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Abstract—Nowadays, network coding has been a very suc-
cessful topic in information theory including many applications
such as wireless networks while one of the simplest benefits is
the efficient transmission in networks by allowing us to encode
the transmitted information at every intermediate node. Since
quantum information is much more expensive for communication
than classical information, it was natural that this benefit made
quantum researchers motivate the study of “quantum network
coding.” This paper reports the current status of quantum
network coding. At present, quantum network coding mostly
means sending quantum information (rather than classical in-
formation) in a quantum network. Since quantum information
cannot be cloned (the quantum no-cloning theorem), multiple
unicast networks have been well-studied (in several settings).
We present some of the known possibilities and limitations, and
future works of quantum network coding, focusing on multiple
unicast networks.

I. I NTRODUCTION

So far, many applications on communication systems have
been proposed using quantum information. For instance, the
Bennett-Brassard quantum key distribution system (BB84) [3]
provides us an information-theoretically secure key distri-
bution system, which is impossible by using only classical
information. The study of quantum communication systems
have been also extended from point-to-point communication
channels to networks. On the contrary, sending quantum
information faithfully in those systems is basically not so easy
since it is quite weak for interactions with an environment
system. Therefore, for physically implementing those systems,
it is very important to reduce the amount of quantum commu-
nication as less as possible.

For this purpose, it is a natural consideration to apply the
idea of network coding [1] to quantum networks. The study of
quantum network coding was initiated by Hayashi et al. [12]
for the butterfly network (Fig. 1), a typical example to illustrate
the power of network coding, where source nodess1 and s2
want to send their quantum states to their corresponding target
nodest1 andt2, respectively, where the capacity of each edge
is one. A reason why this network was chosen as the starting
point of the study was that it is a multiple unicast network. In
the theory of network coding, multicast networks were rather
well-studied in the early stage [1], [22], [15], while in the
quantum setting, the no-cloning theorem [27] prohibits us from
multicasting a quantum state.
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Fig. 1. Butterfly network

In this paper, we give a short survey on the known results
of quantum network coding, mainly focusing on the multiple
unicast networks. Section II provides a number of basics on
quantum information for reading the later sections. In Section
III, we report the results on quantum network coding in the
most basic setting where we can send a single qubit for each
edge in the underlying networks. Sections IV and V include
the studies for the case where additional resources such as
classical communication or entanglement are available with
the underlying quantum network. In Section VI, we mention
the results on the multicast networks. Finally, we give a
concluding remark in Section VII.

II. BASICS ONQUANTUM INFORMATION

We review a minimum of notations and facts on quantum
information. For more details, see standard textbooks such as
Nielsen and Chuang [23].

Quantum states. Mathematically, a quantum system is
represented by a complex Hilbert space, and a (pure) quantum
state on the system is represented by a unit vector in the Hilbert
space. In particular, a quantum bit (calledqubit) is a unit vector
|ψ⟩ = a|0⟩ + b|1⟩ in the 2-dimensional spaceH2 spanned
by the orthonormal basis|0⟩ and |1⟩ (which correspond to
classical bits0 and1, respectively). Then, anm-qubit state is
a unit vector in the spaceH⊗n

2 (them tensor products ofH2).



For instance,

|Φ+⟩ = 1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

is a2-qubit state. Note that|Φ+⟩ cannot be written as a tensor
product of1-qubit states on the first and second subsystems,
that is, as a vector in the form of(a|0⟩ + b|1⟩) ⊗ (c|0⟩ +
d|1⟩). We say that such a state isentangledbetween the two
subsystems. In particular,|Φ+⟩ is called anEPR (Einstein-
Podolsky-Rosen) pair, which is a very useful entangled state
for quantum information processing, as seen below.

One of the measures for closeness between two quantum
states|ψ⟩ and |ϕ⟩ is the fidelity, which is defined to be the
absolute value of their inner product. Note that if the fidelity
is one, then|ψ⟩ and |ϕ⟩ represent the same state.

Quantum operation. A quantum operation is represented
by a mapM that transforms an input state|ψ⟩ to an output
stateM(|ψ⟩), which may be generally a probability distribu-
tion of quantum states (called a mixed state). Operationally,
any quantum operation can be represented by the following
three steps: (i) Add an additional system that is prepared to
a fixed state like|0⟩; (ii) Apply a unitary transformation on
the composite system consisting of the input system and the
additional system; (iii) Take a part (or the whole) of the total
system as the output. The no-cloning theorem [27] says that for
any d-dimensional spaceHd with d ≥ 2, there is no quantum
operation that maps any state|ψ⟩ in Hd to |ψ⟩ ⊗ |ψ⟩.

In general, anm-qubit (noisy) channel is a quantum opera-
tion that transformsm-qubit states to anotherm-qubit (mixed)
states, while this paper considers only the trivial channel with
unit capacity, that is, the channel outputting an input single-
qubit state without any change (in other words, we consider
only noiseless quantum channels).

Quantum teleportation and dense coding.The quantum
teleportation [4] and (super-)dense coding [5] are standard
communication protocols in quantum information processing.
In both protocols, we assume that a partyA and another party
B share an EPR pair|Φ+⟩ (that is,A has the first subsystem
of |Φ+⟩ andB has the second subsystem). Then, thequantum
teleportation is a quantum operation that can send a single
qubit state|ψ⟩, which is in a system different from|Φ+⟩,
owned byA (who does not know what the state is) intoB
by sending two classical bits fromA to B (and then the
EPR pair is consumed). This means that we can substitute
sending two bits and sharing one EPR pair (between the sender
and the receiver) for sending one qubit. In a complementary
style, dense codingis a quantum operation that can send
two classical bits by sending only one qubit (and the shared
EPR pair is also consumed). This means that dense coding
substitutes sending one qubit and sharing one EPR pair for
sending two bits.

III. R ESULTS ONBASIC SETTING

Now we provide a basic setting of quantum network cod-
ing in a multiple unicast network, which was introduced
in Ref. [12]. A (multiple unicast) quantum networkN is

represented by a directed acyclic graph with source nodes
s1, . . . , sk and target nodest1, . . . , tk, where every edge of
N represents a quantum channel with unit capacity. Each
source nodesi has a single-qubit state|ψi⟩. We are allowed
to apply any quantum operation at every nodev: whenv has
l incoming edges andm outgoing edges, it can apply any
quantum operationMv that maps anl-qubit state coming from
the l incoming edges into anm-qubit state, which is sent to
them outgoing edges. We say thatN is quantumly solvable
with fidelityF if there is a choice of quantum operationsMv

(called a solution) such that every|ψi⟩ can be sent fromsi to
ti with fidelity at leastF (where the fidelity between|ψi⟩ and
the mixed state atti is the average of the fidelities between
|ψi⟩ and pure states in the mixed state). In particular, when
F = 1, it is simply called quantumly solvable. This can be
regarded as a natural quantum analogue of the corresponding
classical multiple unicast network where the channels, sources,
and operations at every node are all classical.

As is well-known, the butterfly network is classically solv-
able, which is illustrated in Fig. 2. A natural idea for giving
a solution in the quantum setting is to simulate the classical
solution, while we find immediately that there are nontrivial
points for doing that. The first point is in the operations at
the source nodess1, s2 and nodet0, which duplicate the
information. As mentioned already, the no-cloning theorem
exists in the quantum world, which makes it impossible to
follow the same strategy. The second point is in the operations
at nodess0, t1, t2, which take the XOR of the two incoming
bits. For this point, it is difficult even to imagine a quantum
analogue of this operation properly. Intuitively, a qubit state
a|0⟩ + b|1⟩ is a continuous object (a, b can take any values
satisfying |a|2 + |b|2 = 1), and hence it may seem to be
the liquid flow rather than the information flow. However,
converting this intuition into an impossibility proof is not so
easy since it is allowed to apply any quantum operation at
six nodes, which may induce entanglement among the nodes
and then the analysis becomes quite hard. Hayashi et al. [12]
considered a special case where the source at nodes2 is a
classical bit in order to make the analysis mild, and showed
that even for this case, the butterfly network is not quantumly
solvable with fidelity0.983, using a geometric view of qubits
(called the Bloch ball [23]).

The above basic setting by Ref. [12] is the so-called one-
shot, that is, one qubit at each source node must be sent to
the corresponding target node by a single use of the network.
Leung, Oppenheim and Winter [20] extended this setting to the
following asymptotic version. We say that arate (r1, . . . , rk)
is achievable in a quantum networkN if there is a choice of
quantum operations such that byn uses ofN , eachsi can send
n(ri − δn) qubits toti with fidelity 1− ϵn, whereδn, ϵn → 0
asn → ∞. In this asymptotic setting, Ref. [20] investigated
inner and outer bounds of the rates in several simple networks.
In the butterfly network, it was proven that the rate region
was bounded byr1 + r2 ≤ 1, which is trivially achievable by
routing. In their proof, any protocol on the butterfly network
was reduced to a quantum secret sharing protocol [8] where the
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Fig. 2. Solution for the butterfly network

quantum secret is the two source qubits. Then, they gave the
above outer bound by applying a lower bound on the quantum
secret sharing [9], [14]. After the first version of Ref. [20],
Hayashi [11] also proved a similar impossibility result without
reducing to the quantum secret sharing by using information-
theoretic arguments more directly. He also improved the upper
bound of the fidelity for the one-shot case in Ref. [12] to0.951.

One may expect from the negative results for the butterfly
network that the optimal rates in all quantum networks are
achievable by routing. However, Jain, Franceschetti and Meyer
[16] observed that there exists a quantum network such that
the achievable rate by network coding isk times the rate by
routing (wherek is the number of source-target pairs). This
example was constructed based on the classical example in
Ref. [10] by using quantum teleportation and dense coding,
which allow us to take advantage of directed edges that are
trivially useless by any routing protocol.

IV. W ITH FREE CLASSICAL COMMUNICATION

In this section, we give an overview of the studies for the
case where classical communication is available in addition to
the basic quantum networks. This setting can be considered as
the second-best when quantum network coding is impossible
in the basic setting since the cost of classical communication
is much cheaper than that of quantum communication.

A. Free Two-way Classical Communication

First, we consider the case where classical communication
is freely available between any two nodes (which is equivalent
to the case where it is only allowed between neighboring nodes
of the underlying graph as long as the graph is connected). In
this case, Leung et al. [20] made an important observation:the
underlying quantum network becomes undirected.In fact, we
can send a qubit in the reverse direction of each directed edge
by first preparing an EPR pair using the directed quantum
channel corresponding to the edge, and then by applying
quantum teleportation using two free classical bits and the
EPR pair. For the butterfly network, this enables us to send
two qubits froms1 to t1 by a single use of the network, and
two qubits froms2 to t2 by another single use. Thus, the rate

(r1, r2) = (x, 2 − x) (where0 ≤ x ≤ 2) becomes achievable
by time sharing (and this is shown to be optimal by a simple
min-cut argument).

On the contrary, Kobayashi et al. [17], [19] showed the
following relation between classical and quantum network
coding in general multiple unicast networks.

Theorem 1. If the rate (r1, . . . , rk) is achievable in a clas-
sical network, then the same rate is also achievable in the
corresponding quantum network under free classical commu-
nication.

To show this, they constructed a quantum protocol which,
given a classical protocol, simulates faithfully the operations
in this classical protocol at each node (recall that such a
simulation is impossible without free classical communication,
as described in Section III). Thus, if the classical protocol is
done in the one-shot setting, their quantum protocol can be
also done in the one-shot setting.

We notice that the converse of Theorem 1 is trivially false
when the classical network is directed since the quantum net-
work becomes undirected due to free classical communication.
For instance, the graph consisting of only one directed edge
(s1, t1) is a simple counter-example. However, if the classical
network is undirected, it is open to show whether the converse
holds or not. (This question might be difficult since the power
of classical network coding in the undirected case has not yet
been well understood [21].)

B. Free One-way Classical Communication

Leung et al. [20] studied the case where classical commu-
nication is freely available according to the directed edges
of the underlying graph. In this case, we cannot reverse
the edges at will. But we can increase the rates in some
networks, compared to the case of no additional resources.
For instance, the rate(r1, r2) = (0.5, 1) is achievable in the
butterfly network as follows: (i)s1 sends the two subsystems
of an EPR pair tos0 and t2, respectively. (ii)s2 sendss0
a source qubit, ands0 teleports it tot2 using the EPR pair
and free two bits (which can be sent via the directed path
s0 → t0 → t2). (iii) s1 and s2 send their qubits by routing.
This protocol uses the network twice while one qubit is sent
from s1 to t1, and two qubits are sent froms2 to t2. A
similar protocol with time-sharing achieves the rate region
{(r1, r2) | r1, r2 ≤ 1, r1 + r2 ≤ 1.5}, which was proven
to be optimal.

Moreover, they also studied the case where classical com-
munication is available in the reverse direction to the edges in
quantum networks.

V. W ITH FREE ENTANGLEMENT

This section deals with the case where entanglement is
allowed as additional resources. While entanglement is not
cheaper than classical communication, there is an advantage
that we can prepare it offline, that is, at any time. This type of
studies is also motivated by the quantum information-theoretic
significance that investigates the power of entanglement in
quantum networks.



A. Entanglement between Any Two Nodes

In this case, any two nodes in a quantum network share any
entangled state at will. Leung et al. [20] observed two facts
that can be immediately obtained from quantum teleportation
and dense coding. The first fact is the exact relation between
the amounts of quantum and classical communication that can
be sent on a quantum network.

Proposition 1. Under free entanglement, the achievable rate
for “quantum communication” in a quantum network is ex-
actly half of that for “classical communication” in the same
network.

Proof. First, we assume that a rate(r1, . . . , rk) for quantum
communication is achievable in a quantum networkN . This
means thatn(ri − δn) qubits can be sent between any pair
(si, ti) by n uses ofN . Noting that they can use shared EPR
pairs from their free entanglement,2n(ri − δn) bits can be
sent between them byn uses ofN by virtue of dense coding.

Conversely, assume that a rate(r1, . . . , rk) for classical
communication is achievable. This implies thatn(ri−δn) bits
can be sent between any pair(si, ti) by n uses ofN . Then,
1
2n(ri−δn) qubits can be sent between them using their shard
EPR pairs by virtue of quantum teleportation.

Leung et al. gave the exact rate region{(r1, r2) | r1, r2 ≤
2} for classical communication in the butterfly network. By
Proposition 1, this implies that the rate region for quantum
communication is{(r1, r2) | r1, r2 ≤ 1}.

The second fact is a relation between the amount of quantum
communication on a quantum network and the amount of clas-
sical communication on the corresponding classical network.

Proposition 2. The achievable rate for quantum communi-
cation in a quantum network under free entanglement is at
least that for classical communication in the corresponding
classical network.

Proof. Assuming that a rate(r1, . . . , rk) for classical com-
munication is achievable, this implies thatn(ri − δn) bits can
be sent between any pair(si, ti) by n uses of the classical
network. Noting that any pair(si, ti) shares EPR pairs in the
quantum case, it suffices to send2n(ri−δn) bits fromsi to ti
for applying quantum teleportation. In fact, we can do that by
applying dense coding using an EPR pair between each two
neighboring nodes and one qubit which is allowed to send by
the edge connecting the two nodes.

In Ref. [20], the converse of Proposition 2 was conjectured
(for instance, the converse holds in the butterfly network),
but it still remains an interesting open question. If the con-
jecture is true, it implies that by Proposition 1, the rates for
classical communication in quantum networks (even with free
entanglement) is at most twice as much as those in classical
networks, which extends the known results for point-to-point
communication channels [13], [7] to networks.

B. Entanglement between Neighboring Nodes

In this case, any two neighboring nodes are allowed to share
entanglement. In fact, the Hayashi’s impossibility proof [11]
mentioned in Section III implies that the achievable rate region
in the butterfly network is also the same as that for the case
of no additional resources.

Recently, motivated by quantum repeater networks [6],
Satoh, Le Gall and Imai [24] studied the setting where any
two neighboring nodes share EPR pairs and free classical
communication is allowed, but no quantum communication
is available and any extra qubits other than receiving qubits
are not allowed to use at each node (which make the physical
implementation easier). In this setting, they gave a protocol
for the butterfly network that can send two source qubits
simultaneously by a single use of the network.

C. Entanglement between Source Nodes

In this case, any source nodes are allowed to share en-
tanglement. Unfortunately, for even the butterfly network, the
exact rate region remains open (as far as the author knows).
Hayashi [11] introduced a bit flexible setting where each
edge can choose sending one qubit or two bits. (This was
motivated by the equivalence between one qubit and two
bits under shared entanglement via quantum teleportation and
dense coding.) Then, he showed that two source qubits can
be sent simultaneously by a single use of the network. This
possibility result can be regarded as swapping two source
qubits on the butterfly network. Under this viewpoint, Soeda et
al. [26] investigated which two-qubit operations can be done
on the butterfly network (it can be regarded as a quantum
analogue of the study of network computing [2]).

VI. RESULTS ONMULTICAST NETWORKS

As said before, by the no-cloning theorem, we cannot follow
many beautiful results on classical network coding for the
multicast networks in a direct analogue. However, there are
several works by restricting quantum sources or changing the
task. Shi and Soljanin [25] considered the situation that each
source nodesi hask copies of a state,|ψi⟩⊗k, and wants to
send one copy|ψi⟩ to each ofk target nodes, and constructed
a protocol for sending them simultaneously using lossless
quantum compression of the copies. Kobayashi et al. [18], [19]
considered the task that shares the so-called (Schrödinger’s)
cat state 1√

2
(|0⟩⊗(k+1)+ |1⟩⊗(k+1)) (which is a generalization

of the EPR pair) among each of sources andk target nodes,
and constructed an efficient quantum protocol for this task,
based on the corresponding classical multicasting protocol.

VII. C ONCLUDING REMARKS

We summarize the achievable rate region in the butterfly
network for quantum communication in Table I, where N,
C1, C2, E1, and E2 represent the basic settings with no
additional resources, with free classical communication among
any nodes, with free classical communication according to
the directed edges, with free entanglement among any two
nodes, and with free entanglement between neighboring nodes,



N {(r1, r2) | r1 + r2 ≤ 1}
C1 {(r1, r2) | r1 + r2 ≤ 2}
C2 {(r1, r2) | r1, r2 ≤ 1, r1 + r2 ≤ 1.5}
E1 {(r1, r2) | r1, r2 ≤ 1}
E2 {(r1, r2) | r1 + r2 ≤ 1}

TABLE I

respectively. The study of quantum network coding has not yet
been much developed. In particular, there are very few results
on general networks for several difficulties, for example, ana-
lyzing possible entanglement among the nodes in the networks
to show the outer bound. We hope that further new techniques
and results on quantum network coding for general graphs
would appear in the near future.
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