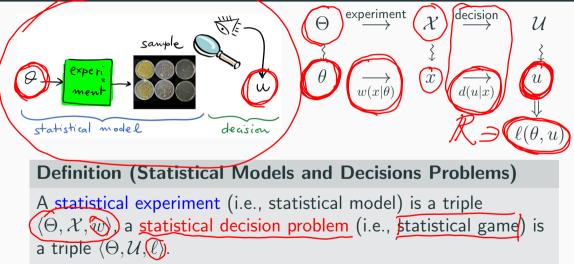
From Statistical Decision Theory to Bell Nonlocality

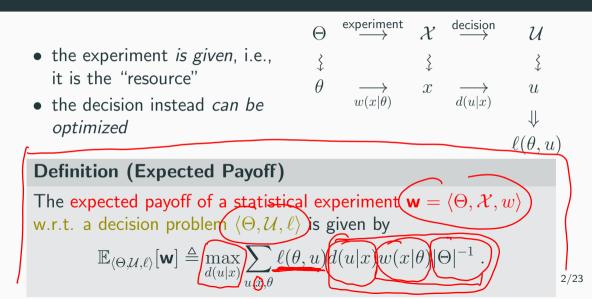
Francesco Buscemi^{*} QECDT, University of Bristol, 26 July 2018 (videoconference) *Dept. of Mathematical Informatics, Nagoya University, buscemi@i.nagoya-u.ac.jp

Introduction

Statistical Decision Problems



How Much Is an Experiment Worth?

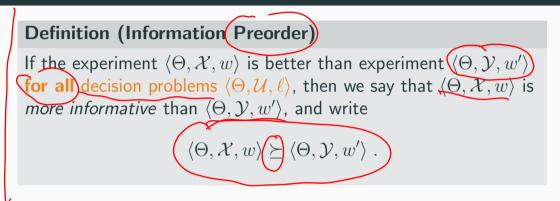


Comparing Experiments 1/2

$$\begin{array}{c} \text{experiment } \mathbf{w} = \langle \Theta, \mathcal{X}, w(x|\theta) \rangle \\ \hline \\ & \bigoplus \\ & \bigoplus \\ \theta \\ & \bigoplus \\ w(x|\theta) \\ & &$$

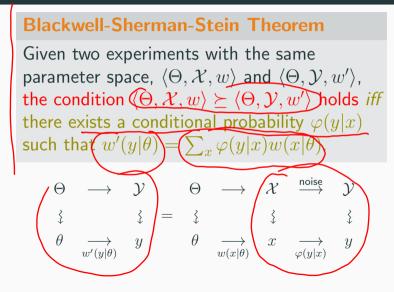
$$\begin{split} & \text{If}(\mathbb{E}_{\langle \Theta, \mathcal{U}, \ell \rangle}[\mathbf{w}] \geq \mathbb{E}_{\langle \Theta, \mathcal{U}, \ell \rangle}[\mathbf{w}']) \text{ then experiment } \langle \Theta, \mathcal{X}, w \rangle \text{ is better} \\ & \text{than experiment } \langle \Theta, \mathcal{Y}, w' \rangle \text{ for problem } \langle \Theta, \mathcal{U}, \ell \rangle. \end{split}$$

Comparing Experiments 2/2



Problem. The information preorder is operational, but not really "concrete". Can we visualize this better?

Blackwell's Theorem (1948-1953)



David H. Blackwell (1919-2010)

An Important Special Case: Majorization

Lorenz Curves and Majorization Preorder

• two probability distributions, p and q, of the same dimension n

• truncated sums
$$P(k) = \sum_{i=1}^{k} p_i^{\downarrow}$$
 and $Q(k) = \sum_{i=1}^{k} q_i^{\downarrow}$, for all $k = 1, \dots, n$

•
$$p$$
 majorizes q , i.e., $p \succeq q$, whenever $P(k) \ge Q(k)$, for all k

• minimal element: uniform distribution $e = n^{-1}(1, 1, \dots, 1)$

• Hardy, Littlewood, and Pólya (1929): $p \succeq q \iff q = Mp$, for some bistochastic matrix M

Lorenz curve for probability distribution $\boldsymbol{p} = (p_1, \cdots, p_n)$: $1 \le k \le n$

Dichotomies and (Tests

- a dichotomy is a statistical experiment with a two-point parameter space: $\langle \{1,2\}, \mathcal{X}(\boldsymbol{w}_1, \boldsymbol{w}_2) \rangle$
- a testing problem (or "test") is a decision problem with a two-point action space $\mathcal{U}=\{1,2\}$

Definition (Testing Preorder)

Given two dichotomies $(\mathcal{X}, (\boldsymbol{w}_1, \boldsymbol{w}_2))$ and $(\mathcal{Y}, (\boldsymbol{w}_1', \boldsymbol{w}_2'))$, we write

$$\langle \mathcal{X}, (\boldsymbol{w}_1, \boldsymbol{w}_2) \rangle \geq_2 \langle \mathcal{Y}, (\boldsymbol{w}_1', \boldsymbol{w}_2') \rangle$$
,

whenever

 $\mathbb{E}_{\langle \{1,2\},\{1,2\},\ell\rangle}[\langle \mathcal{X}, (\boldsymbol{w}_1, \boldsymbol{w}_2) \rangle] \geq \mathbb{E}_{\langle \{1,2\},\{1,2\},\ell\rangle}[\langle \mathcal{Y}, (\boldsymbol{w}_1', \boldsymbol{w}_2') \rangle]$ for all testing problems.

Connection with Majorization Preorder

Blackwell's Theorem for Dichotomies (1953)

Given two dichotomies $\langle \mathcal{X}, (\boldsymbol{w}_1, \boldsymbol{w}_2) \rangle$ and $\langle \mathcal{Y}, (\boldsymbol{w}_1', \boldsymbol{w}_2') \rangle$, the relation $\langle \mathcal{X}, (\boldsymbol{w}_1, \boldsymbol{w}_2) \rangle \succeq_2 \langle \mathcal{Y}, (\boldsymbol{w}_1', \boldsymbol{w}_2') \rangle$ holds iff there exists a stochastic matrix M such that $M \boldsymbol{w}_i = \boldsymbol{w}_i'$.

• majorization: $p \succeq q \iff \langle \mathcal{X}(p, e) \succeq_2 \langle \mathcal{X}, (q, e) \rangle$ • thermomajorization: as above, but replace uniform e with thermal distribution γ_T

Hence, the information preorder is a multivariate version of the majorization preorder, and Blackwell's theorem is a powerful generalization of that by Hardy, Littlewood, and Pólya.

Visualization: Relative Lorenz Curves

- two pairs of probability distributions, (p_1, p_2) and (q_1, q_2) of dimension m and n, respectively
- relabel their entries such that the ratios p_1^i/p_2^i and q_1^j/q_2^j are nonincreasing in i and j
- with such labeling, construct the truncated sums $P_{1,2}(k) = \sum_{i=1}^{k} p_{1,2}^i$ and $Q_{1,2}(k) = \sum_{j=1}^{k} q_{1,2}^i$

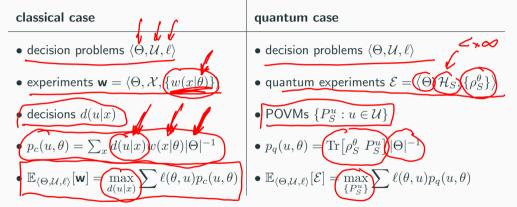
Relative Lorenz curves:

$$\overbrace{(x_k, y_k) = (P_2(k), P_1(k))}$$

• $(p_1, p_2) \succeq_2 (q_1, q_2)$, if and only if the relative Lorenz curve of the former is never below that of the latter

The Quantum Case

Quantum Decision Theory (Holevo, 1973)



Hence, it is possible, for example, to compare quantum experiments with classical experiments, and introduce the information preorder as done before.

Example: Semiquantum Blackwell Theorem

Theorem (FB, 2012)

Given a quantum experiment $\mathcal{E} = \langle \Theta, \mathcal{H}_S, \{\rho_S^\theta\} \rangle$ and a classical experiment $\mathbf{w} = \langle \Theta, \mathcal{X}, \{w(x|\theta)\} \rangle$, the condition $\mathcal{E} \succeq \mathbf{w}$ holds iff there exists a POVM $\{P_S^x\}$ such that $w(x|\theta) = \operatorname{Tr} \left[P_S^x \ \rho_S^\theta\right]$.

Equivalent reformulation

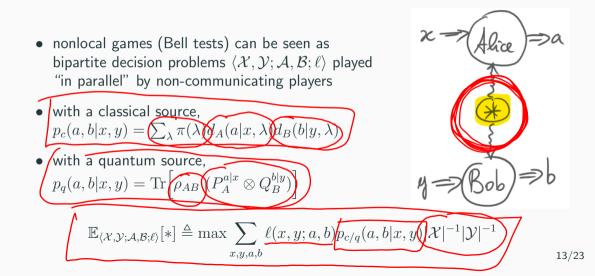
Consider two quantum experiments $\mathcal{E} = \langle \Theta, \mathcal{H}_{S}(\{\rho_{S}^{\theta}\}) \rangle$ and $\mathcal{E}' = \langle \Theta, \mathcal{H}_{S'}, \{\sigma_{S'}^{\theta}\} \rangle$, and assume that the σ 's all commute. Then, $\mathcal{E} \succeq \mathcal{E}'$ holds *iff* there exists a quantum channel (CPTP map) $\Phi : \mathcal{L}(\mathcal{H}_{S}) \to \mathcal{L}(\mathcal{H}_{S'})$ such that $\Phi(\rho_{S}^{\theta}) = \sigma_{S'}^{\theta}$, for all $\theta \in \Theta$.

The Theory of Quantum Statistical Comparison

- fully quantum information preorder -----
- quantum relative majorization -
- statistical comparison of quantum measurements (compatibility preorder)
- statistical comparison of quantum channels
 (input-degradability preorder, output-degradability preorder, simulability preorder, etc)
- applications: quantum information theory, quantum thermodynamics, open quantum systems dynamics, quantum resource theories, quantum foundations, ...
- approximate case

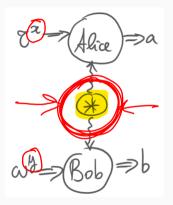
Application to Quantum Foundations: Distributed Decision Problems, i.e., Nonlocal Games

Nonlocal Games



Semiquantum Nonlocal Games

- semiquantum nonlocal games replace classical inputs with quantum inputs: $(\{\tau^x\}, \{\omega^y\}) \mathcal{A}, \mathcal{B}; \ell \rangle$
- with a classical source, $p_c(a, b|x, y) = \sum_{\lambda} \pi(\lambda) \operatorname{Tr}\left[(\tau_X^x \otimes \omega_Y^y) (P_X^{a|\Omega} \otimes Q_Y^{b|\Omega})\right]$
- with a quantum source, $p_q(a, b|x, y) =$ $Tr \left[(\tau_X^x \otimes \rho_{AB} \otimes \omega_Y^y) \ (P_{XA}^a \otimes Q_{BY}^b) \right]$



 $\mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[*] \triangleq \max \sum_{x,y,a,b} \ell(x,y;a,b) p_{c/q}(a,b|x,y) |\mathcal{X}|^{-1} |\mathcal{Y}|^{-1}$

Blackwell Theorem for Bipartite States

Theorem (FB, 2012)

Given two bipartite states ρ_{AB} and $\sigma_{A'B'}$, the condition (i.e., "nonlocality preorder")

$$\mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[\rho_{AB}] \geq \mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[\sigma_{A'B'}]$$

holds for all semiguantum nonlocal games, iff there exist CPTP maps $\Phi_{A \to A'}^{\lambda} \Psi_{B \to B'}^{\lambda}$ and distribution $\pi(\lambda)$ such that $\sigma_{A'B'} = \sum_{\lambda} \pi(\lambda) (\Phi_{A \to A'}^{\lambda} \otimes \Psi_{B \to B'}^{\lambda} \rho_{AB} .$

Corollaries

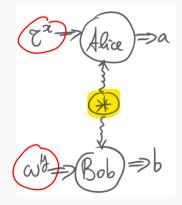
• For any separable state ρ_{AB} ,

$$\mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[\rho_{AB}] = \mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[\rho_A \otimes \rho_B]$$

= $\mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}^{\mathsf{sep}}$
for all semiquantum nonlocal games.
• For any entangled state ρ_{AB} , there exists a semiquantum nonlocal game $\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle$ such that
 $\mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}[\rho_{AB}]$ $\mathbb{E}_{\langle\{\tau^x\},\{\omega^y\};\mathcal{A},\mathcal{B};\ell\rangle}^{\mathsf{sep}}$.

Other Properties of Semiquantum Nonlocal Games

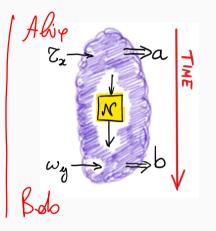
- can be considered as measurement device-independent entanglement witnesses (i.e., MDI-EW)
- can withstand losses in the detectors
- can withstand any amount of classical communication exchanged between Alice and Bob (not so conventional nonlocal games!)



Semiquantum Signaling Games

Semiquantum Nonlocality in Time

- turn dynamic communication into static memory!
- with unlimited classical memory, $p_c(a, b|x, y) = \sum_{\lambda} \pi(\lambda) \operatorname{Tr}\left[\tau_X^x P_X^{\flat}\right] \operatorname{Tr}\left[\omega_Y^y Q_Y^{\flat}\right]$
- if, moreover, a quantum memory $\mathcal{N}: A \rightarrow B$ is available, which correlations can be achieved?



Admissible Quantum Strategies

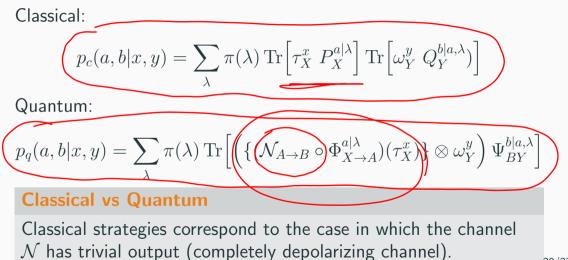
- τ_X^x is fed through an *instrument* $\{\Phi_{X \rightarrow A}^{a|\lambda}\}$, and outcome a is recorded
- the quantum output of the instrument is fed through the quantum memory $\mathcal{N}: A \to B$
- the output of the memory, together with ω_V^y , are fed b is

fed into a final measurement
$$\{\Psi_{BY}^{b|a,\lambda}\}$$
, and outpose b is recorded
$$p_q(a,b|x,y) = \sum_{\lambda} \pi(\lambda) \operatorname{Tr} \Big[\Big(\{ (\mathcal{N}_{A \to B} \bullet \Phi_X^a) + \Phi_X^a \} + \Phi_X^a + \Phi_X^$$

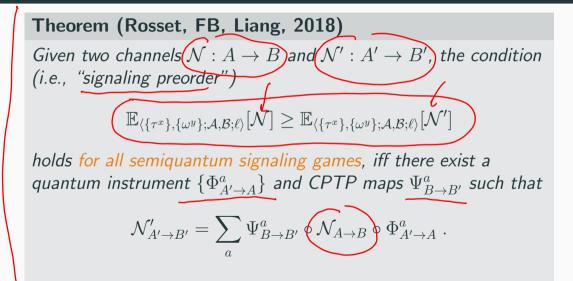
 $\otimes \omega_{\scriptscriptstyle V}^y$

 $J^{b|a,\lambda}$

Classical vs Quantum Strategies



Statistical Comparison of Quantum Channels



- by asking quantum questions, it is possible to verify the quantumness in Alice's memory
- similar to Leggett-Garg inequalities, but without loopholes and other conceptual difficulties

• i.e., one of the simplest, non-trivial, time-like Bell tests

Conclusions

Conclusions

- generally speaking, the theory of statistical comparison studies transformation of one "statistical structure" X into another "statistical structure" Y
- equivalent conditions are given in terms of (finitely or infinitely many) monotones, e.g., $f_i(X) \ge f_i(Y)$
- such monotones shed light on the "resources" at stake in the operational framework at hand
- statistical comparison is complementary to SDP, which instead searches for *efficiently computable* functions like f(X, Y)
- however, SDP does not provide much insight into the resources at stake