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Classical Markov chains: some nomenclature

Time convention: ty > --- > t1 > .

e classical Markov chain:
P(th’ Lipn_ g9 7:171?0) = P(xtN’xtN—l) T P<xt1‘wt0)P(wto)

e keywords: memorylessness, Markovianity, divisibility
e physical divisibility (Markov equation):
Pz, @1y, @) = Py |2, ) Pz |2,) P(2), for any k> j > i
e stochastic divisibility (Chapman-Kolmogorov equation):
P(mtk‘a:ti) = th]. P(mtk|mt]‘)P(wt]‘|xti>' for any k> Jj=t

physical divisibility == stochastic divisibility
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The problem with quantum systems

Quantum stochastic processes are like sealed black boxes: an observation
at time t; can “spoil” the process and any subsequent observation at later
times to > 7.

v

Figure 1: Here ¢( is an initial time, at which the quantum system can be
prepared (fully controlled). There is no direct quantum analogue of the N-time
joint distribution P(@ty, ..., @y, ).
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Quantum Dynamical Mappings

How to describe quantum stochastic processes then?

e time convention: ty > --- > 11 >ty
e open quantum systems formalism:
ps(ts) i= Tr {Uig-st, 105(0) © pu(0)] U}, }

e if the system is fully controlled at ¢y, we obtain a sequence of CPTP
linear maps by discarding the bath:

2i() = Trs {Utpts [ ® p(0)] Uf, sy, }
Definition
A quantum dynamical mapping (QDM) is a sequence of CPTP linear

maps (®;)o<i<n satisfying ®g = idg (consistency condition).
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Two approaches to quantum Markovianity

e Global (extrinsic) picture: Markovianity is a property of the whole
system+bath compound (like, e.g., singular coupling regime,
approximate factorizability, etc)

e Reduced (intrinsic) picture: Markovianity is a property of the
resulting quantum dynamical mapping alone (like, e.g., information
decrease, divisibility, etc)
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A “Zoo” of Quantum Markovianities

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. Concepts of quantum
non-Markovianity: a hierarchy. (arXiv:1712.08879 [quant-ph])
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A “Zoo” of Quantum Markovianities

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. Concepts of quantum
non-Markovianity: a hierarchy. (arXiv:1712.08879 [quant-ph])
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Decreasing System Distinguishability (DSD)

e introduced in [Breuer, Laine, Piilo; PRL 2009], it provides the bridge
between physical and information-theoretic Markovianity

e for any pair of possible initial states of the system, say, p%(0) and
p%(0), consider the same pair evolved at later times ¢; > to:

pg’ (L) = @; [P}gg(o)}
e DSD condition:

los(ts) — P&t = lps(ts) — P51l , Vi<

e interpretation: revival of distinguishability = back-flow of
information = non-Markovianity
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Divisibility (DIV)

e extends the idea of dynamical semigroups: ¢ — ®; such that
B, 0D = Byyy

e a QDM (®;); is CPTP divisible if there exist CPTP linear maps
(€i—)i<j, which we call propagators, such that ®; = &;_,; o ®;, for
al0<i<j<N

e DIV constitutes a quantum analogue of the Chapman-Kolmogorov

equation (i.e., stochastic divisibility) o



DIV — DSD
P

can we make these equivalent?



Strengthening DSD

e both DSD and DIV play an important role in information theory
under the names of data-processing inequality and degradability,
respectively

e reverse data-processing theorems: various generalizations of DSD
that become equivalent to DIV (sometimes, however, bijectivity of all
®,'s is required)

Given a bipartite state wgg, define its singlet fraction given S as

F(w]8) == sup (Phsl|(idr ® Ds)(wrs)|Phs) -

D:CPTP
Denote w; := (idg ® ®;)(wgrs). A QDM (®;); satisfies DIV if and only if
F (wi]S) > F(wj]S), for all j > i and all separable bipartite states

w .
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Visualizing the condition
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e The thickness of the green lines depict the singlet fractions at any
time:

F (wi|S) :== sup (®}gl(idr ® Dg o ®;)(wrs)|Phs) -
D:CPTP

e A QDM (®;); satisfies DIV iff . (w;|S) > F (w;|S) for all initial
separable states wrg. 10/14



Meaning of DIV

Why the propagators (£;—;)i<; are assumed to be CPTP?

Hence, CP-divisibility is equivalent to saying that the open evolution is
“collisional,” in the sense that it can be realized by summoning a “fresh
environment” at each time step.
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To strengthen DSD or to relax DIV?

e But do the propagators (£;_,;)i<; really need to be linear CPTP?

e linearity is necessary (QDMs are linear)

e trace-preservation (a linear constraint) also

e instead, CP perhaps not: propagators could be just P or even less
(e.g., statistical morphisms), and yet be related to important
physical /computational /thermodynamical properties (like, e.g., the
“locality” or “causality” of the evolution)

A recent result (FB, 2018)

A QDM (®;) satisfies P-DIV if and only if .7 (w;|S) > # (w;]S), for all
j > and all classical-quantum bipartite states wgg.

Remark. Classical-quantum states have the form wrs = 3°, pi|k)(k|r ® w§.
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CP-DIV, P-DIV, and non-increasing singlet fractions
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Figure 2: The varying thickness of the green lines depict the singlet fraction at
any time.

e The QDM is CP-divisible iff .7 (w;|S) > % (w;|S) for all initial separable
states.

e The QDM is P-divisible iff .7 (w;|S) > .% (w;|S) for all initial
classical-quantum states. 13/14



Possible ideas in this direction

e to witness P-indivisibility, classical correlations are enough; for
CP-indivisibility, separable non-classical states are required. Discord,
anyone?

e it is known that CP-DIV can be decided by SDP: way to design
efficient tests?

e to impose extra properties to DIV, e.g., thermality or
group-covariance

e to understand P-DIV in a generalized circuit formalism (no
extension possible, however no problem, because not in the black-box
picture)

e relation to causality/time-locality? For example: can a-causal
(time-nonlocal) processes arise in regimes of extreme
non-Markovianity?

e to understand the information-theoretic and computational
capabilities of such generalized circuit models, e.g., data-processing 14/14
inequalities, computational /thermodynamical aspects, etc



