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The Mechanical Certainty (Laplace’s Demon)

We may regard the present state of the
universe as the effect of its past and the cause
of its future. An intellect which at a certain
moment would know all forces that set nature
in motion, and all positions of all items of
which nature is composed, if this intellect were
also vast enough to submit these data to
analysis, it would embrace in a single formula
the movements of the greatest bodies of the
universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the
future, just like the past, would be present
before its eyes.

Pierre Simon Laplace, A Philosophical Essay on

Probabilities (1814)

Figure 1: An orrery (clockwork

reproducing the motion of

planets).
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Quantum mechanics tells us that Laplace’s
dream is impossible not only in practice

(complexity, chaos, etc)...

...but also in principle! Why?
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Let Us Begin with a Qualitative Statement...



Basic Notions and Notations

In these slides:

• we label quantum systems by Q,Q′, . . . and denote their (finite
dimensional) Hilbert spaces H,H′, . . .

• the set of all linear operators on H is denoted L(H)

• states are represented by density operators, i.e., ρ ∈ L(H) such that
ρ � 0 and Tr[ρ] = 1

• we denote the set of all density operators on H as D(H)

• linear maps from L(H) to L(H′) are denoted E ,F ,R, . . . ; we usually
assume that they are completely positive; the identity map is
denoted id

• index sets (all finite) are denoted A = {a}, B = {b}, etc.

• classical random variables (usually thought as orthogonal states in a
Hilbert space) are denoted A,X, etc.

• the maximally entangled state is denoted |Φ̃〉
• we use the square fidelity F(ρ, σ) = ‖√ρ

√
σ‖21, which for pure states

becomes F(|ψ〉, |φ〉) = |〈ψ|φ〉|2
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What is a Measurement?

In operational theories, measurements are represented by families of
operations, e.g., {Ea : a ∈ A }, indexed by the outcomes that can occur
(index a). In quantum theory, there are some special requirements:

• for each a, the map Ea : L(H)→ L(H′) is completely positive

• the sum
∑
a Ea is completely positive and trace-preserving

A family of operations like the one above is called (completely positive)
quantum instrument.

Operational Interpretation

Given that the state of the system
immediately before the measurement is ρ,
the outcome a will be obtained with
probability p(a) , Tr[Ea(ρ)], in which case
the state of the system immediately after
the measurement will be σa , 1

p(a)Ea(ρ).
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Defining Disturbance (1/2)

Definition (Naive Attempt)

A measurement {Ea}a is non-disturbing whenever, for any input ρ,

Ea(ρ) ∝ ρ, ∀a ∈ A .

Why this does not work. Consider a measurement with
Ea(ρ) = p(a)UaρU

†
a . Even though Ea(ρ) 6∝ ρ, knowing the outcome

obtained, one can make this measurement non-disturbing by “undoing”
the corresponding unitary transformation: U†aEa(ρ)Ua ∝ ρ.
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Defining Disturbance (2/2)

The previous example tells us that disturbance is related to irreversibility,
rather than state-change per se.

Definition (Non-Disturbing Measurements)

A measurement {Ea}a is physically non-disturbing (viz., physically
reversible) whenever there exists a family of CPTP linear maps {Ra}a
such that, for any input ρ,

(Ra ◦ Ea)(ρ) ∝ ρ, ∀a ∈ A .

Remark. Notice the position of the universal quantifiers: the same family of
correction operations {Ra}a must be able to reverse the measurement process for any
possible input state ρ.

Remark. Notice the difference between the measurement {Ea}a and the correction

{Ra}a: the former is a family of CP maps, which need not be TP, but whose sum is

TP; the latter is a family of CPTP maps.
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Defining Information (or the Lack Thereof)

The information gained in a measurement resides in the way the
outcomes are distributed.

Definition (Uninformative Measurements)

A measurement {Ea}a is uninformative whenever the outcome
probability distribution p(a) does not depend on the input, in formula,

Tr[Ea(ρ)] = p(a), ∀ρ .

Hence, an uninformative measurement returns an outcome chosen at
random, without even looking at the input state.

Remark. The output state could still depend on the input: the point is that the

outcome a does not!
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All Physically Reversible Measurements Are Uninformative

A simple consequence of the linearity of maps Ea and Ra is the following

Theorem (No Information Without Disturbance, Part 1)

If a measurement {Ea}a is physically reversible, then it is uninformative.

Proof.

1. There exist CPTP {Ra}a such that (Ra ◦ Ea)(ρ) ∝ ρ for all ρ and all a

2. Suppose that there exist two states ρ 6= σ, such that (Ra ◦ Ea)(ρ) = p(a)ρ and
(Ra ◦ Ea)(σ) = q(a)σ, with p(a) 6= q(a)

3. Since (ρ+ σ)/2 is also a state, point 1 implies (Ra ◦ Ea)(ρ+ σ) = r(a)(ρ+ σ)

4. However, by linearity, we also have (Ra ◦ Ea)(ρ+ σ) = p(a)ρ+ q(a)σ

5. Hence, {r(a)− p(a)}ρ = {q(a)− r(a)}σ
6. Since ρ 6= σ, this implies r(a)− p(a) = q(a)− r(a) = 0, that is,

p(a) = q(a) = r(a)

7. Contradiction with point 2

Hence, if the measurement is physically reversible, the proportionality coefficients

(Ra ◦ Ea)ρ = p(a)ρ are the same for any ρ. Thus, since the maps Ra are all TP,

the measurement is uninformative. 7/31



Stochastic Reversibility

• In the previous proof, we only used linearity, never invoking complete
positivity nor the Hilbert space structure. It is thus very general and
it indeed holds for most operational theories, including classical
probability theory!

• The reason is that physical reversibility is a very strong condition, as
it must hold for each outcome. In quantum information theory one
is often interested in an average (stochastic) condition.

Definition (Stochastically Reversible Measurements)

A measurement {Ea}a is stochastically reversible whenever there
exists a family of CPTP linear maps {Ra}a such that∑

a∈A

(Ra ◦ Ea)(ρ) = ρ, ∀ρ ∈ D(H) .
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Physical Reversibility vs Stochastic Reversibility

Physical Reversibility Stochastic Reversibility
there exist CPTP maps {Ra}a there exist CPTP maps {Ra}a
such that such that
(Ra ◦ Ea)(ρ) ∝ ρ

∑
a(Ra ◦ Ea)(ρ) = ρ

for all a and all ρ for all ρ

Hence, any physically reversible measurement is also stochastically so,
but not vice versa.

Remark. The terminology “physically reversible” vs “stochastically reversible” is taken

from the analogous definition of “physically degradable” vs “stochastically

degradable” for noisy channels in classical information theory.
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All Stochastically Reversible Measurements Are Uninformative

Theorem (No Information Without Disturbance, Part 2)

In quantum theory, if a measurement {Ea}a is stochastically reversible,
then it is also physically reversible and, hence, uninformative.

Proof.

1. The condition
∑

a(Ra ◦ Ea)(ρ) = ρ, applied to a complete set of states, gives∑
aRa ◦ Ea = id

2. Hence, using the Choi-Jamio lkowski isomorphism between channels and bipartite

states,
[
id⊗

∑
a(Ra ◦ Ea)

] (
|Φ̃〉〈Φ̃|

)
= |Φ̃〉〈Φ̃|

3. Since |Φ̃〉〈Φ̃| is pure, it must be that [id⊗ (Ra ◦ Ea)]
(
|Φ̃〉〈Φ̃|

)
∝ |Φ̃〉〈Φ̃|, ∀a

4. Equivalently, Ra ◦ Ea ∝ id, ∀a
5. Hence, the measurement {Ea}a is physically reversible

Remark. Notice how here we made use of the full structure provided by

quantum theory (e.g., complete positivity in point 2). Indeed, the above

theorem does not hold in classical probability theory.
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Some Comments

• The above theorems only describe a qualitative tradeoff:
measurements that are exactly reversible must be exactly
uninformative

• Since in practice nothing is “exact,” it is important to understand
how information and disturbance are related in general

• For example, can we prove something like “If a measurement is
almost reversible then it must be almost uninformative”? If yes,
with respect to what measure is “almost” defined?
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Quantum Disturbance and Quantum
Information Gain



How to Quantify Reversibility

Definition (Reversibility Index)

Given a measurement M = {Ea}a, we define its (isotropic)
reversibility index as

R(M) , max 〈Φ̃|

{[
id⊗

∑
a

(Ra ◦ Ea)

](
|Φ̃〉〈Φ̃|

)}
|Φ̃〉 ,

where the maximum is taken over all families of CPTP correction
operations {Ra}a.

Remark. The reversibility index is equal to the (square) fidelity between the maximally
entangled state and the Choi-Jamio lkowski state corresponding to

∑
a(Ra ◦ Ea).

Thus, it is equal to one if and only if the measurement is stochastically reversible.

Remark. The reversibility index R, if high, guarantees that any initial pure state can
be recovered, in average, with high accuracy: if {Ra}a are the operations achieving
the maximum in the definition,∫

dψ 〈ψ|
∑
a

(Ra ◦ Ea)(|ψ〉〈ψ|)|ψ〉 ≥ R(M) ,

where dψ is the uniform (Haar invariant) measure over pure states.
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How to Quantify Information

• Information is always about something: for example, an arbitrarily
chosen orthonormal basis (a “context”) {|vx〉}dx=1

• For such a choice, we compute the correlation (input/output joint
distribution) p(x, a) = d−1 Tr[Ea(|vx〉〈vx|)]

• Then, the mutual information I(X;A) = H(X) +H(A)−H(XA) is
a good measure of the average information that the outcome index
a contains about the input label x

However, in a quantum system, an infinite choice of bases is possible.
Hence, we are led to the following

Definition (Informational Power)

Given a measurement M = {Ea}a, we define its informational power
as

I(M) , max I(X;A) ,

where the maximum is taken over all choices of orthonormal bases∗

{|vx〉}x.

∗: this is somehow a simplification; the maximization should run over all ensembles, not only

orthonormal bases.
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Some Comments

Two problems with the present formulation:

• While the informational power is an information-theoretic measure
(defined in terms of Shannon entropies), the reversibility index is not
(it’s a fidelity)

• Both the informational power and the reversibility index involve a
difficult optimization problem

We address both problems in what follows.

14/31



Quantum Disturbance and Quantum Information Gain

Introducing a “reference” R, maximally entangled with Q, we have a tripartite
configuration as follows:

for σRQ′A =
∑

a p(a)σRQ′
a ⊗ |a〉〈a|A and p(a)σRQ′

a = (idR ⊗ EQa )(|Φ̃〉〈Φ̃|RQ)

Definition (Quantum Information Gain and Quantum Disturbance)

Given a measurement M = {Ea}a, we define its quantum information
gain as

ι(M) , I(R;A) = log d−
∑
a

p(a)S(σRa ) ,

and its quantum disturbance as

δ(M) , log d− [S(σQ
′A)− S(σRQ

′A)︸ ︷︷ ︸
IR→Q

′A
c (σRQ′A)

] .
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Why Such Names?

Why “quantum information gain”?

• Because

I(M) ≤ ι(M) ≤ f1(I(M)) , where lim
x→0

f1(x) = 0

• Moreover, ι(M) is the optimal compression rate in Winter’s
measurement compression protocol, and it is closely related with
Groenewold’s information gain (1971)

Why “quantum disturbance”? Because [Schumacher and Westmoreland,
QIP 2002; Junge et al, 2015]

− log2R(M) ≤ δ(M) ≤ f2(1−R(M)) , where lim
x→0

f2(x) = 0

Hence, the quantum information gain ι(M) and the quantum disturbance
δ(M) are equivalent to the informational power and the (ir)reversibility
index, respectively; however, they do not involve any optimization and
can be readily computed given the measurement {Ea}a.
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No (Large) Information Without (Large) Disturbance

Theorem (Global Tradeoff)

For any measurement M = {Ea}a, the information-disturbance tradeoff
relation

δ(M) ≥ ι(M)

holds.

Proof.

• Construct the “channelization” of the
measurement M(ρ) ,

∑
a Ea(ρ)⊗ |a〉〈a|A

• Its Stinespring-Kraus dilation V can be

written as |Φ̃〉 →
∑

a |Ψa〉RQ′E1 |a〉A|a〉E2 ,
where E = E1E2 is the environment

• Then, δ(M) = S(R)− S(Q′A) + S(RQ′A) =
S(R)− S(RE1E2) + S(E1E2) =
I(R;E1E2) = I(R;E1A) ≥ I(R;A) = ι(M)
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The General Balance of Information



The global tradeoff is not able to account for
the fact that it is possible to perfectly

discriminate orthogonal quantum states
without causing any disturbance.
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Some Clarifications

In the previous statement (global tradeoff), quantum disturbance and
quantum information gain have been introduced as “global” parameters
characterizing a given measurement apparatus.

For example, δ(M) > 0 simply means that there are some states that
will be disturbed by the measurement. Analogously, ι(M) > 0 simply
means that there are some states that will give rise to different outcome
probability distributions.

Now we want to be more specific, and define both information and
disturbance with respect to some restricted set of states, so to cover also
the case of classical (commuting) states, which we know can be
measured without disturbance.
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Information Calculus

• R is the “reference,” with respect to which “information” is about

• initially, the system Q carries I(R;Q) bits of information

• after the measurement, the combined quantum+classical output Q′A
carries I(R;Q′A) bits

• by the chain rule of mutual information, this amount is divided as
I(R;Q′A) = I(R;A) + I(R;Q′|A)

• here, I(R;A) is the information carried by the outcome, while I(R;Q′|A)
is the information left in the system

Global Balance of Information

I(R;Q)− I(R;Q′A)︸ ︷︷ ︸
net info-loss

= I(R;Q)− I(R;Q′|A)︸ ︷︷ ︸
system’s info-loss

− I(R;A)︸ ︷︷ ︸
info-gain
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Physical Interpretation

Global Balance of Information

I(R;Q)− I(R;Q′A)︸ ︷︷ ︸
net info-loss

= I(R;Q)− I(R;Q′|A)︸ ︷︷ ︸
system’s info-loss

− I(R;A)︸ ︷︷ ︸
info-gain

• information never increases: by the data-processing theorem, the net
loss is always non-negative, i.e., I(R;Q)− I(R;Q′A) ≥ 0

• the net informaton loss is an irreversibility parameter: as shown in
[Junge et al, 2015],

I(R;Q)− I(R;Q′A)

≥ − log2 sup
{Ra}a

F

{
ρRQ,

[
id⊗

∑
a

(RQ
′

a ◦ EQa )

]
(ρRQ)

}

• in general, it is the net information loss, and not the information
gain, to determine how much irreversible a measurement is
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Example: The Case of a Classical Reference

• before the measurement: ρXQ =
∑

x p(x)|x〉〈x|X ⊗ ρQx
• after the measurement: σXQ′A =

∑
x p(x)|x〉〈x|X ⊗ EQa (ρQx )⊗ |a〉〈a|A

• the general balance of information in this case becomes

I(X;Q)− I(X;Q′A)︸ ︷︷ ︸
net info-loss (disturbance)

= I(X;Q)− I(X;Q′|A)︸ ︷︷ ︸
system’s info-loss

− I(X;A)︸ ︷︷ ︸
info-gain

≥ 0

Example

Consider the fully classical situation where ρXQ =
∑

x p(x)|x〉〈x|X ⊗ |x〉〈x|Q.
Imagine a perfect measurement of x, i.e., Ex̄(•) = |x̄〉〈x̄| • |x̄〉〈x̄|. For such a
measurement, the information gain is maximal, i.e., I(X;A) = H(X), even
though the disturbance is zero!
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When Does Information Gain Imply Disturbance?

• When the initial state ρRQ is pure, the following inequality holds:

I(R;Q)− I(R;Q′|A)︸ ︷︷ ︸
system’s info-loss

≥ 2 I(R;A)︸ ︷︷ ︸
info-gain

• When the above equation holds, then we have the
information-disturbance tradeoff

I(R;Q)− I(R;Q′A)︸ ︷︷ ︸
net info-loss (disturbance)

≥ I(R;A)︸ ︷︷ ︸
info-gain

• if ρRQ is pure, hence, information gain necessarily requires
irreversibility; otherwise, this need not be true

Remark. When ρRQ is the maximally entangled state, the information gain

becomes the (global) quantum information gain ι(M) and the net information

loss becomes that (global) quantum disturbance δ(M).
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The Case of Pure States

As we saw, the information-disturbance tradeoff holds whenever

I(R;Q)− I(R;Q′|A)︸ ︷︷ ︸
system’s info-loss

≥ 2 I(R;A)︸ ︷︷ ︸
info-gain

,

which is true if the initial system+reference state is pure. How to
“visualize” this?

In a closed system (pure state) correlations between A and E must be

quantum correlations (entanglement). Not so if the system is open from the

start (mixed state). 23/31



An Interesting Byproduct

In proving the general tradeoff, we obtained a stronger data-processing
inequality for quantum measurements, valid when the entire
measurement {Ea}a, and not only the corresponding POVM, is known.

• simple data-processing inequality: I(R;Q) ≥ I(R;A)

• stronger form: I(R;Q)− I(R;Q′|A) ≥ I(R;A)

• strongest form: if RQ is in a pure state,
1
2 [I(R;Q)− I(R;Q′|A)] ≥ I(R;A)

In the case of a classical reference, we obtain a refined Holevo bound.

• simple Holevo bound: I(X;Q) ≥ I(X;A)

• stronger form: I(X;Q)− I(X;Q′|A) ≥ I(X;A)

• (no strongest form, because the initial state cannot be pure)

See also [Schumacher, Westmoreland, Wootters, PRL, 1996].
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Heisenberg’s Two-Observable Formulation



Heisenberg’s γ-ray microscope

Heisenberg in 1927 writes:

Let q1 be the precision with which the
value q is known (i.e., the mean error
of q), therefore here the wavelength of
the light. Let p1 be the precision with
which the value p is determinable; that
is, here, the discontinuous change of p
in the Compton effect (scattering).
Then,

p1q1 ∼ h ∼ 10−34 Js

Paraphrasing: the act of gathering information about the electron’s
position must cause an uncontrollable disturbance to the electron’s
momentum.

Remark. Notice that here the electron’s state is not explicitly
mentioned. Heisenberg’s formulation of disturbance is with respect two
“properties” (i.e., dynamical variables, observables, etc) of the electron.
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Modern Approaches to Heisenberg’s Problem

• It is well known now that Heisenberg’s relation σ(p)σ(q) ≥ ~
2 , and

its generalization due to Robertson σ(A)σ(B) ≥ 1
2 〈[A,B]〉, should

be interpreted as posing a constraint on the preparation of quantum
states, rather than a constraint on quantum measurements*

• To save Heisenberg’s original intuition, there are at present two main
approaches:

1. state-dependent approach (Ozawa)
2. state-independent approach (Busch, Lahti, and Werner)

• In what follows, we will see an information-theoretic formulation of
the state-independent approach

*The quantity σ(A) is defined as σ(A) =
√

Varψ(A) =
√
〈ψ|(A2 − 〈A〉2)|ψ〉. Hence, the

inequality σ(A)σ(B) ≥ 1
2 〈[A,B]〉 is usually interpreted as saying that it is impossible to prepare

a state |ψ〉 that is simultaneously sharp in both observables A and B, if 〈ψ|[A,B]|ψ〉 is not zero.

26/31



Heisenberg’s Two-Observable Problem

On a d-dimensional Hilbert space, consider two non-degenerate observables
X =

∑d
x=1 ξx|ψx〉〈ψx| and Z =

∑d
z=1 ζz|ϕz〉〈ϕz|.

Questions: given a measurement M = {Ea}a, how much information about X

is M able to extract? How much does M disturb observable Y ? How are such

quantities related?

X-Information (informal definition)

Imagine to input each eigenstate |ψx〉 of X in M, with uniform a priori
probability p(x) = 1

d . The information provided by M is measured by
how much the outcome index a is correlated with the input label x.

Y -Disturbance (informal definition)

Imagine to input each eigenstate |ϕz〉 of Z in M, with uniform a priori
probability p(z) = 1

d . The disturbance caused by M is measured by
how much irreversible the action of M is on the eigenstates of Z.

The above two definitions can be formalized using the concepts of information

gain and net information loss introduced before.
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Information about X: The X-Error

• having in mind the above setting, let us assume:
ρXQ = 1

d

∑d
x=1 |x〉〈x|

X ⊗ |ψx〉〈ψx|Q

• after the measurement we have:
σXQ′A = 1

d

∑d
x=1 |x〉〈x|

X ⊗ EQa (|ψx〉〈ψx|Q)⊗ |a〉〈a|A

Definition (X-Error)

The error that measurement M = {Ea}a does when used to measure
the observable X is defined as the difference between perfect
information, i.e., log d, and the information gain I(X;A), computed
with respect to σXQ′A above. In formula,

εX(M) , log d− ιX(M) = H(X|A) .
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Disturbance on Z: The Z-Disturbance

• let us now assume: ρZQ = 1
d

∑d
z=1 |z〉〈z|

Z ⊗ |ϕz〉〈ϕz|Q

• after the measurement we have:
σZQ′A = 1

d

∑d
z=1 |z〉〈z|

Z ⊗ EQa (|ϕz〉〈ϕz|Q)⊗ |a〉〈a|A

Definition (Z-Disturbance)

The disturbance that measurement M = {Ea}a causes on the
observable Z is defined as the net information loss

δZ(M) , I(Z;Q)− I(Z;Q′A) ,

computed with respect to σZQ′A above.
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The Error-Disturbance Tradeoff Relation

Theorem

For any pair of non-degenerate observables X =
∑
x ξx|ψx〉〈ψx| and

Z =
∑
z ζz|ϕz〉〈ϕz|, and for any measurement M = {Ea}a, we have

εX(M) + δZ(M) ≥ − log c ,

where c , maxx,z |〈ψx|ϕz〉|2.

• any measurement can be evaluated against two observables X and Z, even
measurements that have a number of outcomes different from d

• the bound becomes trivial, i.e., c = 1, if and only if X and Z have one common
eigenstate

• the proof of the relation above does not follow directly from any of the
information-disturbance tradeoff relations we showed before; formally, it is a
consequence of Maassen’s and Uffink’s entropic uncertainty relations, however,
the interpretation is very different

• the error εX(M) measures how correlated the outcome of the measurement is
with the eigenvalues of X; however, the actual numerical values of the
eigenvalues do not play any role here (contrarily to what happens with the
definitions involving variance-like measures)

• the disturbance δZ(M), as we saw before, is directly related with the possibility
of reversing (i.e., correcting) the action of M on the eigenstates of Z 30/31



We can learn about the present, but at the
cost of being unable to fully predict the

future: Laplace’s demon is defeated!
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