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The magic...

• M : message, X: input, Y : output

• we would expect that I(X;M) ≥ I(Y ;M), i.e., “no free lunches
in communication theory”

• what if we observe instead that I(X;M) < I(Y ;M)?
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...and the trick

the missing information was there all the time!
we couldn’t see it, but we knew...
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A lesson

When system and environment are initially correlated, we should not be
surprised if:

1. the reduced dynamics of the system violates the data-processing
inequality, or the second law, or behaves weird otherwise

2. the reduced dynamics of the system is not CP, or otherwise
undefined

Question to be addressed in this talk

How to characterize those initial conditions (possibly including
correlations) for which the reduced dynamics of the system are always
well defined?
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Formalization

• datum: initial set of possible system-ancilla (viz., environment)
states SQE = {ρQE : ρQE ∈ SQE}
• system’s state set: SQ = TrE [SQE ]

The Problem

To find conditions on SQE guaranteeing that,
for any joint isometric evolution V : QE → Q′E′,
there exists a corresponding CPTP map V : Q→ Q′ such that

V(TrE [ρQE ]) = TrE′ [V ρQEV
†] ,

for all ρQE ∈ SQE .

Remark. When the above property holds, we say that the set SQE is
CPTP-reducible.
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The conventional starting point

Existence of an “assignment map”

One requires that

ρQE 6= ρ′QE =⇒ TrE [ρQE ] 6= TrE [ρ′QE ] ,

that is, one requires the existence of a lifting (or assignment map)
Φ : SQ → SQE satisfying the consistency relation (TrE ◦Φ)[ρQ] = ρQ,
for all ρQ ∈ SQ.

Remark. Essentially, the above means that TrE : SQE → SQ is
one-to-one.

Example. Simple initial conditions like ρQE = ρ̄Q ⊗ ωE , for fixed ρ̄Q
and varying ωE , cannot be treated in this approach.
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An alternative idea

Existence of a “preparation”

We require that the set SQE be originated by a filtering/preparation
procedure. Mathematically speaking, we require the existence of an
input system X and of a CP (maybe not TP) map S : X → QE such
that, for any ρQE ∈ SQE , there exists at least one density operator
ρX such that

ρQE =
S(ρX)

Tr[S(ρX)]

Remark. All SQE which are polytopes, are preparable
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The meaning of preparability

• there exists a physical process that may or may not emit a
compound system-environment state
• if it emits one, we know that it did and that the emitted state

belongs to SQE , but we do not know which one
• for example, imagine of “freezing” a strongly coupled open system

dynamics at some arbitrary time, and add some filtering operation 7/15



Equivalent representation

The existence of a preparation is equivalent to the following:

Steerability

We require that there exists a tripartite density operator $RQE such
that, for any ρQE ∈ SQE , there exists an operator πR ≥ 0 such that

ρQE =
TrR[$RQE (πR ⊗ IQE)]

Tr[$RQE (πR ⊗ IQE)]
.

Example. For the set of states ρQE = ρ̄Q ⊗ ωE (where ρ̄Q is fixed and
ωE varies), there exists no assignment map; nonetheless it can be
steered from $RQE = Ψ+

RE ⊗ ρ̄Q.
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Consequences of this formulation

Characterization

Let the set SQE be preparable/steerable. The following are
equivalent:

1. the set SQE is CPTP-reducible

2. the set SQE is steerable from Markov state $RQE , i.e., such
that I(R;E|Q) = 0

Remark. Thanks to recent results on approximate reversibility, all the
above conditions are “robust” against small deviations.
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Example: initial factorization condition

This is the traditional “textbook” situation:

• SQE , {ρQ ⊗ ω̄E : for fixed ω̄E}
• $RQE = Ψ+

RQ ⊗ ω̄E
• I(R;E|Q)$ = 0

Remark. Pechukas (PRL, 1994) advocated for the need of going
beyond the factorization assumption.
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Example: zero-discord sets

This counterexample was found by Rodriguez-Rosario, Modi, Kuah,
Shaji, and Sudarshan in 2008:

• SQE ,
{
ρ
−→p
QE =

∑N
i=1 pi|i〉〈i|Q ⊗ ω̄

(i)
E : for varying −→p

}
• in this case, SQE is a polytope

• $RQE = N−1
∑N

i=1 |i〉〈i|R ⊗ |i〉〈i|Q ⊗ ω̄
(i)
E

• I(R;E|Q)$ = 0

Question. Are there other possibilities?
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Example: discordant sets

No! Shabani and Lidar (2009) published a proof, according to which
null discord would be, not only sufficient, but also necessary for
CPTP-reducibility.

Yes! The above was disproved by the following counterexample
(Brodutch, Datta, Modi, Rivas, Rodriguez-Rosario, 2013):

• SQE ,
{
ρpQE = pρ̄

(α)
QE + (1− p)ρ̄(β)QE

}
, where

ρ̄
(α)
QE = 1

2 |0〉〈0|Q ⊗ ω̄
(0)
E + 1

2 |+〉〈+|Q ⊗ ω̄
(1)
E and

ρ̄
(β)
QE = |2〉〈2|Q ⊗ ω̄(2)

E

• this is also a polytope

• $RQE = 1
2 |α〉〈α|R ⊗ ρ̄

(α)
QE + 1

2 |β〉〈β| ⊗ ρ̄
(β)
QE

• I(R;E|Q)$ = 0
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A negative example

• SQE , {ρ̄Q ⊗ ωE : for fixed ρ̄Q}
• an assignment map does not exists, because all elements of SQE

have the same reduced state on Q

• $RQE = Ψ+
RE ⊗ ρ̄Q

• I(R;E|Q)$ = 2 log d > 0

The above example is, in a sense, trivial; and yet, it is outside the
scope of the assignment map formalism.
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Further consequences

• all counterexamples to the factorization condition involve
separable states

• can we have CPTP-reducible sets containing entangled states?

• yes: starting from tripartite states with I(R;E|Q)$ = 0, it is easy
to construct a lot of counterexamples

• however, if we requires that SQ contains all possible density
operators on HQ, then the factorization condition is the only
one that works
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Conclusions

• existence of assignment maps replaced by preparability

• preparability is equivalent to steerability

• then, CPTP-reducibility is equivalent to the Markov condition
I(R;E|Q) = 0

• easy to check, easy to use to construct a lot of counterexamples,
and it recovers the factorization condition (if SQ contains all
possible pure states of Q)

• it is robust against small deviations

la fine
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