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An unknown device:

how can we infer anything about it?
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The Starting Point

• given is a set of data in the form p(j|i), where i ∈ [1,M ] labels the
setups (input) and j ∈ [1, N ] the outcomes (output) of an experiment

• given is also a hypothesis (prior information) about the structure of the
circuit that generated the data:

• Aim: to construct an inference, consistent with the hypothesis, about
the pieces composing the circuit that generated the dataset

• in the negative: if the dataset is incompatible with the hypothesis, the
hypothesis is falsified (like in a Bell test)

• in the positive: the hypothesis is “corroborated,” but also some
information about the device can be inferred (given an inference rule)

• case-study in this talk: measurement inference 1/14



Tomography VS Data-Driven Inference

Conventional tomography

• probe: input states

• inference target: measurement

• probe states known

Data-driven inference (this talk)

• probe: input states

• inference target: measurement

• probe states unknown

Motivation: to break (or at least to loosen) the circular argument on
which conventional tomography relies
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Wigner’s Other Chain

As Wigner put it:

[...] the experimentalist uses certain apparatus to measure
the position, let us say, or the momentum, or the angular mo-
mentum. Now, how does the experimentalist know that this
apparatus will measure for him the position? “Oh,” you say,
“he observed the apparatus. He looked at it.” Well that means
that he carried out a measurement on it. How did he know that
the apparatus with which he carried out that measurement will
tell him the properties of the apparatus? Fundamentally, this
is again a chain which has no beginning. And at the end we
have to say, “We learned that as children how to judge
what is around us.”

[E.P. Wigner, Lecture at the Conference on the Foundations of
Quantum Mechanics, Xavier University, Cincinnati, 1962.]
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Measurement Representation

• measurement: linear mapping M from state set S ⊂ R` to
probability distributions in RN

• assumption in this talk: measurements are informationally
complete (otherwise conditions become more technical)
• measurement range: M(S) , {p ∈ RN : p =M(ρ), ρ ∈ S}
• gauge symmetry: any transformation U such that U(S) = S
• Theorem: the range M(S) identifies M up to gauge symmetries
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Quiz

Figure 1: What do you see?
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Inferring a Range from the Dataset

• hypothesis: let us assume a theory (S,E)
• this tells us how measurement ranges look like
• Data-Driven Inference (DDI) Rule: in the face of data
D = {px ∈ RN}, infer the range which:

1. contains the convex hull of D and
2. is of minimum euclidean volume 6/14



Some Comments

• “minimum volume” in the affine variety spanned by D
• why volume? because in this way the inference does not change

under linear transformations (and these are all that matter for a
linear theory)

• why minimum? because we want to infer “as little as possible” in
the face of the data, that is, the least committal inference
consistent with the data

• the output of DDI may be not unique: the inference rule may
return a set of compatible minimum-volume ranges
• DDI may fail: for example, if the data are incompatible with the

hypothesis (S,E)
• Problem 1: in order to apply DDI, one first needs to know the

shape of S
• Problem 2: empirical data are not probability distributions but

finite-statistics frequencies
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When Is the Inference Correct?

• assume that there is a “true but unknown” measurement to be
inferred, and that the hypothesis about the underlying theory is
“correct”

• what data are needed so that DDI returns the correct range?

• denote by S ⊆ S the set of probe states {ρi : i ∈ [1,M ]} that are
used to generate the statistics (i.i.d. assumptions everywhere)

• Observational Completeness: S ⊆ S is observationally complete
for measurement M whenever DDI[M(S)] =M(S)
• the entire S is obviously observationally complete for any

measurement

• Question: are there less demanding OC sets?

• Theorem: S ⊆ S is observationally complete for any
measurement whenever DDI[S] = S
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The special case of spherical theories
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When S Is a Hypersphere...

• ...any measurement range is an ellipsoid
• hence, DDI returns the minimum-volume enclosing ellipsoid which

is efficiently computed and always unique for any dataset D
(John, 1948)
• in fact, hyperspherical theories are exactly those that allow a

unique inference for any dataset
• DDI may still return an ellipsoid which is not the range of a valid

measurement: in this case a failure is announced
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The Case of Qubits

• gauge symmetries are unitary and antiunitary transformations

• hence, DDI is able to return a qubit measurement up to unitaries
or antiunitaries

• moreover, a representative measurement can be explicitly
constructed for any range (closed formula)
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Observationally Complete Sets for Qubits

• a set S is OC iff MVVE(S) = S
• Fact: in any real dimension `, the minimum-volume ellipsoid

enclosing `+ 1 points is a hypersphere iff the points form a regular
simplex

• hence, SIC ensembles are OC
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Example: Observational VS Informational Completeness

Figure 2: A regular simplex is OC. Figure 3: An irregular simplex is not
OC.

In particular:

• a pure SIC ensemble is also OC

• a depolarized SIC ensemble still is IC and “symmetric” but is not
OC anymore
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Example: DDI in Action

• suppose the dataset comprises three probability distributions in

R4, that is D = {p1 = (12 , 0,
1
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8 )}
• suppose that, for the inference, we assume a theory with a

spherical state set: for example, a qubit

• DDI: the four effects are coplanar and arranged in a square
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Conclusions

• inference of quantum devices from classical data
• inference based on idea of self-consistent minimality
• observationally complete sets allow correct inference
• emergence of SIC qubit measurements as the minimal OC qubit

measurements
• are there finite minimal OC sets for all dimensions? would these

always be SIC?
• OC-ness does not need the Hilbert space structure
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