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Classical Markov chains: some nomenclature

Time convention: tN ≥ · · · ≥ t1 ≥ t0.

• classical Markov chain:

P (xtN ,xtN−1 , . . . ,xt0) = P (xtN |xtN−1) · · ·P (xt1 |xt0)P (xt0)

• keywords: memorylessness, Markovianity, divisibility

• physical divisibility (Markov equation):
P (xtk ,xtj ,xti) = P (xtk |xtj )P (xtj |xti)P (xti), for any k ≥ j ≥ i
• stochastic divisibility (Chapman-Kolmogorov equation):
P (xtk |xti) =

∑
xtj

P (xtk |xtj )P (xtj |xti), for any k ≥ j ≥ i

physical divisibility =⇒
6⇐=

stochastic divisibility
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The problem with quantum systems

Quantum stochastic processes are like sealed black boxes: an observation
at time t1 can “spoil” the process and any subsequent observation at later
times t2 ≥ t1.

Figure 1: Here t0 is an initial time, at which the quantum system can be
prepared (fully controlled). There is no direct quantum analogue of the N -time
joint distribution P (xtN , . . . ,xt0).
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Quantum Dynamical Mappings

How to describe quantum stochastic processes then?

• time convention: tN ≥ · · · ≥ t1 ≥ t0
• open quantum systems formalism:

ρS(ti) := TrE

{
Ut0→ti [ρS(0)⊗ ρE(0)] U †t0→ti

}
• if the system is fully controlled at t0, we obtain a sequence of CPTP

linear maps by discarding the bath:

Φi(·) := TrE

{
Ut0→ti [· ⊗ ρE(0)] U †t0→ti

}
Definition

A quantum dynamical mapping (QDM) is a sequence of CPTP linear
maps (Φi)0≤i≤N satisfying Φ0 = idS (consistency condition).
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Two approaches to quantum Markovianity

• Global (extrinsic) picture: Markovianity is a property of the whole
system+bath compound (like, e.g., singular coupling regime,
approximate factorizability, etc)

• Reduced (intrinsic) picture: Markovianity is a property of the
resulting quantum dynamical mapping alone (like, e.g., information
decrease, divisibility, etc)
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A “Zoo” of Quantum Markovianities

From: Li Li, Michael J. W. Hall, Howard M. Wiseman. Concepts of quantum

non-Markovianity: a hierarchy. (arXiv:1712.08879 [quant-ph])
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Decreasing System Distinguishability (DSD)

• introduced in [Breuer, Laine, Piilo; PRL 2009], it provides the bridge
between physical and information-theoretic Markovianity

• for any pair of possible initial states of the system, say, ρ1S(0) and
ρ2S(0), consider the same pair evolved at later times ti > t0:

ρ1,2S (ti) := Φi

[
ρ1,2S (0)

]
• DSD condition:

‖ρ1S(ti)− ρ2S(ti)‖1 ≥ ‖ρ1S(tj)− ρ2S(tj)‖1 , ∀i ≤ j

• interpretation: revival of distinguishability =⇒ back-flow of
information =⇒ non-Markovianity
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Divisibility (DIV)

• extends the idea of dynamical semigroups: t 7→ Φt such that
Φs ◦ Φt = Φt+s

• a QDM (Φi)i is CPTP divisible if there exist CPTP linear maps
(Ei→j)i≤j , which we call propagators, such that Φj = Ei→j ◦ Φi, for
all 0 ≤ i ≤ j ≤ N

• DIV constitutes a quantum analogue of the Chapman-Kolmogorov
equation (i.e., stochastic divisibility)
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DIV =⇒
6⇐=

DSD

can we make these equivalent?
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Strengthening DSD

• both DSD and DIV play an important role in information theory
under the names of data-processing inequality and degradability,
respectively
• reverse data-processing theorems: various generalizations of DSD

that become equivalent to DIV (sometimes, however, bijectivity of all
Φi’s is required)

A recent result (FB, 2018)

Given a bipartite state ωRS , define its singlet fraction given S as

F (ω|S) := sup
D:CPTP

〈Φ+
RS |(idR ⊗DS)(ωRS)|Φ+

RS〉 .

Denote ωi := (idR ⊗ Φi)(ωRS). A QDM (Φi)i satisfies DIV if and only if
F (ωi|S) ≥ F (ωj |S), for all j ≥ i and all separable bipartite states
ωRS .
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Visualizing the condition

• The thickness of the green lines depict the singlet fractions at any
time:

F (ωi|S) := sup
D:CPTP

〈Φ+
RS |(idR ⊗DS ◦ Φi)(ωRS)|Φ+

RS〉 .

• A QDM (Φi)i satisfies DIV iff F (ωi|S) ≥ F (ωj |S) for all initial
separable states ωRS . 10/14



Meaning of DIV

Why the propagators (Ei→j)i≤j are assumed to be CPTP?

Hence, CP-divisibility is equivalent to saying that the open evolution is
“collisional,” in the sense that it can be realized by summoning a “fresh
environment” at each time step.
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To strengthen DSD or to relax DIV?

• But do the propagators (Ei→j)i≤j really need to be linear CPTP?

• linearity is necessary (QDMs are linear)
• trace-preservation (a linear constraint) also
• instead, CP perhaps not: propagators could be just P or even less

(e.g., statistical morphisms), and yet be related to important
physical/computational/thermodynamical properties (like, e.g., the
“locality” or “causality” of the evolution)

A recent result (FB, 2018)

A QDM (Φi) satisfies P-DIV if and only if F (ωi|S) ≥ F (ωj |S), for all
j ≥ i and all classical-quantum bipartite states ωRS .

Remark. Classical-quantum states have the form ωRS =
∑

k pk|k〉〈k|R ⊗ ωk
S .
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CP-DIV, P-DIV, and non-increasing singlet fractions

Figure 2: The varying thickness of the green lines depict the singlet fraction at
any time.

• The QDM is CP-divisible iff F (ωi|S) ≥ F (ωj |S) for all initial separable
states.

• The QDM is P-divisible iff F (ωi|S) ≥ F (ωj |S) for all initial
classical-quantum states. 13/14



Possible ideas in this direction

• to witness P-indivisibility, classical correlations are enough; for
CP-indivisibility, separable non-classical states are required. Discord,
anyone?
• it is known that CP-DIV can be decided by SDP: way to design

efficient tests?
• to impose extra properties to DIV, e.g., thermality or

group-covariance
• to understand P-DIV in a generalized circuit formalism (no

extension possible, however no problem, because not in the black-box
picture)
• relation to causality/time-locality? For example: can a-causal

(time-nonlocal) processes arise in regimes of extreme
non-Markovianity?
• to understand the information-theoretic and computational

capabilities of such generalized circuit models, e.g., data-processing
inequalities, computational/thermodynamical aspects, etc
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