NOTES ON $\forall \exists !$ -CONSERVATION

TAKAYUKI KIHARA AND WEI WANG

ABSTRACT. Some $\forall \exists$!-conservation results.

Definition 0.1. A theory Γ is *AEU-conservative* over another theory Λ if and only if

$$\Gamma + \Lambda \vdash \psi \Leftrightarrow \Lambda \vdash \psi$$

for every Π_2^1 -sentence ψ of the form $\forall X \exists ! Y \varphi$ where φ is arithmetic.

The general approach to obtain AEU-conservation is as following: given any (countable) model $\mathcal{M} = (\mathcal{M}, \mathcal{S}_0) \models \Lambda$, build $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$ such that $\mathcal{S}_0 =$ $S_1 \cap S_2, S_1 \cup S_2 \subseteq S_3$ and $(M, S_i) \models \Gamma + \Lambda$ for $1 \le i \le 3$.

1. COH IS AEU-CONSERVATIVE OVER RCA₀

Theorem 1.1. COH is AEU-conservative over RCA_0 .

Proof. Fix a countable $\mathcal{M} = (M, \mathcal{S}_0) \models \text{RCA}_0$.

By Mathias forcing, it is easy to construct an *M*-infinite G_0 such that $\mathcal{M}[G_0] \models \operatorname{RCA}_0$ and G_0 is \mathcal{M} -cohesive, i.e., for every $X \in \mathcal{S}_0$ either $G_0 - X$ or $G_0 - (M - X)$ is *M*-finite.

Suppose that we have constructed G_i for i < 2k + 1 such that

- $\mathcal{M}[\bigoplus_{i < 2k+1} G_i] \models \operatorname{RCA}_0,$ $G_{2j} (G_{2j+1})$ is cohesive over $\mathcal{M}[\bigoplus_{j' < j} G_{2j'}] (\mathcal{M}[\bigoplus_{j' < j} G_{2j'+1}]),$ $\mathcal{M}[\bigoplus_{j < k+1} G_{2j}] \cap \mathcal{M}[\bigoplus_{j < k} G_{2j+1}] = \mathcal{M}.$

We construct G_{2k+1} by constructing a sequence of Mathias conditions $((\sigma_n, X_n) : n \in \omega)$ such that

- (1) $\sigma_n \in M$ and $X_n \in \mathcal{M}[\bigoplus_{j < k} G_{2j+1}],$
- (2) $\sigma_n \subset \sigma_{n+1}$ and $(\sigma_{n+1}, X_{n+1}) \leq_M (\sigma_n, X_n)$,
- (3) for each $X \in \mathcal{M}[\bigoplus_{j \le k} G_{2j+1}]$ there exists n such that either $X_n \subset X$ or $X_n \subset M - X$,
- (4) for each $e \in M$ there exists n such that either $\Phi_e(\bigoplus_{j < k+1} G_{2j}) \neq 0$ $\Phi_e(\bigoplus_{j < k} G_{2j+1} \oplus \sigma_n)$ or $\Phi_e(\bigoplus_{j < k} G_{2j+1} \oplus G) \leq_T \bigoplus_{j < k} G_{2j+1}$ for every G satisfying (σ_n, X_n) ,
- (5) for each Σ_1 formula $\varphi(x)$ there exists n such that

$$\mathcal{M}[\bigoplus_{i<2k+1}G_i]\models (\sigma_n,X_n)\Vdash I\varphi.$$

(1) is automatic. (2) and (3) are easy. (4) can be obtained by splitting. (5) can be done as the proof that COH is Π_1^1 -conservative over RCA₀, because that $\mathcal{M}[\bigoplus_{i < 2k+1} G_i] \models \operatorname{RCA}_0$.

As soon as we have G_{2k+1} , we can construct G_{2k+2} with similar properties. Eventually we have a sequence $(G_n : n \in \omega)$ such that

- $\mathcal{M}[G_0, G_1, \ldots, G_n, \ldots] \models \operatorname{RCA}_0,$
- G_{2k} (G_{2k+1}) is cohesive over $\mathcal{M}[\bigoplus_{j < k} G_{2j}]$ ($\mathcal{M}[\bigoplus_{j < k} G_{2j+1}]$), $\mathcal{M}[G_0, G_2, \dots, G_{2k}, \dots] \cap \mathcal{M}[G_1, G_3, \dots, G_{2k+1}, \dots] = \mathcal{M}.$

By the proof that COH is Π^1_1 -conservative over RCA₀, there exists (M, \mathcal{S}) such that $\mathcal{M}[G_0, G_1, \ldots, G_n, \ldots] \subseteq (M, \mathcal{S}) \models \text{COH}.$