \mathcal{E} \circ \Phi$
- hence, "DIV \implies DSD" is a consequence of the data-processing inequality for the trace norm: for any pair of states (ρ_S^1, ρ_S^2) ,

$$\begin{split} \|\Phi'(\rho_S^1) - \Phi'(\rho_S^2)\|_1 &= \|(\mathcal{E} \circ \Phi)(\rho_S^1) - (\mathcal{E} \circ \Phi)(\rho_S^2)\|_1 \\ &\leq \|\Phi(\rho_S^1) - \Phi(\rho_S^2)\|_1 \end{split}$$

- in fact, the data-processing inequality is satisfied by *most* (all?) distinguishability measures
- hence, it is interesting to seek for possible alternative (stronger) definitions of DSD, maintaining the same "intuitive meaning", but leading to the sought after equivalence: DSD \iff DIV

Strengthening DSD

Theorem (Chruściński, Kossakowski, and Rivas, 2011; Chruściński and Maniscalco, 2014; Wißman, Breuer, Vacchini, 2015)

Let $\Phi: A \to B$ and $\Phi': A \to B'$ be two quantum channels, with Φ invertible (as a linear map). Then, Φ is degradable into Φ' with a k-positive TP map $\mathcal{E}: B \to B'$, if and only if, for all $p \in [0,1]$ and all pairs of k-extended states $\rho_{k,A}^1, \rho_{k,A}^2 \in L(\mathbb{C}^k \otimes \mathcal{H}_A)$,

$$\begin{aligned} \|p(\mathsf{id}_k \otimes \Phi')(\rho_{k,A}^1) - (1-p)(\mathsf{id}_k \otimes \Phi')(\rho_{k,A}^2)\|_1 \\ &\leq \|p(\mathsf{id}_k \otimes \Phi)(\rho_{k,A}^1) - (1-p)(\mathsf{id}_k \otimes \Phi)(\rho_{k,A}^1)\|_1 \end{aligned}$$

10/24

Statistical Distinguishability in Mathematical Statistics

Statistical Models and Decision Problems

Formal Definitions

- A statistical model is given by: a parameter set Θ , a sample set \mathcal{X} , and a family of PDs $\{w_{\theta}(x)\} \equiv w(x|\theta)$.
- A statistical decision problem is given by: a parameter set Θ, an "action" set U, and a payoff function l : Θ × U → ℝ.

How Much Is a Statistical Model Worth?

Each decision problem implicitly defines a statistical distinguishability measure for the PDs $\{w_{\theta}(x)\}$.

- the model $\mathbf{w} = \{w_{\theta}(x)\}$ represents info in X about θ
- the decision d(u|x) optimally extracts from X information about θ, and uses this to decide the best action

$$\Theta \xrightarrow{\text{experiment}} \mathcal{X} \xrightarrow{\text{decision}} \mathcal{U}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\theta \xrightarrow{u(q|\theta)} x \xrightarrow{d(u|q)} u$$

Definition (Expected Payoff)

The expected payoff of statistical model $\mathbf{w} = \{w_{\theta}(x)\}$ w.r.t. decision problem $\ell = \{\ell(\theta, u)\}$ is given by

$$\mathbb{E}_{\boldsymbol{\ell}}[\mathbf{w}] \triangleq \max_{d(u|x)} \sum_{u,x,\theta} \ell(\theta, u) d(u|x) w(x|\theta) |\Theta|^{-1}$$

Intuition: the higher the payoff, the more information about θ the PDs $w_{\theta}(x)$ carry, **the more "distinguishable" they are**.

Comparing Statistical Models 1/2

Given a statistical decision problem $\ell = \{\ell(\theta, u)\}$, if $\mathbb{E}_{\ell}[\mathbf{w}] \geq \mathbb{E}_{\ell}[\mathbf{w}']$, then one says that model \mathbf{w} is "more informative" (or "broader", or "more distinguishable") than model \mathbf{w}' , with respect to problem ℓ .

Definition (Information Preorder)

If model $\mathbf{w} = \{w_{\theta}(x)\}$ is more informative than model $\mathbf{w}' = \{w'_{\theta}(y)\}$ for all decision problems $\boldsymbol{\ell} = \{\ell(\theta, u)\}$, then we say that \mathbf{w} is *(always) more informative* than \mathbf{w}' , and write

$$\mathsf{w} \succeq \mathsf{w}'$$
 .

Intuition: $\mathbf{w} \succeq \mathbf{w}'$ means that the PDs $\{w_{\theta}(x)\}$ are always more distinguishable than $\{w'_{\theta}(y)\}$.

Problem. The information preorder is operational, but not really "concrete". Can we visualize this better?

Blackwell-Sherman-Stein (1948-1953)

Given two statistical models $\mathbf{w} = \{w_{\theta}(x)\}$ and $\mathbf{w}' = \{w'_{\theta}(y)\}$, the following are equivalent:

- 1. **w** is more informative than **w**', i.e., $\mathbf{w} \succeq \mathbf{w}';$
- 2. w is sufficent for w', i.e., there exists a conditional PD $\varphi(y|x)$ such that $w'(y|\theta) = \sum_{x} \varphi(y|x)w(x|\theta).$

David H. Blackwell (1919-2010)

statistical sufficiency

 \approx

better distinguishability w.r.t. all operational distinguishability measures

Paramount Example: Majorization and Lorenz Curves

- two probability distributions, *p* and *q*, of the same dimension *n*
- truncated sums $P(k) = \sum_{i=1}^{k} p_i^{\downarrow}$ and $Q(k) = \sum_{i=1}^{k} q_i^{\downarrow}$, for all $k = 1, \dots, n$
- p majorizes q, i.e., $p \succeq q$, whenever $P(k) \ge Q(k)$, for all k
- minimal element: uniform distribution $e = n^{-1}(1, 1, \cdots, 1)$

 $p \succeq q \iff q = Mp$, for some bistochastic matrix M.

$$(x_k, y_k) = (k/n, P(k)), \quad 1 \le k \le n$$

Intuition: $p \succeq q$ means that p is always more distinguishable than q from the uniform e.

Generalization: Relative Majorization

- two pairs of probability distributions, (\pmb{p}_1, \pmb{p}_2) and $(\pmb{q}_1, \pmb{q}_2),$ of dimension m and n, respectively
- relabel entries such that ratios p_1^i/p_2^i and q_1^j/q_2^j are nonincreasing
- construct the truncated sums $P_{1,2}(k) = \sum_{i=1}^{k} p_{1,2}^{i}$ and $Q_{1,2}(k)$
- $(p_1, p_2) \succeq (q_1, q_2)$ iff the curve of the former is never below that of the latter

 $(p_1, p_2) \succeq (q_1, q_2) \iff q_i = Mp_i$, for some stochastic matrix M.

Relative Lorenz curves:

 $(x_k, y_k) = (P_2(k), P_1(k))$

Intuition: $(p_1, p_2) \succeq (q_1, q_2)$ means that (p_1, p_2) are always more distinguishable than (q_1, q_2) .

observation: discrete noisy channels

$$\Phi: \begin{cases} \mathcal{X} \to \mathcal{Y} \\ x \mapsto p_x(y) \end{cases}$$

are equivalent to statistical models

Statistical Distinguishability Measures for Noisy Channels

Ordering Channels by Guessing Problems

 given two quantum channels (CPTP linear maps) Φ : A → B and Φ' : A → B', we say that Φ is less noisy than Φ', i.e., Φ ⊇ Φ', whenever, for any input ensemble {p_x, ρ_x^x},

 $P_{\text{guess}}(\{p_x, \Phi(\rho_A^x)\}) \ge P_{\text{guess}}(\{p_x, \Phi'(\rho_A^x)\})$

- $\Phi \supseteq_k \Phi' \iff \operatorname{id}_k \otimes \Phi \supseteq \operatorname{id}_k \otimes \Phi'$ (id_k: identity channel on $L(\mathbb{C}^k)$)
- $\Phi \supseteq_{\infty} \Phi' \iff \mathsf{id}_{B'} \otimes \Phi \supseteq \mathsf{id}_{B'} \otimes \Phi'$
- the identity channel can be replaced by any fixed, though arbitrary, invertible channel (possibly entanglement-breaking)

Theorem

- $\Phi \supseteq_k \Phi' \iff \exists k$ -statistical morphism $\mathcal{M}: \Phi' = \mathcal{M} \circ \Phi$
- $\Phi \supseteq_{\infty} \Phi' \iff \exists$ quantum channel $\mathcal{E} \colon \Phi' = \mathcal{E} \circ \Phi$

Ordering Channels by Quantum Decoding Problems

• given a quantum channel $\Phi: A \to B$, for any input bipartite state ω_{RA} , the transmitted singlet fraction is defined as

$$\mathscr{F}(\omega_{RA}|\Phi_A) := \sup_{\mathcal{D}:\mathsf{CPTP}} \langle \Phi_{RR'}^+ | (\mathsf{id}_R \otimes \mathcal{D}_B \circ \Phi)(\omega_{RA}) | \Phi_{RR'}^+ \rangle ,$$

where $|\Phi^+_{RR'}\rangle$ denotes the maximally entangled state $(R'\cong R)$

• given two quantum channels $\Phi : A \to B$ and $\Phi' : A \to B'$, we write $\Phi \succeq \Phi'$, whenever $\mathscr{F}(\omega_{RA}|\Phi_A) \ge \mathscr{F}(\omega_{RA}|\Phi'_A)$ for all ω_{RA} $(R \cong B' \text{ is enough})$

Theorem

- $\Phi \succeq \Phi' \iff \Phi \succeq \Phi' \text{ only for separable } \omega_{RA} \iff \exists$ quantum channel $\mathcal{E}: \Phi' = \mathcal{E} \circ \Phi$
- $\Phi \succeq \Phi'$ only for classical-quantum $\omega_{RA} = \sum_{x} p_{x} |x\rangle \langle x|_{R} \otimes \rho_{A}^{x} \iff \exists$ statistical morphism \mathcal{M} : $\Phi' = \mathcal{M} \circ \Phi$

Application to Quantum Dynamical Mappings

Figure 2: The varying thickness of the green lines depict the singlet fraction at any time.

- a QDM $(\Phi_i)_i$ is **CP-divisible** iff $\Phi_i \succeq \Phi_j$ for all $j \ge i$ and all initial **separable** states
- a QDM (Φ_i)_i P-divisible iff Φ_i ≽ Φ_j for all j ≥ i and all initial classical-quantum states
- in terms of entropies: $H_{\min}(R|S_i) \leq H_{\min}(R|S_j)$, for all $j \geq i$

Some Final Remarks

Why the propagators $(\mathcal{E}_{i \rightarrow j})_{i \leq j}$ are assumed to be CPTP?

CP-divisibility is equivalent to saying that the open evolution is "collisional," in the sense that it can be realized by summoning a "fresh environment" at each time step. Do the propagators $(\mathcal{E}_{i \rightarrow j})_{i \leq j}$ really need to be linear CPTP?

- linearity is necessary (QDMs are linear)
- trace-preservation (a linear constraint) also
- CP perhaps not: propagators could be just P or even less (e.g., statistical morphisms), and yet be related to important physical/computational/thermodynamical properties (like, e.g., the "locality" or "causality" of the evolution)

Possible Ideas to Think About

- classical correlations can witness P-indivisibility but not CP-indivisibility
- for that, separable states are required: discord/coherence, anyone?
- it is known that CP-DIV can be decided by SDP: way to design efficient tests?
- robustness to small deviations (ϵ -DIV $\iff \epsilon$ -DSD)
- to impose extra properties to DIV, e.g., thermality or group-covariance
- to understand P-DIV in a **generalized circuit formalism** (no extension possible, however no problem, because not in the black-box picture)
- to understand the **information-theoretic and computational capabilities** of such generalized circuit models, e.g., data-processing inequalities, computational/thermodynamical aspects, etc

