
Searching for an analogue of ATR0

in the Weihrauch lattice

Takayuki Kihara
Department of Mathematical Informatics

Nagoya University, Nagoya, Japan

kihara@i.nagoya-u.ac.jp

Alberto Marcone
Dipartimento di Scienze Matematiche, Informatiche e Fisiche
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There are close similarities between the Weihrauch lattice and the zoo of axiom systems in
reverse mathematics. Following these similarities has often allowed researchers to translate
results from one setting to the other. However, amongst the big five axiom systems from
reverse mathematics, so far ATR0 has no identified counterpart in the Weihrauch degrees.
We explore and evaluate several candidates, and conclude that the situation is complicated.

1 Introduction

Reverse mathematics [41] is a program to find the sufficient and necessary axioms to prove
theorems of mathematics (that can be formalized in second-order arithmetic). For this, a base
system (RCA0) is fixed, and then equivalences between theorems and certain benchmark axioms
are proven. Sometimes, a careful reading of the original proof of the theorem reveals which of
the benchmark axioms are used, and the main challenge is to show that the theorem indeed
implies those axioms (hence the name reverse mathematics). A vast number of theorems turned
out to be equivalent to one of only five systems: RCA0, WKL0, ACA0, ATR0 and Π1

1-CA0.
While recently attention has shifted to theorems not equivalent to one of the big five, the big
five still occupy a central role in the endeavour.

Computational metamathematics in the Weihrauch lattice starts with the observation that
many theorems in analysis and other areas of mathematics have Π2-gestalt, i.e. are of the form
∀x ∈ X(Q(x) → ∃y ∈ Y P (x, y)), and can hence be seen as computational tasks: Given
some x ∈ X satisfying Q(x), find a suitable witness y ∈ Y. This task can also be viewed
as a multivalued partial function f :⊆ X ⇒ Y, and thus the precise definition of Weihrauch
reducibility (given in §2.2 below) deals with this kind of objects. Often, the task cannot be
solved algorithmically (equivalently, the multivalued function is not computable). The research
programme (as formulated by Gherardi and Marcone [20], Pauly [34, 36] and in particular
Brattka and Gherardi [7, 6]) is to compare the degree of impossibility as follows: Assume we
had a black box to solve the task for Theorem B. Can we solve the task for Theorem A using
the black box exactly once? If so, then A ≤W B, A is Weihrauch reducible to B.
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As provability in RCA0 is closely linked to computability, it is maybe not that surprising
that very often, classification in reverse math can be translated easily into Weihrauch reduc-
tions1. While there are a number of obstacles for precise correspondence (see [23] for a detailed
discussion), the resource-sensitivity of Weihrauch reductions might be the most obvious one: A
proof in reverse mathematics can use a principle multiple times, a Weihrauch reduction uses its
black box once. This obstacle does not apply to RCA0 or WKL0 classifications.

The analogue of RCA0 are the computable principles, the analogue of WKL0 is C2N (closed
choice on Cantor space), and the analogue of ACA0 is lim or finite iterations thereof. Theorems
equivalent to Π1

1-CA0 have not yet been studied in the Weihrauch lattice, but an obvious
analogue of Π1

1-CA0 is readily defined as the function which maps a countable sequence of
trees to the characteristic function of the set of indices corresponding to well-founded trees.
This leaves ATR0 out of the big five, leading Marcone to initiate the search for an analogue in
the Weihrauch lattice at a Dagstuhl meeting on Weihrauch reducibility [13].

Two candidates have been put forth as potential answers, UCNN and CNN (unique choice
and closed choice on Baire space). We will examine some evidence for both of them, and show
that the question is not as easily answered as those for other big five. Our main focus is on
three particular theorems equivalent to ATR0 in reverse mathematics: Comparability of well
orderings, open determinacy on Baire space2 and the perfect tree theorem.

Theorem (Comparability of well orderings). If X and Y are well orderings over N, then |X| ≤
|Y | or |Y | ≤ |X|.
Theorem (Open determinacy). Consider a two-player infinite sequential game with moves from
N. Let the first player have an open winning set. Then one player has a winning strategy.

Theorem (Perfect Tree Theorem). If T ⊆ N<ω is a tree, then either [T ] is countable or T has
a perfect subtree.

Structure of the paper In Section 2 we recall the prerequisite notions about Weihrauch
reducibility. While reverse mathematics serves as the motivation for this paper, its results are
not invoked in our proofs, hence we do not expand on this area. In Section 3 we recall two
Weihrauch degrees of central importance, unique choice UCNN and closed choice CNN on Baire
space. We then prove some equivalences to those for variants of comprehension and separation
principles. In Section 4, we re-examine the strength of a separation principle, which is shown to
be equivalent to Σ1

1-WKL, weak König’s lemma for Σ1
1-trees (Theorem 4.3). The comparability

of well orderings is studied in Section 5. We see two variants, one of which we prove to be
equivalent to UCNN (Theorem 5.5) whereas the other resists full classification (Question 5.8).

Open determinacy and the perfect tree theorem are investigated in Sections 6 and 7. Both
principles are formulated as disjunctions, and the versions where we know in which case we are
are proven to be equivalent to UCNN or CNN in Section 6. The results about open determinacy
can be seen as uniform versions of the study of the complexity of winning strategies in [2]. If no
case is fixed, we arrive at Weihrauch degrees not previously studied. Some of their properties
are exhibited in Section 7. Since the degrees studied in Section 7 are not very well behaved,
we introduce the canonical principle TCNN , the total continuation of closed choice in Section
8. We prove that up to finite parallelization, it is equivalent to the two-sided versions of open

1The reverse direction would also be possible, but as reverse mathematics is the older field, occurs seldom in
practice.

2The version for Cantor space has been studied in the Weihrauch degrees by Le Roux and Pauly [29].
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determinacy and the perfect tree theorem, and show some additional properties of the degree.
Some concluding remarks and open questions are found in Section 9.

The following illustrates the strength of key benchmark principles in this article:

UCNN <W Σ1
1-WKL <W CNN <W TCNN <W T̂CNN <W Π1

1-CA.

2 Background on represented spaces and Weihrauch degrees

For background on the theory of represented spaces we refer to [38], for an introduction to and
survey of Weihrauch reducibility we point the reader to [12].

2.1 Represented spaces

Definition 2.1. A represented space X is a set X together with a partial surjection δX :⊆
NN → X.

A partial function F :⊆ NN → NN is called a realizer of a function f :⊆ X → Y between
represented spaces, if f(δX(p)) = δY(F (p)) holds for all p ∈ dom(f ◦ δX). We denote F being
an realizer of f by F ` f . We then call f :⊆ X → Y computable (respectively continuous), iff
it has a computable (respectively continuous) realizer.

Represented spaces can adequately model most spaces of interest in everyday mathematics.
For our purposes, we only need a few specific spaces that we discuss in the following, as well as
some constructions of hyperspaces.

The category of represented spaces and continuous functions is cartesian-closed, by virtue
of the UTM-theorem. Thus, for any two represented spaces X, Y we have a represented spaces
C(X,Y) of continuous functions from X to Y. The expected operations involving C(X,Y)
(evaluation, composition, (un)currying) are all computable. Using the Sierpiński space S with
underlying set {>,⊥} and representation δS : NN → {>,⊥} defined via δS(⊥)−1 = {0ω}, we
can then define the represented space O(X) of open subsets of X by identifying a subset of X
with its (continuous) characteristic function into S. Since countable or and binary and on S are
computable, so are countable union and binary intersection of open sets. The space A(X) of
closed subsets is obtained by taking formal complements, i.e. the names for A ∈ A(X) are the
same as the names of X \A ∈ O(X) (i.e. we are using the negative information representation).

We indicate with Tr the represented space of trees on N represented in an obvious way. The
computable map [ ] : Tr→ A(NN) maps a tree to its set of infinite paths, and has a computable
multivalued inverse. In other words, one can compute a code of a tree T from a code of a closed
set [T ], and vice versa.

Given a represented space X and k ∈ N, using Borel codes, the collections Σ0
k(X) (respec-

tively Π0
k(X)) of Σ0

k (respectively Π0
k) subsets of X can be naturally viewed as a represented

space, cf. [3, 21, 37]. Equivalently, we can use the jumps of S to characterize these spaces. We
find that A and Π0

1 (respectively O and Σ0
1) are identical.

The collection Σ1
1(X) of analytic subsets of X can also be represented in a straightforward

manner: p is a name of a Σ1
1 set S ⊆ X iff p is a name of a closed set P ⊆ NN ×X such that

S = {x ∈ X : (∃g) (g, x) ∈ P}. Equivalently ([39, Proposition 35]), we can define the space SΣ1
1

by letting it have the underlying set {>,⊥}, and letting p ∈ NN be a name for > iff the tree on N
coded by p is ill-founded; and then identify Σ1

1(X) with C(X, SΣ1
1
). Again, the collection Π1

1(X)
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of coanalytic subsets of X is represented in an obvious way by taking formal complements. We
define the space SΠ1

1
with underlying set {>,⊥}, so that p ∈ NN is a name for > iff the tree on

N coded by p is well-founded.

We first check that basic operations on these represented spaces are well-behaved.

Lemma 2.2. The following operations are computable:

1.
∨
,
∧

: SN
Σ1

1
→ SΣ1

1

2. ∃ : Σ1
1(X)→ SΣ1

1
, mapping non-empty sets to > and the empty set to ⊥.

3. id,¬ : S→ SΣ1
1

Proof. 1. For
∨

, we need to show that given a sequence of trees we can compute a tree that
is ill-founded iff one of the contributing trees is. This can be done by simply joining them
at the root. For

∧
, we need a tree that is ill-founded iff all them are. For that, we can

take the product of the trees (e.g. as in [33]).

2. From f ∈ C(NN, SΣ1
1
) we can compute by type-conversion some g : NN×NN → S such that

f(p) = > iff ∃q ∈ NN g(p, q) = ⊥. But then ∃p ∈ NN f(p) = > ⇔ ∃〈p, q〉 ∈ NN g(p, q) = ⊥,
and we are done.

3. For ¬ : S → SΣ1
1
, let the tree T given p ∈ NN be defined by w ∈ T iff ∀n ≤ |w| p(n) = 0.

For id : S → SΣ1
1
, we let T have only branches of the form n0ω, and such a branch is

present iff p(n) 6= 0.

Proposition 2.3. The following operations are computable for any represented space X, k > 0:

1. Σ1
1(X)N −→ Σ1

1(X), (An)n 7−→
⋃
n∈NAn (countable union);

2. Σ1
1(X)N −→ Σ1

1(X), (An)n 7−→
⋂
n∈NAn (countable intersection);

3. Σ1
1(X×Y) −→ Σ1

1(Y), A 7−→ {y ∈ Y | ∃x ∈ X (x, y) ∈ A}

4. Σ0
k(X)→ Σ1

1(X), Π0
k(X)→ Σ1

1(X), Σ0
k(X)→ Π1

1(X), Π0
k(X)→ Π1

1(X) (inclusions);

5. Σ0
k(NN ×X)→ Σ1

1(X), Π0
k(NN ×X)→ Σ1

1(X), such that

B 7→ A =
{
x ∈ X : ∃g ∈ NN(g, x) ∈ B)

}
;

6. Σ0
k(NN ×X)→ Π1

1(X), Π0
k(NN ×X)→ Π1

1(X), such that

B 7→ A =
{
x ∈ X : ∀g ∈ NN(g, x) ∈ B

}
;

7. Π0
1(NN ×X)→ Π1

1(X), such that

C 7→ A =
{
x ∈ X : ∃!g ∈ NN(g, x) ∈ C

}
.

Proof. (1-6) These all follow directly from Lemma 2.2 together with function composition.
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(7) It is well-known that a ∈ NN is hyperarithmetical relative to {a} ∈ Π0
1(NN) (cf. Corollary

3.3 and accompanying remarks below). The section map (x,C) 7→ {y ∈ NN | (y, x) ∈ C} :
X×Π0

1(NN ×X)→ Π0
1(NN) is computable, see [38, Proposition 4.2 (9)]. Thus, we find that

A = {x ∈ X | ∃y ∈ HYP(x) (y, x) ∈ C} ∩ {x ∈ X | ∀y, z((y, x), (z, x) ∈ C → y = z)}.

The first term effectively defines a Π1
1-set due to Kleene’s HYP-quantification theorem

[26, 27], and the second term is directly defined a Π1
1-set. The claim thus follows using that

intersection is a computable operation on Π1
1-sets from (2).

We denote by LO and WO the represented spaces respectively of linear orderings and
countable well orderings with domain contained in N (thus WO is a subspace of LO). We
may assume without any loss of generality that, for all X ∈ LO, 0 /∈ X. If X ∈ LO we use
interchangeably WO(X) and X ∈WO. If X ∈WO we indicate its order type by |X|. Given
some tree T ⊆ N<ω, we define the Kleene-Brouwer ordering �KB on T as the transitive closure
of w �KB u if w w u and un �KB um if n ≤ m.

Observation 2.4. The map KB : Tr → LO mapping a tree to its Kleene-Brouwer ordering is
computable. We have WO(KB(T )) iff T is well-founded.

We need a technical definition, which can be found in [41, Definition V.6.4], for some of our
proofs related to well orderings.

Definition 2.5 (double descent tree). If X,Y ∈ LO the double descent tree T(X,Y ) is the set
of all finite sequences of the form 〈(m0, n0), (m1, n1), . . . , (mk−1, nk−1)〉 ∈ N<N such that

• m0,m1, . . . ,mk−1 ∈ X and m0 >X m1 >X · · · >X mk−1,

• n0, n1, . . . , nk−1 ∈ Y and n0 >Y n1 >Y · · · >Y nk−1.

We define the linear ordering X ∗ Y = KB(T(X,Y )).

Observation 2.6. (X,Y ) 7→ (X ∗ Y ) : LO× LO→ LO is computable.

With an abuse of notation, we use Q and N to denote respectively a computable presentation
of the standard linear ordering of rational numbers and of the well ordering of natural numbers.

Lemma 2.7. Let X,Y ∈ LO.

1. If WO(X) then X ∗ Y and Y ∗X are well orderings.

2. If WO(X) and ¬WO(Y ), then |X| ≤ |X ∗ Y |.

3. If WO(Y ), then |X ∗ Y | ≤ |Q ∗ Y |.

Proof. The proofs of 1 and 2 can be found in Lemma V.6.5 of [41]. In order to prove 3, consider
a function g : X → Q such that, for all x, x′ ∈ X,

(a) x <X x′ → g(x) <Q g(x′),

(b) x <N x
′ → g(x) <N g(x′).

It is easy to see that such a function exists. Define then ĝ : (X ∗ Y ) → (Q ∗ Y ) by putting
ĝ(〈(x0, y0), . . . , (xk−1, yk−1)〉) := 〈(g(x0), y0), . . . , (g(xk−1), yk−1))〉. Property a. of g guarantees
that ĝ is well-defined and property b. implies that ĝ respects the Kleene-Brouwer orderings of
the double descent trees X ∗ Y and Q ∗ Y .
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2.2 Weihrauch reducibility

Intuitively, f being Weihrauch reducible to g means that there is an otherwise computable
procedure to solve f by invoking an oracle for g exactly once. We thus obtain a very fine-grained
picture of the relative strength of partial multivalued functions. Consequently, a Weihrauch
equivalence is a very strong result compared to other approaches that allow more generous
access to the principle being reduced to. In the following, let 〈 〉 denote the standard pairing
function on Baire space.

Definition 2.8 (Weihrauch reducibility). Let f, g be multivalued functions on represented
spaces. Then f is said to be Weihrauch reducible to g, in symbols f ≤W g, if there are com-
putable functions K,H :⊆ NN → NN such that (p 7→ K〈p,GH(p)〉) ` f for all G ` g.

If there are computable functions K,H :⊆ NN → NN such that KGH ` f for all G ` g, then
f is strongly Weihrauch reducible to g, in symbols f ≤sW g.

The relations ≤W, ≤sW are reflexive and transitive. We use ≡W (≡sW) to denote equivalence
and by <W we denote strict reducibility. Both Weihrauch degrees [35] and strong Weihrauch
degrees [17] form lattices, the former being distributive and the latter not (in general, Weihrauch
degrees behave more naturally than strong Weihrauch degrees).

Rather than the lattice operations, we will use two kinds of products in this work: The
parallel product f × g is just the usual cartesian product of (multivalued) functions, which is
readily seen to induce an operation on (strong) Weihrauch degrees. We call f a cylinder, if
f ≡sW (idNN × f), and note that for cylinders, Weihrauch reducibility and strong Weihrauch
reducibility coincide.

The compositional product f ? g satisfies that

f ? g ≡W max
≤W

{f1 ◦ g1 | f1 ≤W f ∧ g1 ≤W g}

and thus is the hardest problem that can be realized using first g, then something computable,
and finally f . The existence of the maximum is shown in [15]. Both products as well as the
lattice-join can be interpreted as logical and, albeit with very different properties. The sequential
product ? is not commutative, however, it is the only one that admits a matching implication
[15, 22].

Two further (unary) operations on Weihrauch degrees are relevant for us, finite parallelization
f∗ and parallelization f̂ . The former has as input a finite tuple of instances to f and needs to
solve all of them, the latter takes and solves a countable sequences of instances. Both operations
are closure operators in the Weihrauch lattice. They can be used to relax the requirement of
using the oracle only once, if so desired, by looking at the relevant quotient lattices.

In passing, we will refer to the third operation, the jump from [11] (studied further in [4],
denoted by f ′. We use f (n) to denote the result of applying the jump n-times. The jump only
preserves strong Weihrauch degrees. The input to f ′ is a sequence converging (with unknown
speed) to an input of f , the output is whatever f would output on the limit.

The well-studied Weihrauch degrees most relevant for us are unique closed choice and closed
choice (on Baire space), to which we dedicate the following Section 3. Two other degrees we
will refer to are LPO : NN → {0, 1} and lim :⊆ (NN)ω → NN. These are defined via LPO(p) = 1

iff p = 0ω, and lim((pi)i∈N) = limi→∞ pi. They are related by L̂PO ≡W lim. The importance of
lim is found partially in the observation from [3] that lim is complete for Baire class 1 functions,
and more generally, that lim(n) is complete for Baire class n+ 1 functions.



T. Kihara, A. Marcone & A. Pauly 7

3 UCNN and CNN

The two Weihrauch degrees of central importance for this paper are unique closed choice and
closed choice (on Baire space). These are defined as follows:

Definition 3.1. Given a represented space X, let CX :⊆ A(X)⇒ X be defined via x ∈ CX(A)
iff x ∈ A (thus, A ∈ dom(CX) iff A 6= ∅). Let UCX be the restriction of CX to singletons.

In particular, UCX is capable of finding an element of a given Π0
1 singleton in X. In [37]

Pauly introduced the notion of iterating a Weihrauch degree f over a given countable ordinal,
this is denoted by f †. It is then shown that:

Theorem 3.2 ([37]). UCNN ≡W lim†

One can read the above result as a very uniform version of the famous classical result that
the Turing downward closures of Π0

1 singletons in NN exhausts the hyperarithmetical hierarchy
(cf. [40, Corollary II.4.3]).

Remark: Seeing that ATR0 asserts the existence of Turing jumps iterated along some count-
able ordinal and since lim is equivalent to the Turing jump, it may seem as if this theorem already
establishes that UCNN is the Weihrauch degree corresponding to ATR0. There is a significant
difference here though in what is meant by countable ordinal: In lim†, the input includes a
code for something which is an ordinal in the surrounding meta-theory. In particular, any com-
putable ordinal can be used for free. For ATR0 the notion of countable ordinal is that of the
model used. For example, an ill-founded computable linear order without hyperarithmetical
descending chains (Kleene, see [40, Chapter 3, Lemma 2.1]) counts as an ordinal in the ω-model
HYP consisting exactly of hyperarithmetical sets, and a similar phenomenon may happen in
non-β-models of ATR0. Things get worse if non-ω-models are considered: ATR0 (indeed, any
consistent c.e. theory, of course) fails to prove well-foundedness of some computable ordinals.

Note that lim† roughly corresponds to a (uniform) hyperarithmetical reduction, and therefore
Theorem 3.2, for instance, implies the following:

Corollary 3.3. Whenever {a} ∈ A(NN) is computable, then a ∈ NN is hyperarithmetical.

Corollary 3.4. If f ≤W UCNN for f :⊆ NN ⇒ X, then for every x ∈ dom(f), f(x) contains
some y hyperarithmetical relative to x.

Corollary 3.3 is a well-known classical fact saying that every Π0
1 singleton is hyperarith-

metical. Indeed, Spector showed that every Σ1
1 singleton is hyperarithmetical (cf. [40, Theorem

I.1.6]). Thus, it is natural to ask whether choice from Σ1
1 singletons has exactly the same strength

as UCNN .
One can generalize Definition 3.1 to any Γ ∈ {Σi

k,Π
i
k,∆

i
k} in a straightforward manner:

Let Γ-CX :⊆ Γ(X)⇒ X be defined via x ∈ Γ-CX(A) iff x ∈ A. In other words, it sends a code
of a Γ-definition of A to an element of A. Let Γ-UCX be the restriction of Γ-CX to singletons.
For instance, Σ1

1-unique choice Σ1
1-UCNN :⊆ Σ1

1(NN) → NN is a partial function which, given a
Σ1

1-code of a singleton {x} ⊆ NN, returns its unique element x. We will see below (in Theorem
3.11) that Σ1

1-UCNN ≡W UCNN .
We now explore the strength of CNN .

Theorem 3.5 (Kleene [26]). There exists computable non-empty A ∈ A(NN) containing no
hyperarithmetical point.
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That is, there is a nonempty Π0
1 set A ⊆ NN with no hyperarithmetical element. This shows

that CNN has a computable instance with no hyperarithmetical solution. Let NHA : NN ⇒ NN
be defined via q ∈ NHA(p) iff q is not hyperarithmetical relative to p.

Corollary 3.6. NHA �W UCNN but NHA ≤W CNN .

We now get the separation between UCNN and CNN .

Corollary 3.7. UCNN <W CNN .

There are a number of variants of unique choice, comprehension and separation that are all
equivalent to UCNN w.r.t. Weihrauch reducibility. We explore some of these next:

Definition 3.8 (Σ1
1-Separation). Let Σ1

1-Sep :⊆ (Tr × Tr)N ⇒ 2N be the multivalued func-
tion with dom(Σ1

1-Sep) = { (Sn, Tn)n∈N : ∀n([Sn] = ∅ ∨ [Tn] = ∅) } that maps any sequence
(Sn, Tn)n∈N in the domain to the set{

f ∈ 2N : ∀n (([Sn] 6= ∅ → f(n) = 0) ∧ ([Tn] 6= ∅ → f(n) = 1))
}
.

One can introduce a similar multivalued function by directly using the space Σ1
1(N)×Σ1

1(N)
instead of (Tr×Tr)N without affecting the Weihrauch degree.

Definition 3.9 (∆1
1-Comprehension). Let ∆1

1-CA :⊆ (Tr × Tr)N → 2N be the restriction of
Σ1

1-Sep to the set { (Sn, Tn)n∈N : ∀n([Sn] = ∅ ↔ [Tn] 6= ∅) }. Let ∆1
1-CA− be the restriction of

∆1
1-CA to the set {(Sn, Tn)n∈N : ∀n |[Sn]|+ |[Tn]| = 1}.

Definition 3.10 (Weak Σ1
1-Comprehension). Let Σ1

1-CA− :⊆ TrN → 2N be the function with
domain dom(Σ1

1-CA−) = { (Tn)n∈N : ∀n|[Tn]| ≤ 1 } and that maps (Tn)n∈N to the unique f ∈ 2N

such that f(n) = 1↔ |[Tn]| = 1 for all n ∈ N.

Theorem 3.11. The following are strongly Weihrauch equivalent:

1. UCNN

2. Σ1
1-UCNN

3. Σ1
1-Sep

4. ∆1
1-CA

5. ∆1
1-CA−

6. Σ1
1-CA−

Proof. (Σ1
1-UCNN ≤sW UCNN) This follows from the proof of lim† ≡W UCNN given in [37]. An

alternative proof can be obtained by noting that the proof of UCNN ≤sW ∆1
1-CA− given

below is readily adapted to show that Σ1
1-UCNN ≤sW ∆1

1-CA instead, and use the reductions
below.

(UCNN ≤sW Σ1
1-UCNN) Trivial, as id : Π0

1(NN)→ Σ1
1(NN) is computable by Proposition 2.3(4).

(Σ1
1-Sep ≤sW UCNN) By [37, Proposition 62 & Lemma 79]. An alternative proof can be obtained

by combining Lemmata 5.6 and 5.7 below.

(∆1
1-CA ≤sW Σ1

1-Sep) The former is a restriction of the latter.

(∆1
1-CA− ≤sW ∆1

1-CA) The former is a restriction of the latter.
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(UCNN ≤sW ∆1
1-CA−) Let {f} be a singleton of NN given via some tree T such that [T ] = {f}.

From T we compute the double-sequence of trees (T 0
t , T

1
t )t∈N<N such that: for all t ∈ N<N,

• T 0
t = { s ∈ T : t v s ∨ s v t },

• T 1
t = { s ∈ T : t 6v s }.

Note that, for all t ∈ N<N, exactly one between T 0
t and T 1

t is ill-founded. In fact, if t v f
then f ∈ [T 0

t ] and, since T has only one path, T 1
t is well-founded. Otherwise, if t 6v f then

f ∈ [T 1
t ] and [T 0

t ] = ∅. Hence, we even have that for all t ∈ N<N, |[T 0
t ]|+ |[T 1

t ]| = 1.

Consider now g = ∆1
1-CA−((T 0

t , T
1
t )t∈N<N). For all t ∈ N<N, g(t) = 0 ⇐⇒ [T 0

t ] 6= ∅ ⇐⇒
t v f . Therefore, given n ∈ N, to compute f(n) it suffices to wait for the first t ∈ Nn+1

such that g(t) = 0 and then put f(n) = t(n). This concludes the proof.

(∆1
1-CA− ≤sW Σ1

1-CA−) For every (T 0
n , T

1
n)n∈N ∈ dom(∆1

1-CA−) we have that ∆1
1-CA−((T 0

n , T
1
n)n∈N) =

Σ1
1-CA−((T 1

n)n∈N).

(Σ1
1-CA− ≤sW Σ1

1-UCNN) Let (Tn)n∈N be a sequence of trees in dom(Σ1
1-CA−). We claim that

using Σ1
1-UCNN we are able to compute f ∈ 2N such that:

∀n(f(n) = 1↔ |[Tn]| = 1). (1)

In fact, (1) is equivalent to

∀n[(f(n) = 0 ∨ ∃g(g ∈ [Tn])) ∧ (¬∃!g(g ∈ [Tn]) ∨ f(n) = 1)],

which in turn is equivalent to

∀n[∃g(f(n) = 0 ∨ g ∈ [Tn]) ∧ ¬∃!g(g ∈ [Tn] ∧ f(n) = 0)]. (2)

Now, for each n,
{

(g, f) ∈ NN × NN : f(n) = 0 ∨ g ∈ [Tn]
}

is a computable closed sub-
set of NN × NN, which entails that

{
f ∈ NN : ∃g(f(n) = 0 ∨ g ∈ [Tn])

}
is a computable

Σ1
1(NN) set for each n ∈ N. Furthermore, for each n ∈ N,

{
(g, f) ∈ NN × NN : g ∈ [Tn] ∧ f(n) = 0

}
is also a computable closed set which, guarantees that

{
f ∈ NN : ¬∃!g(g ∈ [Tn] ∧ f(n) = 0)

}
is computable as a Σ1

1(NN) set by Proposition 2.3(7).

Finally, since the operations of finite and countable intersection of Σ1
1 sets are computable,

we are able to build a name (by Proposition 2.3(2)) for the Σ1
1(NN) singleton{

f ∈ 2N : ∀n[∃g(f(n) = 0 ∨ g ∈ [Tn]) ∧ ¬∃!g(g ∈ [Tn] ∧ f(n) = 0)]
}
.

Clearly, applying Σ1
1-UCNN to such set we obtain the unique f satisfying (1), which is

exactly Σ1
1-CA−((Tn)n).

Arithmetical transfinite recursion

As mentioned above, the operation lim† from [37] is the ordinal-iteration of the map lim. Here,
we will explore a direct encoding of arithmetical transfinite recursion as a Weihrauch degree, and
give another proof of its equivalence with UCNN . Let us fix an effective enumeration 〈φn : n ∈ N〉
of all the computable functions φ :⊆ NN → NN. Note that L̂PO(k) is a complete Σ0

k+2-computable

function, and thus one can think of θkn = L̂PO(k) ◦ φn as the nth Σ0
k+2-computable function.

Instead, we could have used the nth Σ0
k+2 formula to define an equivalent notion.
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Definition 3.12 (Arithmetical transfinite recursion). Let ATR :⊆ 2N ×WO×N2 → 2N be the
function which maps each (Z,X, (k, n)) ∈ 2N ×WO × N2 to the set Y ∈ 2N such that, for all
(y, j) ∈ N2,

(y, j) ∈ Y ↔ j ∈ X ∧ y ∈ θkn(Y j ⊕ Z),

where Y j = { 〈y, i〉 ∈ Y : i <X j }.
Compare Definition 3.12 with ATR0 in reverse mathematics, cf. [41, Definition V.2.4]. Note

that our ATR is a single-valued function since, as mentioned in the first remark in this section,
our X is truly well ordered, and therefore, we do not need to consider pseudo-hierarchies.

Theorem 3.13. ATR ≡sW UCNN .

Proof. By Lemmata 3.15, 3.16 below and Theorem 3.11.

Lemma 3.14. Let X be a computable metric space. Then the function F :
⊔
k Π0

k(NN×X)→
Σ1

1(X) defined by

B 7→ A =
{
x ∈ X : ∃g ∈ NN(g, x) ∈ B

}
,

is computable.

Proof. It suffices to note that the inductive argument used in the proof of Proposition 2.3(5) is
uniform in k.

The following is an analog of the classical reverse mathematical fact [41, Theorem V.5.1].

Lemma 3.15. ATR ≤sW Σ1
1-Sep.

Proof. It is easy to see that Σ1
1-Sep is a cylinder and hence it suffices to show ATR ≤W Σ1

1-Sep.
Given (Z,X, 〈k, n〉) ∈ 2N ×WO × N2, we want to compute ATR(Z,X, 〈k, n〉) as defined in
Definition 3.12. For each j ∈ X and Y ∈ 2N, let us consider the following formula:

H(Y, j) ≡ ∀〈y, i〉 ∈ N2[〈y, i〉 ∈ Y ⇐⇒ i <X j ∧ y ∈ θkn(Y i ⊕ Z)],

Essentially, H(Y, j) says that Y is the set { 〈y, i〉 ∈ ATR(Z,X, 〈k, n〉) : i <X j }. Using now H,
we define the following two formulas for each j, z ∈ N:

ϕ0(j, z) ≡ j ∈ X ∧ ∃Y ∈ 2N[H(Y, j) ∧ z ∈ θkn(Y j ⊕ Z)],

ϕ1(j, z) ≡ j ∈ X ∧ ∃Y ∈ 2N[H(Y, j) ∧ z /∈ θkn(Y j ⊕ Z)].

Note that, for each j ∈ X and z ∈ N we have ϕ0(j, z) ⇐⇒ 〈z, j〉 ∈ ATR(Z,X, 〈k, n〉).
Using the function F defined in Lemma 3.14 and the closure properties of Proposition 2.3,

we are able to compute two names for the Σ1
1(N2)-sets A0 and A1 corresponding to the formulas

ϕ0 and ϕ1. Note that in this case the use of F is required and we cannot appeal to Proposition
2.3(5) because k is not fixed but is given with the input. It is easy to see that A0 and A1 are
disjoint; hence one can ask Σ1

1-Sep to give us f separating A0 from A1, which is clearly a solution
of ATR(Z,X, 〈k, n〉). Here are the details:

Since the names for A0 and A1 are Π0
1(NN×N2)-names, it is not difficult to see that we can

build a double sequence of trees (T 0
〈j,z〉, T

1
〈j,z〉)j,z∈N such that, for each j ∈ N and z ∈ N,

• 〈j, z〉 ∈ A0 ⇐⇒ [T 0
〈j,z〉] 6= ∅,
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• 〈j, z〉 ∈ A1 ⇐⇒ [T 1
〈j,z〉] 6= ∅.

Note that, if j /∈ X then for each z ∈ N, ¬ϕ0(j, z) and ¬ϕ1(j, z), which means that [T 0
〈j,z〉] =

[T 1
〈j,z〉] = ∅. If instead j ∈ X we have, for each z ∈ N, ϕ0(j, z) ⇐⇒ ¬ϕ1(j, z) which implies

[T 0
〈j,z〉] 6= ∅ ⇐⇒ [T 1

〈j,z〉] = ∅. Therefore the double-sequence of trees (T 0
〈j,z〉, T

1
〈j,z〉)j,z∈N belongs

to the domain of Σ1
1-Sep. So let f ∈ Σ1

1-Sep(T 0
〈j,z〉, T

1
〈j,z〉)j,n∈N. Now we have, for each j ∈ X

and z ∈ N, f(j, z) = 0 ⇐⇒ [T 0
〈j,z〉] 6= ∅ ⇐⇒ ϕ0(j, z) ⇐⇒ 〈z, j〉 ∈ ATR(Z,X, 〈k, n〉), i.e. we

are able to compute ATR(Z,X, 〈k, n〉) ∈ 2N using f .
Note that we are using the original input to test whether j ∈ X.

Lemma 3.16. ∆1
1-CA ≤sW ATR.

Proof. Let (T 0
n , T

1
n)n∈N ∈ dom(∆1

1-CA), we want to compute f ∈ 2N such that, for all n ∈ N,
f(n) = 0 ⇐⇒ [T 0

n ] 6= ∅. In order to apply ATR we have to specify a set parameter Z, a well
ordering X and an arithmetical formula. The role of Z in this case will be played by (T 0

n , T
1
n)n∈N.

The well ordering X is obtained as
∑

n∈N(KB(T 0
n) ∗ KB(T 1

n)) + 1 (which is a well ordering by
Lemma 2.7(1)).

It remains to specify an arithmetical formula ϕ(y, Y j ⊕ Z) which describes what to do at
each step of the recursion. We read both Y j and Z as coding a sequence of pairs of trees. The
idea is to eliminate at each step the leaves of all the trees in the sequence. Thus, ϕ(y, Y j ⊕ Z)
holds if either Y j = ∅ and y codes a vertex with a child in Z, or y codes a vertex with a child in
each tree from Y j . This is easily verified to be an arithmetical formula, and hence can be coded
as some θkn.3

Finally, consider Y = ATR((T 0
n , T

1
n)n, X, 〈k, n〉), which is the set we obtain after repeating,

along the well ordering X, the procedure of eliminating leaves from the trees T 0
n and T 1

n . Now,
let fix n and consider i ∈ {0, 1} such that T in is well founded. Note that, in order to eliminate
all the tree T in, the recursion should be done at least over the ordinal rank(T in). In our case, the
recursion is done over X whose order type is greater than the order type of KB(T in) which in turn
is greater than rank(T in), cf. Lemma 2.7(2). This means that Y does not contain any element of
the tree T in. This argument applies to each well founded tree in the sequence (T 0

n , T
1
n)n, so we

can know whether a tree in the sequence has a path or not simply by checking if its root is in
Y . It is easy to see that this allows us to compute ∆1

1-CA((T 0
n , T

1
n)n∈N).

4 Σ1
1-weak König’s lemma

4.1 Σ1
1 versus Π1

1

In this section, we focus on the following contrast between reverse mathematics and the Weihrauch
lattice regarding Σ1

1 and Π1
1-separation: On the one hand, in reverse mathematics, we have

Π1
1-SEP0 < Σ1

1-SEP0 (3)

where A < B indicates RCA0 ` B → A, but RCA0 0 A → B. On the other hand, in the
Weihrauch lattice, we have

Σ1
1-Sep <W Π1

1-Sep. (4)

3Similar ideas are found in the investigation of the Weihrauch degree of the pruning derivative of a tree in [33].
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The former inequality (3) was proven by Montalbán [30] using Steel’s tagged tree forcing. The
latter inequality (4) follows from the well-known fact in descriptive set theory that Σ1

1 has the
∆1

1-separation property, while Π1
1 does not (see also Lemma 4.4). It is not hard to explain the

cause of the contrast between (3) and (4), namely the Spector-Gandy phenomenon.
Let M be an ω-model, and let (Σ1

1)M be the collection of all subsets of ω which are Σ1
1-

definable withinM, that is, (Σ1
1)M = {{n ∈ ω :M |= ϕ(n)} : ϕ ∈ Σ1

1}. We define (Π1
1)M analo-

gously. Consider the ω-model HYP consisting of all hyperarithmetical reals. The Spector-Gandy
theorem (cf. [40, Theorem III.3.5 + Lemma III.3.1] or [41, Theorems VIII.3.20 + VIII.3.21])
implies that

(Σ1
1)HYP = Π1

1, and (Π1
1)HYP = Σ1

1.

The roles of Σ1
1 and Π1

1 are interchanged! We should always be careful in this role-exchange
phenomenon of Σ1

1 and Π1
1 when comparing reverse math and computability theory. Of course,

the notion of a β-model solves this role-exchange problem. To be precise, a β-model (see [41,
Section VII]) is an ω-model M satisfying the following condition:

(Σ1
1)M = Σ1

1, and (Π1
1)M = Π1

1.

However, the notion of a β-model is obviously related to closed choice CNN : An ω-model M
is a β-model iff, for any Z ∈ M and non-empty Π0

1(Z) set P ⊆ NN, some α ∈ P belongs to M.
Therefore, when studying principles weaker than CNN , we cannot work within the β-models.

Now, how should we interpret the reverse-mathematical Σ1
1-separation principle in our real

universe? The right answer may not exist. It may be Π1
1-Sep or may be Σ1

1-Sep.
We have already examined the strength of the Σ1

1-separation principle Σ1
1-Sep. In this

section, we will investigate the Π1
1-separation principle, Π1

1-Sep, in the Weihrauch lattice. In
reverse mathematics, Montalbán [30] showed that the strength of the Π1

1-separation principle is
strictly between ∆1

1-CA0 and ATR0 (4):

∆1
1-CA0 < Π1

1-SEP0 < ATR0 ≡ Σ1
1-SEP0.

Moreover, ∆1
1-CA0 and Π1

1-SEP0 are theories of hyperarithmetic analysis, that is, for every
Z ⊆ ω, HYP(Z) is the least ω-model of that theory containing Z. On the other hand, HYP 6|=
ATR0. In contrast, we will see the following:

UCNN ≡W ∆1
1-CA ≡W ATR ≡W Σ1

1-Sep <W Π1
1-Sep <W CNN .

4.2 The strength of Σ1
1-weak König’s lemma

The principle of Π0
1-separation was studied already in the precursor works by Weihrauch [43],

and Weak König’s Lemma (aka closed choice on Cantor space) was a focus in the earliest work
on Weihrauch reducibility in the modern understanding [20, 7, 5]. Here, we explore their higher-
level analogues.

Let Π1
1-Sep be the following partial multivalued function: Given Π1

1-codes of sets A,B ⊆ N,
if A and B are disjoint, then return a set C ⊆ N separating A from B, that is, A ⊆ C and
B ∩ C = ∅. To be more precise:

Definition 4.1. Let Π1
1-Sep :⊆ Π1

1(N) × Π1
1(N) ⇒ 2N be such that C ∈ Π1

1-Sep(A,B) iff C
separates A from B, where (A,B) ∈ dom(Π1

1-Sep) iff A ∩B = ∅.
4Actually, Montalbán showed that Π1

1-separation is strictly weaker than Σ1
1-AC.
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We also consider Σ1
1-weak König’s lemma Σ1

1-WKL: Given a Σ1
1-code of a set T ⊆ 2<ω, if T

is an infinite binary tree, then return a path through T . Formally speaking:

Definition 4.2. Let Σ1
1-WKL :⊆ Σ1

1(2<ω)⇒ 2N be such that p ∈ Σ1
1-WKL(T ) iff p is an infinite

path through T , where T ∈ dom(Σ1
1-WKL) iff T is an infinite binary tree.

While Σ1
1-WKL appears as a Σ1

1-version of closed choice on Cantor space, it is not equivalent
to Σ1

1-choice on 2N (nor, equivalently, closed choice on NN). Instead, it is equivalent to the

parallelization Σ̂1
1-C2 of Σ1

1 choice on the discrete space 2 = {0, 1}. We will show the following.

Theorem 4.3. UCNN <W Σ̂1
1-C2 ≡W Π1

1-Sep ≡W Σ1
1-WKL <W Σ̂1

1-CN ≤W CNN .

We will use the following fundamental notion in HYP-theory. A Π1
1-norm on a Π1

1 set P ⊆ N
is a map ϕ : N → ωCK1 ∪ {∞} such that P = {n : ϕ(n) < ∞} and that the following relations
≤ϕ and <ϕ are Π1

1:

a ≤ϕ b ⇐⇒ ϕ(a) <∞ and ϕ(a) ≤ ϕ(b),

a <ϕ b ⇐⇒ ϕ(a) <∞ and ϕ(a) < ϕ(b).

It is well-known that every Π1
1 set admits a Π1

1-norm (in an effective manner): Consider a many-
one reduction from a Π1

1 set P to the set WO of well orderings. We will explore the uniform
complexity of this kind of stage comparison principle in Section 5.

One can easily separate unique choice on NN and the Π1
1-separation principle by considering

the diagonally non-hyperarithmetical functions, which is a HYP version of DNC2 (known as
diagonally noncomputable functions). A very basic fact in HYP-theory is the existence of a
computable enumeration (ψe)e∈N of all partial Π1

1 functions on N. For instance, let ψe be a
standard Π1

1-uniformization of the eth Π1
1 set Pe ⊆ N×N, that is, ψe(n) is an element in the nth

section of Pe attaining the smallest ϕ-value if it exists, where ϕ is a Π1
1-norm on Pe.

Lemma 4.4. UCNN <W Π1
1-Sep.

Proof. To see that UCNN ≤W Π1
1-Sep, note that UCNN ≡W ∆1

1-CA by Theorem 3.11, and
∆1

1-CA ≤W Π1
1-Sep is straightforward. For the separation, let (ψe)e∈N be an enumeration of

all partial Π1
1 functions on N as above. For i < 2, consider Pi = {e ∈ N : ψe(e) ↓= i}. Clearly

Pi is Π1
1, and P0 ∩ P1 = ∅. It is easy to see that there is no ∆1

1 set separating P0 and P1.

The proof of Lemma 4.4 motivates us to introduce the following multivalued function Π1
1-DNC2 :

2N ⇒ 2N: Given an oracle X, return a two-valued X-diagonally non-hyperarithmetical function
f , that is, f ∈ Π1

1-DNC2(X) iff, whenever ψXe (e) ↓, f(e) 6= ψXe (e), where (ψXe )e∈N is a canonical
enumeration of all partial Π1

1(X) functions on N. The following is an analog of the well-known
fact that every DNC2-function has a PA-degree.

Proposition 4.5. Π1
1-Sep ≡W Π1

1-DNC2.

Proof. Let P0 and P1 be disjoint Π1
1 sets. Clearly there is e such that n ∈ Pi iff ψe(n) ↓= i. By the

recursion theorem, one can uniformly find a computable function r such that ψr(n)(r(n)) ' ψe(n).
Let f be a diagonally non-hyperarithmetical function. If f(r(n)) = i then ψr(n)(r(n)) ' ψe(n) 6=
i, which implies n /∈ Pi. Therefore, S = {n : f(r(n)) = 1} separates P0 from P1. This argument
is easily relativizable uniformly. The converse direction is also clear.

Using a Π1
1-norm, one can show Σ1

1-WKL ≡W Π1
1-Sep by modifying the usual proof of the

well-known equivalence between WKL and Σ0
1-Sep.
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Lemma 4.6. Σ1
1-WKL ≡W Π1

1-Sep ≡W Σ̂1
1-C2.

Proof. By a straightforward modification of the usual proof of Σ0
1-Sep ≡W Ĉ2, it is easy to see

that Π1
1-Sep ≡W Σ̂1

1-C2 holds. It is also clear that Π1
1-Sep ≤W Σ1

1-WKL. Thus, it suffices to
show that Σ1

1-WKL ≤W Π1
1-Sep.

Given a Σ1
1-tree T ⊆ 2<ω, let ExtT ⊆ 2<ω be the set of all extendible nodes of T . Clearly,

its complement ¬ExtT = 2<ω \ ExtT is Π1
1, and thus admits a Π1

1-norm ϕ (we need to get ϕ in
a uniform way, but it is straightforward). Consider the Π1

1 set Pi = {σ : σai <ϕ σ
a(1− i)} for

each i < 2. Obviously, P0 ∩ P1 = ∅. We claim that

σ ∈ ExtT and σ /∈ Pj =⇒ σaj ∈ ExtT .

If σ /∈ Pj then σaj 6<ϕ σa(1 − j), that is, either ϕ(σaj) = ∞ or ϕ(σa(1 − j)) ≤ ϕ(σaj)
holds. If the former holds then we must have σaj ∈ ExtT . If ϕ(σaj) < ∞, then we must
have ϕ(σa(1 − j)) = ∞ since σ ∈ ExtT implies that σai ∈ ExtT for some i < 2. By the
latter condition, ∞ = ϕ(σa(1 − j)) ≤ ϕ(σaj); hence ϕ(σaj) must be ∞. In any case, we have
ϕ(σaj) =∞, which means that σaj ∈ ExtT . This verifies the above claim.

Let S be such that P0 ⊆ S and S ∩ P1 = ∅. Let σ0 be the empty string, and put σn+1 =
σn
aS(σn). Then, by the above claim, we have σn ∈ ExtT for any n, and therefore

⋃
n σn ∈ [T ].

One can easily relativize this argument uniformly.

Lemma 4.7. Σ1
1-WKL <W Σ̂1

1-CN.

Proof. By Lemma 4.6, we have Σ1
1-WKL ≤W Σ̂1

1-CN. It remains to show that Σ̂1
1-CN �W

Σ1
1-WKL. It is easy to see that Σ1

1-WKL is a cylinder, and hence it suffices to show that

Σ̂1
1-CN �sW Σ1

1-WKL.

We first show the following claim: Let T ⊆ 2<ω be a Σ1
1 tree, and Φ a Turing functional

such that for every x ∈ [T ], Φx is total. Then there exists a ∆1
1 function h : N→ N majorizing

n 7→ Φx(n) for every x ∈ [T ].

Let g : N → N be a function such that for any n, if |σ| = g(n) then either σ /∈ ExtT or
Φσ(n) ↓. This condition is clearly Π1

1, and by compactness, g is total. Hence, g is a total Π1
1

function, and thus actually ∆1
1. Then define h(n) = max{Φσ(n) : |σ| = g(n) and Φσ(n) ↓}.

Clearly h is ∆1
1 and Φx(n) ≤ h(n) for any x ∈ [T ]. This verifies the claim.

Let (ψe)e∈ω be a computable enumeration of partial Π1
1 functions on N. Let Se be the set of

all k such that

(∀n ≤ e)(ψn(e) ↓ =⇒ ψn(e) < k).

Clearly Se is Σ1
1 and cofinite. Then every element of S =

∏
e Se dominates all ∆1

1 functions.

If Σ̂1
1-CN ≤sW Σ1

1-WKL then we must have a Σ1
1-tree T ⊆ 2<ω whose paths compute uniformly

an element of S, which is impossible by the above claim.

Recall that A?B denotes the sequential composition of A and B, cf. [15], that is, a function
attaining the greatest Weihrauch degree among {g ◦ f : g ≤W A and f ≤W B}.

Proposition 4.8. Σ1
1-WKL ?Σ1

1-WKL ≡W Σ1
1-WKL.
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Proof. This is a modification of the independent choice theorem from [5]. We can assume that
the inputs to Σ1

1-WKL ?Σ1
1-WKL are a computable function f , z ∈ 2N as well as (relativizable)

Σ1
1 trees S and T . Then, {x ⊕ y : x ∈ [Sz] and y ∈ [T f(z,x)]} is a Σ1

1 closed set, and any of its
elements is a solution to Σ1

1-WKL ?Σ1
1-WKL.

There is a natural principle between UCNN and Σ1
1-WKL. Let us define Σ1

1-weak weak König’s
lemma Σ1

1-WWKL as follows: Given a Σ1
1 set T ⊆ 2<ω, if T is an infinite binary tree and if [T ]

has a positive measure, then return a path through T . This is in analogy to the usual weak
weak König’s lemma, whose Weihrauch degree was studied in [14, 8, 10].

Note that Hjorth and Nies (see [32, Chapter 9.2]) showed that there is a Σ1
1-closed set consist-

ing of Π1
1-Martin-Löf random reals. Indeed, the proof shows that Π1

1-MLR is Weihrauch reducible
to Σ1

1-WWKL, where Π1
1-MLR is a multivalued functions representing Π1

1-Martin-Löf random-
ness, which is introduced in a straightforward manner. We also have WKL �W Σ1

1-WWKL since
the Turing upward closure of any nontrivial separating class has measure zero (cf. [24, Theorem
5.3]). We show that, even if we enhance Σ1

1-WWKL by adding a hyperarithmetical power, its
strength is strictly weaker than Σ1

1-WKL:

Theorem 4.9. UCNN <W UCNN ?Σ1
1-WWKL <W Σ1

1-WKL.

Proof. The inequality UCNN <W UCNN ? Σ1
1-WWKL is obvious since no Π1

1-Martin-Löf random
real is hyperarithmetic. Moreover, by Proposition 4.8, we have UCNN ?Σ1

1-WWKL ≤W Σ1
1-WKL.

Suppose for the sake of contradiction that Σ1
1-WKL ≤W UCNN ? Σ1

1-WWKL. Then, for any Σ1
1

closed set S, there are a Σ1
1 closed set P of positive measure and a Π1

1 function f : P → S, so
that f(x) ≤h x for any x ∈ P .

In particular, assume that S is the set of all Π1
1-DNC2 functions, and let P and f be as

above. It is known that x is Π1
1-random iff x is ∆1

1-random and ωCK,x
1 = ωCK

1 (see [32, Theorem

9.3.9]). Since there are conull many Π1
1-random reals, Q = {x ∈ P : ωCK,x

1 = ωCK
1 } also has

positive measure. Given x ∈ Q, there is an ordinal α < ωCK,x
1 = ωCK

1 such that f(x) ≤T x⊕∅(α)

(cf. [16, Lemma 4.2] and [1, Section 2.3.2]). As in [24, Theorem 5.3], it is easy to see that the
∅(α)-Turing upward closure, Sα = {z : h ≤T z ⊕ ∅(α) for some h ∈ S}, of S has measure zero for
any computable ordinal α. Hence, Ŝ =

⋃
{Sα : α < ωCK

1 } is also null. Our previous argument
shows that Q ⊆ Ŝ, however µ(Ŝ) = 0 contradicts µ(Q) > 0.

Question 4.10 ([9]). Σ̂1
1-CN <W CNN?

5 Comparability of well orderings

Two statements which are equivalent to ATR0 are comparability of well orderings and weak
comparability of well orderings ([41, Theorem V.6.8] and [19]). These involve two kinds of
effective witnesses that one well ordering is shorter than another: strong comparison maps and
order preserving maps.

Definition 5.1. If X,Y ∈WO then we say that f : N→ N is a strong comparison map between
X and Y , in symbols f : X ≤s Y , if the following conditions hold:

• ∀n(n /∈ X → f(n) = 0),

• ∀n,m ∈ X(n ≤X m↔ f(n) ≤Y f(m)),
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• ∀n ∈ X∀k ∈ Y (k ≤Y f(n)→ ∃m ∈ Xf(m) = k).

In other words, f is an order embedding of X into Y whose image is an initial segment of Y .

Definition 5.2 (Comparability of well orderings). Let CWO : WO×WO→ NN be the function
that maps any pair (X,Y ) of countable well orderings to the unique f ∈ NN such that f : X ≤s Y
or f : Y + 1 ≤s X.

Definition 5.3. If X,Y ∈ LO we say that f : N → N is an order preserving map between X
and Y , in symbols f : X ≤ Y , if the following conditions hold:

• ∀n(n /∈ X → f(n) = 0),

• ∀n,m ∈ X(n ≤X m↔ f(n) ≤Y f(m)),

Definition 5.4 (Weak comparability of well orderings). Let WCWO : WO × WO ⇒ NN
be the multivalued function that maps any pair (X,Y ) of countable well orderings to the set{
f ∈ NN : (f : X ≤ Y ) ∨ (f : Y ≤ X)

}
.

The following classifies the Weihrauch degree of comparability of well orderings:

Theorem 5.5. UCNN ≡sW CWO.

Proof. By Lemmata 5.6 and 5.7 below.

Lemma 5.6. CWO ≤sW UCNN .

Proof. If X,Y ∈WO, the conjunction of the three conditions in Definition 5.1 is a Π0
2 formula

with X,Y and f as free variables. In particular, a name for the Π0
2 set {f} = CWO(X,Y ) is

computable from X and Y . Then, since UCNN ≡sW Π0
2-UCNN by Theorem 3.11 and Proposition

2.3, we can use the second one to obtain f .

Lemma 5.7. Σ1
1-Sep ≤sW CWO.

Proof. We follow essentially the proof of Theorem V.6.8 in [41]. The only modification concerns
the definition of the well orderings U and V , for which the original proof uses the Σ1

1 bounding
principle.

So, let (Sn, Tn)n∈ω be a double-sequence of trees in dom(Σ1
1-Sep). Without loss of generality

we assume that for all n ∈ N, Sn and Tn are non-empty. We can build the corresponding double-
sequence of linear orderings (Xn, Yn)n such that, for all n, Xn = KB(Sn) and Yn = KB(Tn). Note
that, since (Sn, Tn)n ∈ dom(Σ1

1-Sep), we have

∀n(WO(Xn) ∨WO(Yn)). (5)

Consider U =
∑

n∈N(Q ∗ Yn) ∗ Xn, which by (5) and by Lemma 2.7.1 is a well ordering. We
claim that the following holds:

∀X ∈ LO∀n(¬WO(Xn)→ |X ∗ Yn| < |U |). (6)

In fact, let X ∈ LO and n be such that ¬WO(Xn). Then by (5) we have WO(Yn), which
means that X ∗ Yn is also a well ordering. Furthermore, by 3 and 2 of Lemma 2.7, we have
|X ∗ Yn| ≤ |Q ∗ Yn| ≤ |(Q ∗ Yn) ∗Xn| < |U |.
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For all n ∈ N, define Zn = (U +Xn) ∗ Yn. By (6) and by 1 and 2 of Lemma 2.7 we have, for
all n ∈ N,

¬WO(Xn)→ |Zn| < |U |, (7)

¬WO(Yn)→ |U | < |Zn|. (8)

Finally, consider V = U +
∑

n∈N Zn and define the well orderings

• Z =
∑

n∈N(Zn + V · N),

• W =
∑

n∈N(V + V · N).

Note that all the well orderings we defined so far, in particular Z and W , are computable from
the double-sequence (Xn, Yn)n. In the construction of V we can also use a special mark for its
least element. Furthermore, we can code Z in such a way that, if x ∈ Zn + V · N, for some
n ∈ N, then we are able to compute whether x belongs to Zn or to the first copy of V , and in
the second case, whether x belongs to the copy of U contained in V . Similar assumptions can
be made for the construction of W .

Let now f = CWO(Z,W ) be the comparing map between Z and W . Since |Zn + V · N| =
|V +V ·N| for all n, we have |Z| = |W | and f is the isomorphism of Z onto W . In particular, for
each n ∈ N, f induces an isomorphism fn of Zn+V ·N onto V +V ·N. Define g ∈ 2N by g(n) = 0
if and only if the image of Zn under fn is a strict initial segment of U , i.e. |Zn| < |U |. This
can be done computably by checking whether fn maps the first element of the first copy of V in
Zn + V · N to U or not. Then, recalling the definition of (Xn, Yn)n, if [Sn] 6= ∅ then ¬WO(Xn)
and, by (7), |Zn| < |U | so that g(n) = 0. Similarly, if [Tn] 6= ∅ then, by (8), |U | ≤ |Zn| so that
g(n) = 1.

The Weihrauch degree of weak comparability of well orderings, however, has eluded our
classification attempts:

Question 5.8. Does WCWO ≡W UCNN?

The authors have been informed that Jun Le Goh has obtained a positive answer to our
question.

6 The one-sided versions of PTT and open determinacy

Both open determinacy and the perfect tree theorem have at its core a disjunction A∨B which
is not to be read constructively. A typical approach to formulate these as computational tasks
is to view these as implications ¬A⇒ B or ¬B ⇒ A. In this section, we explore these variants.
In formulating these, we implicitly code strategies in sequential games into Baire space elements.

Definition 6.1. FindWSΣ :⊆ O(NN) ⇒ NN (FindWSΠ :⊆ O(NN) ⇒ NN) maps an open game
where Player 2 (Player 1) has no winning strategy to a winning strategy for Player 1 (Player 2).
Likewise, FindWS∆ maps a clopen game where Player 2 has no winning strategy to a winning
strategy for Player 1.

Recall that a tree is perfect if every node has at least two incomparable extensions. In
particular, every perfect tree is pruned. The perfect tree theorem states that every tree with
uncountably many paths has a perfect subtree and leads to the following two problems: The
first problem is given a closed set A which has no perfect subset (that simply means that A
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is countable), and has to show its countability, that is, to enumerate all elements of A. We
consider two variants of this task, depending on what exactly is meant by listing. The weak
version contains no information about the cardinality, the strong version does. The second
problem is more direct: it asks to find a perfect subset of a given tree with uncountably many
paths.

Definition 6.2. wList :⊆ A(NN)⇒ (NN)ω maps a countable set A to some 〈b0p0, b1p1, . . .〉 such
that A = {pi | bi = 1}. List :⊆ A(NN) ⇒ (NN)ω maps a countable set A to some n〈p0, p1, . . .〉
such that either n = 0, pi 6= pj for i 6= j and [T ] = {pi | i ∈ N}; or n > 0, |[T ]| = n − 1 and
[T ] = {pi | i < n− 1}.

Definition 6.3. PTT1 :⊆ Tr⇒ Tr maps T such that [T ] is uncountable to some perfect T ′ ⊆ T .

We start by reporting a result originating from discussion during the Dagstuhl seminar on
Weihrauch reducibility [13], in particular including a contribution by Brattka:

Proposition 6.4. PTT1 ≡W CNN .

Proof. For CNN ≤W PTT1, note that from A ∈ A(NN) we can compute a tree T such that
[T ] = A× NN. If A is non-empty, then [T ] is uncountable. Given some perfect subtree T ′ of T ,
we can compute a path through T ′ and hence through T . By projecting, we obtain a point in
A.

For PTT1 ≤W CNN , call a function λ : N<N → N a modulus of perfectness for T , if v ∈ T
implies that there are incomparable u,w ∈ [0, λ(v)]λ(v) with vu, vw ∈ T . A non-empty tree has
a modulus of perfectness iff it is perfect, and given T the set

{(T ′, λ) ∈ Tr× N(N<N) | ∅ 6= T ′ ⊆ T ∧ λ is a modulus of perfectness for T ′}

is closed, and non-empty for [T ] uncountable by the perfect tree theorem. Taking into account

that Tr×N(N<N) is computably isomorphic to NN, we can thus apply CNN and project to obtain
a perfect subtree of T .

6.1 Listing the points in a countable set

We now examine the strength of the contrapositive of the perfect tree theorem PTT1, which is
List in our setting as explained above.

Theorem 6.5. wList ≡W List ≡W UCNN .

The main ingredient of our proof is a variant of the Cantor-Bendixson decomposition, de-
signed in such a way that it can be carried out in a Borel way. This modified version works as
the usual one for countable sets, but can differ for uncountable ones5.

Definition 6.6. A one-step mCB-certificate of A ∈ A(NN) consists of

(a) A prefix-independent sequence (wi)i∈N of finite words ordered in a canonical way,

(b) A sequence of bits (bi)i∈N which are not all 0,

5Kreisel has shown that computable A ∈ A(NN) may have uncomputable Cantor-Bendixson rank [28]. As any
total function from NN into the countable ordinals that is effectively Borel is dominated by a computable function
(the Spector Σ1

1-boundedness principle, cf. [37]), this implies that the Cantor-Bendixson decomposition cannot
be done in a Borel way.
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(c) A sequence of points (pi)i∈N
subject to the following constraints:

1. If bi = 1, then pi ∈ A ∩ wiNN.

2. If bi = 0, then ∀p ∈ HYP(A) p /∈ A ∩ wiNN and pi = 0ω.

3. ∀p, q ∈ HYP(A)
(
p ∈ A ∩ wiNN ∧ q ∈ A ∩ wiNN ⇒ p = q

)
.

4. If wi � w for all i ∈ N, then ∃p, q ∈ A ∩ wNN p 6= q.

For a one-step mCB-certificate for A, its residue is A \
⋃
i∈NwiNN.

Definition 6.7. A global mCB-certificate for A ∈ A(NN) is indexed by some initial I ⊆ N (which
may be empty). It consists of a sequence (ci)i∈I of one-step mCB-certificates such that there
exists a linear ordering @ ⊆ I × I with minimum 0 (if non-empty), such that c0 is a one-step
mCB-certificate for A, for each n ∈ I \ {0}, cn is an mCB-certificate for

⋂
i@nAi, where Ai is

the residue of ci; and ∀p ∈ HYP(A) p /∈ A ∩
⋂
i∈I Ai.

Lemma 6.8. The set of global mCB-certificates of A is uniformly Σ1
1 in A.

Proof. This is almost immediate from the definition, besides the quantification over HYP. That
this is unproblematic follows from Kleene’s HYP-quantification theorem [26, 27] (the converse
of the Spector-Gandy theorem).

Lemma 6.9. For non-empty non-perfect A ∈ A(NN), A has a one-step mCB-certificate such that
its residue is equal to its Cantor-Bendixson derivative. If all points in A are hyperarithmetical
relative to A, then A has a unique one-step mCB-certificate.

Proof. Let (qj) be the finite or infinite list of isolated points in A, and let (uj) be the shortest
prefix such that A ∩ ujNN = {qj}. It follows from Corollary 3.3 applied to A ∩ ujNN that
each qj is hyperarithmetical relative to A. Let (vk) be the list of shortest prefixes such that
A∩ vkNN = ∅, excluding those extending some uj . Now the sequence (wi) is obtained such that
{wi} = {uj} ∪ {vk}, subject to the canonical ordering condition. If wi = vk, then bi = 0 and
pi = 0ω, if wi = uj then bi = 1 and pi = qj .

It is immediate that the construction satisfies Conditions (1,2,3,4) and that the residue sees
exactly the isolated points removed, i.e. is the Cantor-Bendixson derivative of A. It remains to
argue that the mCB-certificate constructed as such is unique if all points in A are hyperarith-
metical relative to A (this is a classic result, of course). As the choice of bi and pi was uniquely
determined by the sequence (wi), we only need to prove that there is no alternative sequence
(w′i). As no wi can satisfy the conclusion of Condition (4), we know that for each wi there exists
some w′i′ with w′i′ � wi.

Assume that w′i′ ≺ wi for some i. If bi = 1, then wi was chosen minimal under the constraint
that A ∩ wiNN is a singleton, A ∩ w′i′ contains at least two points, which are both hyperarith-
metical. Hence, w′i′ fails Condition (3). If bi = 0, then w′i′N

N ∩ A = ∅ contradicts the choice of
vk as shortest prefix, |w′i′NN∩A| = 1 contradicts the choice of uj as shortest prefix of an isolated
point in A, and |w′i′NN ∩A| ≥ 2 again violates Condition (3). Hence we know that all (wi) must
appear as some (w′i′).

Assume that there is some w occurring as a w′i′ but not as a wi. As the (w′i′) are prefix-free,
w is not an extension of some wi. Hence, Condition (4) for the (wi) implies that |A∩wNN| ≥ 2.
But as all points in A are hyperarithmetical, this shows that neither the conclusion of Condition
(2) nor that of Condition (3) can be satisfied for w′i′ = w, and we have obtained the desired
contradiction.
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Corollary 6.10. If A ∈ A(NN) is countable, then A has a unique global mCB-certificate, the
pi for bi = 1 occurring in some one-step mCB-certificate list all points in A, and the order type
of the implied linear ordering is the Cantor-Bendixson rank of A plus 1.

Proof of Theorem 6.5. That UCNN ≤W wList is simple: Any instance of the former is an instance
of the latter, and from a list repeating a single element, we can recover that element. For the
other direction, we show wList ≤W Σ1

1-UCNN instead and invoke Theorem 3.11. By Lemma
6.8 the set of global mCB-certificates of A ∈ A(NN) is computable as a Σ1

1-set from A, and
by Corollary 6.10 this is a singleton for countable A. We can distinguish whether the global
mCB-certificate uses an empty or non-empty linear order. In the former case, the set is empty,
and in the latter case, we can compute a list of all points in A.

Again, wList ≤W List is trivial. For the reverse direction, we observe that List ≤W UCNN ?
wList, since UCNN more than suffices to extract the required additional information from an
unstructured list. We then use the preceding result and UCNN ≡W UCNN ? UCNN from [5].

Regarding the non-uniform aspect, it is known that every countable Π0
1 (indeed Σ1

1) set
A ⊆ NN consists only of hyperarithmetical elements, cf. Sacks [40, Theorem III.6.2]. Theorem
6.5 concludes that every countable Π0

1 set A ⊆ NN admits a hyperarithmetical enumeration.
Combining Proposition 6.4 and Theorem 6.5, we indeed get the following:

Corollary 6.11. For any computable tree T ⊆ ω<ω, either T has a hyperlow perfect subtree
or there is a hyperarithmetical enumeration of all infinite paths through T .

Listing on Cantor space

We have seen that for subsets of Baire space, it makes no difference whether we intend to list all
points of a countable set or all points of a finite set. We briefly explore the corresponding versions
for Cantor space. Let List2N,<ω :⊆ A(2N)⇒ (2N)∗ denote the problem to produce a tuple of all

elements of a finite closed subset of 2N. Let wList2N,≤ω :⊆ A(2N) ⇒ (2N)ω denote the problem

to list all elements of a non-empty countable closed subset of 2N. Note that List2N,<ω is not a
restriction of wList2N,≤ω, since finite tuples and lists with finite range have distinct properties.
We will in fact show in Corollary 6.16 that these two multivalued functions are incomparable
with respect to Weihrauch reducibility.

Proposition 6.12. List2N,<ω ≡W Π0
2-CN.

Proof. To see that List2N,<ω ≤W Π0
2-CN, note that we can guess a finite partition of 2N into

clopens A0, . . . , An such that |A∩Ai| = 1 for input A and any i. Verifying a correct partition is
Π0

2 (because A ∩Ai 6= ∅ and |A ∩Ai| ≤ 1 are respectively a Π0
2 and a Σ0

1 condition), and given
a correct partition, we can compute the listing since UC2N is computable.

For the other direction, note that we can view Π0
2-CN as the following task: Given (p0, p1, . . .) ∈

(2N)ω with the promise that if |{j | pi(j) = 1}| = ∞ then |{j | pi+1(j) = 1}| = ∞, and that
there exists some i with |{j | pi(j) = 1}| = ∞, find such an i (for details, see [9]). We now
construct A ∈ 2N as follows: For each i, keep track of an auxiliary variable ki, which is initially
0. Start enumerating all 0〈i,k〉1 into the complement of A except the 0〈i,ki〉1. Also enumerate all
0l1s0. Whenever we read another 1 in pi, we do enumerate 0〈i,ki〉1, and set the new ki to be the
least k such that 0〈i,k〉1 has not been enumerated yet.
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Whenever |{j | pi(j) = 1}| < ∞ for some i, then ki will eventually remain constant. The
resulting set A will be of the form {0ω} ∪ {0〈i,ki〉1ω | i ∈ I} where I is the finite set of non-
solutions. Having a finite listing of A lets us easily pick some solution.

As a corollary one can see that every finite Π0
1 subset of 2N admits a computable listing

uniformly in 0′′, and the complexity 0′′ is optimal: If a function f sends an index of a Π0
1 set

P ⊆ 2N to an index of a computable listing of elements of P whenever P is finite, then f must
compute 0′′.

Proposition 6.13. wList2N,≤ω ≡W
̂wList2N,≤ω ≤W UCNN ≡W Π0

2-CN ? wList2N,≤ω.

Proof. To note that wList2N,≤ω is parallelizable, observe that we can effectively join countably
many trees along a comb, and the set of paths of the result is essentially the disjoint union of
the original paths. The second reduction follows from the obvious embedding of 2N into NN
as a closed set and Theorem 6.5. For the third reduction, note that we can embed NN as a
Π0

2-subspace B into 2N such that 2N \B is countable. Given some singleton A ∈ A(NN), we can
compute some countable Ā ∈ A(2N) such that Ā ∩ B is the image of A under that embedding.
If we have a list of all points in Ā, we can then use Π0

2-CN to pick the one in B. That the third
reduction is an equivalence follows from the second, the observation that Π0

2-CN ≤W UCNN and
UCNN ? UCNN ≡W UCNN (cf. [5]).

Proposition 6.14. lim ≤W wList2N,≤ω.

Proof. Consider the map id : A(N)→ O(N) translating an enumeration of a complement of a set
to an enumeration of the set. Studied under the name EC in [42], it is known to be equivalent
to lim. Now from A ∈ A(N) we can compute {0ω} ∪ {0n1ω | n ∈ A} ∈ A(2N). From any list of
the elements of the latter set, we can then compute A ∈ O(N).

Proposition 6.15. The following are equivalent for single-valued f : X→ NN:

1. f ≤W lim.

2. f ≤W wList2N,≤ω.

Proof. Proposition 6.14 entails that 1. implies 2.

To see that 2. implies 1., consider some single-valued f :⊆ NN → NN with f ≤W wList2N,≤ω.

So from any p ∈ dom(f), we can compute some countable Ap ∈ A(2N), and from any enumeration
of the points in Ap together with p we can compute f(p) via some computable K. We will argue
that having access to a pruned tree T with [T ] = Ap suffices to compute f(p), and note that
pruning a binary tree is equivalent to lim (see e.g. [33]). Let us assume that there are prefix
w0, . . . , wn in the pruned tree such that K upon reading p and w0, . . . , wn outputs some prefix
w. Then there is some enumeration q0, q1, . . . of points in Ap such that w0, . . . , wn are prefixes of
q0, . . . , qn, hence w is a prefix of f(p). Conversely, for any fixed enumeration q0, q1, . . . of points
in Ap and desired prefix length m of f(p) there is some k ∈ N such that K outputs f(p)≤m after
having read no more than the k-length prefixes of qi for i ≤ k. Moreover, each (qi)≤k occurs in
the pruned tree T . Thus, having access to T lets us compute longer and longer prefixes of f(p),
and since f is single-valued, this suffices to compute f(p).
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In particular, A ⊆ N is computable from all listings of some countable Π0
1 set P ⊆ 2N iff A

is 0′-computable. On the other hand, there is no computable ordinal α such that 0(α) computes
a listing of any countable Π0

1 subset of 2N.

Corollary 6.16. List2N,<ω �W wList2N,≤ω and wList2N,≤ω �W List2N,<ω.

Proof. For the first claim, it is known that Π0
2-CN ≡W Π0

2-UCN [9]. (Sketch: Take (pi)i∈N as
in Proposition 6.12, and then put p̂i,s(n) = 1 iff pi(n) = 1 and pj(t) = 0 for all j < i and
s ≤ t < n. It is easy to see that there is a unique i, s such that |{n | p̂i,s(n) = 1}| = ∞,
and then |{n | pi(n) = 1}| = ∞.) Then observe that Π0

2-UCN is single-valued, and that lim is
Σ0

2-computable while Π0
2-CN is not.

The second claim follows from the observation that any solution of a computable instance
of Π0

2-CN must be computable while lim is not.

Corollary 6.17. wList2N,≤ω <W wList2N,≤ω ? wList2N,≤ω ? wList2N,≤ω ≡W UCNN .

Proof. In Proposition 6.14 we have shown that lim ≤W List2N,≤ω, which implies Π0
2-CN ≤W

lim ? lim ≤W wList2N,≤ω ? wList2N,≤ω; hence the assertion follows from Proposition 6.13 and
UCNN ?UCNN ≡W UCNN . The strictness follows from Proposition 6.15 since UCNN is single-valued
and UCNN �W lim.

Question 6.18. Does wList2N,≤ω ? wList2N,≤ω ≡W UCNN hold?

The feature that List2N,≤ω is not closed under composition itself, but that the hierarchy of
more and more compositions stabilizes at a finite level, seems surprising for a natural degree. A
similar observation was made before regarding the degree of finding Nash equilibria in bimatrix
games [25].

6.2 Finding winning strategies

We now move on to the complexity of finding winning strategies in open Gale-Stewart games.
On the one hand, the difficulty of finding a winning strategy for a closed player is the same as
the closed choice on Baire space.

Proposition 6.19. FindWSΠ ≡W CNN .

Proof. For CNN ≤W FindWSΠ, note that we can turn any A ∈ A(NN) into a Σ0
1 game where

Player 1’s moves do not matter, and Player 2 wins iff his moves form a point p ∈ A.
For FindWSΠ ≤W CNN , note that given a Player 2 strategy τ and the Σ0

1 winning condition
W ⊆ NN we can compute a tree TW,τ describing the options available to Player 1: Essentially,
the strategies σ winning against τ correspond to finite paths in TW,τ ending in a leaf, whereas
strategies σ′ losing against τ correspond to infinite paths through TW,τ . Thus, τ is a winning
strategy for Player 2 iff TW,τ is a pruned tree, i.e. a tree without any leaves. Let λ : N∗ → N be
a witness of prunedness of T iff ∀v ∈ T vλ(v) ∈ T . If Player 2 has a winning strategy for the
game W , then the set

{(τ, λ) | λ is a witness of prunedness for TW,τ}

is a non-empty closed set computable from W , and projecting a member of it yields a winning
strategy for Player 2.
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On the other hand, the difficulty of finding a winning strategy for a open/clopen player is
the same as the unique choice on Baire space. In the case of clopen games, we even get full
determinacy defined as follows:

Definition 6.20. Det∆ : ∆0
1(NN)⇒ NN ×NN maps a clopen game W to a pair of strategies σ,

τ such that either σ is winning for Player 1 or τ is winning for Player 2 (i.e. a Nash equilibrium).

Theorem 6.21. FindWS∆ ≡W Det∆ ≡W FindWSΣ ≡W UCNN .

We will prove Theorem 6.21 using the next Lemmata.

Lemma 6.22. FindWSΣ ≤W Σ1
1-UCNN .

Proof. Let T be a tree describing the complement of some open set, the payoff for Player 1. Fix
some strategy σ of Player 1. We understand this to prescribe the action even at positions made
impossible by σ itself. For any v ∈ N∗ where Player 1 moves, consider the trees T vi describing
the options available to Player 2 if the game starts at v, Player 1 plays i and otherwise follows
σ. σ is a winning strategy iff for any v compatible with σ we find that T vσ(v) is well-founded.

Only Σ1
1-UCNN is available here while a lot of strategies may exist. We overcome this difficulty

by considering the optimal strategy, that is, the one that minimizes the rank of T vσ(v).
Let v be a position where Player 1 moves. A certificate of optimality for σ at v describes maps

preserving @ from T vσ(v) to T vi \{λ} (here λ denotes the empty sequence) for every i < σ(v), and

maps preserving @ from T vσ(v) to T vj for every j > σ(v). The set of strategies σ and corresponding
certificates of optimality for all positions is a closed set computable from the game.

If we fix partial strategies of all proper extensions of v such that Player 1 can win from v,
then there is a unique action of Player 1 at v such that extending the strategy to v admits a
certificate of optimality. It follows that if Player 1 has a winning strategy, then there is a unique
strategy admitting a certificate of optimality at all compatible positions; and this strategy is
winning. We can compute this using Σ1

1-UCNN .

Corollary 6.23. FindWSΣ ≤W UCNN .

Proof. By Lemma 6.22 and Theorem 3.11.

Lemma 6.24. Det∆ ≤W FindWS∆.

Proof. Given a ∆0
1-game G, we can compute the derived ∆0

1-game G′ where the first player can
decide whether to play G as Player 1, or as Player 2, and then proceed a play of a chosen side.
Thus, Player 1 can definitely win G′, and a winning strategy of Player 1 in G′ tells us who wins
G and how.

Lemma 6.25. ̂FindWS∆ ≤W FindWS∆.

Proof. Given a sequence G0, G1, . . . of ∆0
1-games all won by Player 1, we combine them into a

single ∆0
1 game where Player 2 first chooses n, and then the players play Gn. Player 1 wins

the combined game, and any winning strategy in that game yields in the obvious way winning
strategies for every Gi.

Let SB denote the space of Borel-truth values (cf. [21, 37]). Roughly speaking, if p is a Borel
code of a Borel subset A of the singleton space {•}, then we think of p as a name of > (⊥, resp.)
iff A 6= ∅ (A = ∅, resp.); if p is not a Borel code, p is not in the domain of the representation.
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Lemma 6.26. (id : SB → 2) ≤W Det∆.

Proof. A Borel code can be viewed as a well-founded tree whose even-levels (odd-levels, resp.)
consist of ∃-vertices (∀-vertices, resp.) and leaves are labeled by either > or ⊥ (corresponding
to either {•} or ∅) [21, 37]. We can turn a SB-name into a ∆0

1-game by letting Player 1 control
the ∃-vertices, Player 2 the ∀-vertices, make the >-leaves winning for Player 1 and the ⊥-leaves
losing. Then Player 1 has a winning strategy iff the value of the root is >. Given a Nash
equilibrium (σ, τ) we can compute the leaf reached by the induced play, and find it to be equal
to the truth value of the root.

Proof of Theorem 6.21. As shown in [37], UCNN ≤W
̂(id : SB → 2). By Lemma 6.26, the latter

is reducible to D̂et∆. This is reducible to ̂FindWS∆ by Lemma 6.24, which in turn reduces to
FindWS∆ by Lemma 6.25. FindWS∆ ≤W Det∆ is trivial, and so is FindWS∆ ≤W FindWSΣ.
FindWSΣ ≤W UCNN follows by Corollary 6.23.

As in the case of the perfect tree theorem (Corollary 6.11), the results in this section can be
viewed as a refinement of the following known result [2]:

Corollary 6.27. For any open game, either the open player has a hyperarithmetical winning
strategy or the closed player has a hyperlow winning strategy.

7 The two-sided versions of PTT and open determinacy

Rather than demanding a promise about the case of the theorem we are in, we could alternatively
consider the task completely uniformly. As distinguishing the two cases is a Π1

1-complete question
(cf. the well-known equation aΣ0

1 = Π1
1), the fully uniform task should not include an answer to

the which case we are in. A priori, since we considered two versions of listing, we also have the
two corresponding version of the two-sided perfect tree theorem. We are left with the following
formulations:

Definition 7.1. wPTT2 : Tr ⇒ Tr × NN has (T ′, 〈b0p0, b1p1, b2p2, . . .〉) ∈ wPTT2(T ) iff one of
the following holds:

• T ′ is a perfect subtree of T ;

• [T ] = {pi | bi 6= 0}
Definition 7.2. PTT2 : Tr ⇒ Tr × NN has (T ′, n〈p0, p1, p2, . . .〉) ∈ PTT2(T ) iff one of the
following holds:

• T ′ is a perfect subtree of T ;

• n = 0, pi 6= pj for i 6= j and [T ] = {pi | i ∈ N};
• n > 0, |[T ]| = n− 1 and [T ] = {pi | i < n− 1}.

Definition 7.3. DetΣ : O(NN) ⇒ NN × NN maps an open game W to a pair of strategies σ, τ
such that either σ is winning for Player 1 or τ is winning for Player 2.

These variants are strictly harder than the non-uniform ones (which are Weihrauch reducible
to CNN by the results of Section 6). To see that, let χΠ1

1
: NN → 2 be the characteristic function

of a Π1
1-complete set. Since the single-valued functions between computable Polish spaces which

are Weihrauch reducible to CNN are exactly those that are effectively Borel measurable ([5,
Theorem 7.7]), and χΠ1

1
is not such, we have χΠ1

1
�W CNN .
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Observation 7.4. χΠ1
1
≤W LPO′ ? wPTT2 and χΠ1

1
≤W LPO ? DetΣ.

Proof. Deciding whether [T ] is uncountable and who wins a Σ0
1-game are Π1

1/Σ1
1-complete

decision problems. Given trees T ′ and T , we can use LPO′ to decide whether or not T ′ is
a perfect subtree of T . Given a Nash equilibrium (σ, τ) of a Σ0

1-game, we can compute the
induced play and then use LPO to decide who wins that play – and this is the same player that
has a winning strategy in the game.

Corollary 7.5. CNN <W wPTT2 ≤W PTT2 and CNN <W DetΣ.

Proof. Using the fact that CNN is closed under composition [5, Corollary 7.6] we have χΠ1
1
�W

CNN ≡W LPO ? CNN ≡W LPO′ ? CNN .

In particular, we find that FindWSΣ <W DetΣ and FindWSΠ <W DetΣ. Thus, knowing
who wins a Σ0

1-game makes it strictly easier to find a Nash equilibrium. This is in contrast to
∆0

1-games (as seen in Theorem 6.21), as well as to games on Cantor space with winning sets in
the difference hierarchy over Σ0

1 (cf. [29]). Knowing who wins the game allows for constructions
such as the one used in Lemma 6.25 to conclude that finding a winning strategy is parallelizable

(i.e. ̂FindWSΣ ≡W FindWSΣ and ̂FindWSΠ ≡W FindWSΠ). We will see in Corollary 7.13 below
that this is not just an obstacle for the proof strategy, but that the result differs for DetΣ.

If then else

As we have seen, many theorems equivalent to ATR0 are described as dichotomy-type theorems:
Exactly one of A or B holds. Thus, it is natural to consider the following if-then-else problem
for a given dichotomy A xor B: Provide two descriptions (α, β) trying to verify A and B
simultaneously. If A is true, then α is a correct proof validating A; or else β is a correct proof
of B, where we do not need to know which one is correct. We formalize this idea as follows.

A space of truth values is just a represented space B with underlying set {>,⊥}.

Definition 7.6. Let B be a space of truth values. For f :⊆ X⇒ Y and g :⊆ A⇒ B, we define

[if B then f else g] :⊆ B×X×A⇒ Y ×B

via (b, x0, x1) ∈ dom([if B then f else g]) iff b = > and x0 ∈ dom(f) or b = ⊥ and x1 ∈ dom(g),
and (y0, y1) ∈ [if B then f else g](b, x0, x1) iff b = > and y0 ∈ f(x0) or b = ⊥ and y1 ∈ g(x1).

Note that the degree of [if B then f else g] depends on the precise choice of spaces for domain
and codomains involved, beyond what matters for where f and g are actually defined and are
taking their range. In particular, [if B then f else g] is not an operation on Weihrauch degrees6.

6Let X be the represented space of the non-computable elements of NN, and f :⊆ NN → NN the restriction
of idNN to the non-computable elements (idX and f are the same function, but defined on different spaces); then
idX ≡W f , yet [if S then f else idNN ] �W [if S then idX else idNN ] because the former has computable inputs while
the latter does not.
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The upper bound

Let SΣ1
1

be the space of truth values where p is a name for > iff p codes an ill-founded tree, and
a name for ⊥ iff it codes a well-founded tree.

In the proofs of Propositions 6.4 and 6.19, we constructed closed sets containing information
over the perfect subtrees or the winning strategies of Player 2 respectively. In particular, by
testing whether these are empty or not, we can decide in which case we are, and obtain the
answer in SΣ1

1
. Thus, by combining Proposition 6.4 and Theorem 6.5, respectively Proposition

6.19 and Theorem 6.21, we obtain the following:

Corollary 7.7. PTT2 ≤W [if SΣ1
1
then CNN else UCNN ].

Corollary 7.8. DetΣ ≤W [if SΣ1
1
then CNN else UCNN ].

As UCNN ≤W CNN , it follows that [if SΣ1
1
then CNN else UCNN ] ≤W CNN?χΠ1

1
. In particular, the

difference between [if SΣ1
1
then CNN else UCNN ] and CNN disappears if we move from Weihrauch

reducibility to computable reducibility. It follows immediately that Gandy’s basis theorem
applies to DetΣ: Every Σ0

1-game has a Nash equilibrium that is hyperlow relative to the game.

Idempotency

We can show a kind of absorption result for the if-then-else construction. Recall that NHA asks
for an output that is not hyperarithmetic relative to the input.

Proposition 7.9. Let g have a hyperarithmetical point ρ in its codomain. If we have f ×
NHA ≤W [if B then g else UCNN ], then f ≤W g.

Proof. Any x ∈ dom(f) is provided in the form of some name px, which is a valid input to NHA.
If some (x, px) ∈ dom(f ×NHA) were mapped to some (⊥, a, A) via the reduction, then A = {q}
where q is hyperarithmetical in px. Then (ρ, q) is a valid output of [if B then g else UCNN ], but
we cannot compute a solution to NHA(px) from (ρ, q).

Thus, every (x, px) gets mapped to (>, ax, A) such that from b ∈ g(ax) we can compute
y ∈ f(x) (since (b, z) for any z, say (b, ∅), is a solution to the instance (>, ax, A)). This provides
the claimed reduction f ≤W g.

By Corollaries 7.5, 7.8 and 7.7, and Proposition 7.9 we get the following:

Corollary 7.10. wPTT2 × NHA �W [if SΣ1
1
then CNN else UCNN ].

Corollary 7.11. DetΣ × NHA �W [if SΣ1
1
then CNN else UCNN ].

Using the corollaries above in conjunction with Corollary 3.6, we obtain:

Corollary 7.12. wPTT2 × CNN �W PTT2 and hence wPTT2 × wPTT2 �W PTT2.

Corollary 7.13. DetΣ × CNN �W DetΣ and hence DetΣ × DetΣ �W DetΣ.

Products with UCNN

While we just saw that DetΣ, PTT2 and [if SΣ1
1
then CNN else UCNN ] are not closed under prod-

ucts with CNN , the situation for products with UCNN is different:

Proposition 7.14. UCNN×[if B then CNN else UCNN ] ≡W [if B then CNN else UCNN ] for any space
of truth values B.
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Proof. Let {a}, b ∈ B, A, B be the input to UCNN × [if B then CNN else UCNN ]. We can use
[if B then CNN else UCNN ] on b, {a} × A and {a} × B, as {a} × A is non-empty iff A is, and
{a} × B is a singleton iff B is. We will receive as output (〈p, x〉, 〈q, y〉) such that 〈x, y〉 is a
valid output to [if B then CNN else UCNN ](b, A,B), and at least one of p and q is a. Let us write
p≤n for the prefix of p of length n + 1. We have that, if p≤n = q≤n, then p≤n = a≤n, and if
p≤n 6= q≤n, then either p /∈ {a} or q /∈ {a}, hence we can compute a from p, q and {a}.

Proposition 7.15. UCNN × PTT2 ≡W PTT2.

Proof. Let ({a}, T ) be the input to UCNN × PTT2. From this input we can build a tree T0 such
that [T0] = {a} × ({0ω} ∪ 1[T ]) (notice that |[T0]| = |[T ]|+ 1). PTT2(T0) yields a tree T ′ and a
sequence n〈(q0, t0p0), (q1, t1p1), . . .〉.

We first explain how to compute the sequence part of PTT2(T ). If n = 1, or n = 0 and
more than one ti is 0, or n > 1 and more than one ti for i < n− 1 is 0, then the sequence is not
listing [T0] (because [T0] 6= ∅ and (a, 0ω) is the only member of [T0] whose second component
starts with 0), which implies that [T0], and hence [T ], was uncountable. In this case, we can just
output some arbitrary sequence. Otherwise let p′i be the sequence consisting of the odd digits of
pi. If n = 0, we output 0〈p′i0 , p

′
i1
, . . .〉 where the ik are the (all but one) indices such that ti 6= 0

(in this way, if 〈(q0, t0p0), (q1, t1p1), . . .〉 lists injectively [T0], our output lists injectively [T ]). To
achieve the same result when n > 1 we output (n − 1)〈p′i0 , p

′
i1
, . . .〉 where we are omitting the

(at most one) i < n− 1 such that ti = 0.

To compute the tree part of PTT2(T ), starting from T ′ we obtain a tree T ′′ as follows: On
the first three levels (corresponding to the first two digits of a and the control bit), go down
some arbitrary edge in T ′. Then alternate adding all children of the present vertices into T ′′,
and passing down some arbitrary edge. If T ′ is perfect, then so is T ′′, and moreover, T ′′ ⊆ T in
that case.

We need also to compute a. To produce a possible candidate, we attempt to compute the
left-most branch q of T ′. If we ever reach a leaf (which never happens if T ′ is perfect), then we
continue q by constant 0. In any case, let q′ be the even digits of q: if T ′ is a perfect subtree of
T0 then a = q′. On the other hand, if (q0, t0p0), (q1, t1p1), . . .〉 lists [T0] then a = q0. Thus a = q0

or a = q′. As in the proof of Proposition 7.14 it follows that we can compute a from q0, q′ and
{a}.

Proposition 7.16. UCNN × DetΣ ≡W DetΣ.

Proof. By Theorem 6.21, we have UCNN ≤W FindWS∆, i.e. we can compute a ∆0
1-game G′1 from

{a} such that Player 1 wins G′1, and from a winning strategy of Player 1 in G′1 we can compute
a. Let G′2 be the game with the roles of Player 1 and Player 2 exchanged, which is still ∆0

1.
Now we construct a Σ0

1 game G′′ from a Σ0
1-game G, and from G′1 and G′2.

The players start playing G and G′2 in parallel. If Player 2 wins both of these, he wins in
G′′. Else, if he loses one of them (which would happen at some finite time), the players proceed
to play G′1, and whoever wins G′1 wins G′′. W.l.o.g. we assume that Player 2 can choose to lose
G right at the start of G′′.

Since by assumption Player 2 has a winning strategy in G′2, and Player 1 has a winning
strategy in G′1, the winning strategies of Player 2 are exactly those that consists of playing
winning strategies in G and G′2 simultaneously. On the other hand, Player 1 can win the game
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for sure only by first playing a winning strategy in G (and arbitrarily in G′2), followed by a
winning strategy in G′1.

From a Nash equilibrium of the whole game we thus obtain a Nash equilibrium in G by
consider how the players play in G. Furthermore, we consider how Player 1 plays in the copy
of G′1 played when Player 2 loses in G right at the start of G′′, and how Player 2 plays in G′2,
and compute two candidates q0, q1 for a from that. As in the proof of Proposition 7.14, we can
then compute a from {a}, q0 and q1.

Here the difference between wPTT2 and PTT2 is revealed, as the former is more sensitive
to products. We recall that a Weihrauch degree is called fractal, if it has a representative
f :⊆ NN ⇒ NN such that for any w ∈ N<ω such that wNN∩dom(f) 6= ∅ it holds that f |wNN ≡W f .
Most of the degrees considered in this articles are fractals, including wPTT2.

Proposition 7.17. If f is a fractal and LPO× f ≤W wPTT2, then f ≤W CNN .

Proof. W.l.o.g. assume that f :⊆ NN ⇒ NN witnesses its own fractality.

Fix a reduction of LPO×f to wPTT2 and let K1 be the computable function that transforms
the output of wPTT2 and the original input of LPO × f into the answer to the LPO-instance.
We distinguish the following cases:

1. There exists 0n, w ∈ N<ω, a finite tree T , and a finite prefix of a list 〈0q0, 0q1, 0q2, . . .〉
such that K1 provides its answer upon reading those (as input for LPO, input for f , first
and second component of the output of wPTT2, in that order).

Then by fixing the input to LPO to something consistent with 0n and incompatible with
the answer provided, we can make sure that the reduction needs to avoid the prefix to be
valid for any input to f extending w. But this can only be achieved by making the input
to wPTT2 having uncountable body and not having T as prefix of any perfect subtree.
This means in particular that we are dealing with an input to PTT1. As f is a fractal,
restricting to those of its inputs extending w does not decrease its Weihrauch degree, and
we conclude f ≤W CNN .

2. For no 0n, w ∈ N<ω, finite tree T , and finite prefix of a list 〈0q0, 0q1, 0q2, . . .〉, K1 provides
its answer upon reading those.

If we fix the LPO-input to be 0ω, we see that to ensure that K1 behaves correctly, the
list-component of the output of wPTT2 must actually list some elements. This can only be
guaranteed if the input to wPTT2 is a tree with countable non-empty body, i.e. is already
in the domain of List. We thus conclude f ≤W List ≡W UCNN (by Theorem 6.5) and, a
fortiori, f ≤W CNN .

Corollary 7.18. LPO× wPTT2 �W wPTT2.

Corollary 7.19. wPTT2 <W PTT2.

Proof. By contrasting Corollary 7.18 and Proposition 7.15.

We shall see that wPTT2 is still closed under some non-trivial products. For that, let
NON : 2N ⇒ 2N be defined via q ∈ NON(p) iff q �T p; i.e. NON is the function corresponding to
the theorem asserting the existence of sets non-computable in any given set.

Proposition 7.20. NON× wPTT2 ≤W wPTT2.
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Proof. Fix a Turing functional Φ such that for every p ∈ 2N, Φp is an injective enumeration of
p′, the Turing jump of p. Let p̂ ∈ NN be such that for every n we have that p̂(n) = 0 implies
n /∈ p′ and p̂(n) > 0 implies Φp(p(n) − 1) = n. Then p̂ is Turing equivalent to p′ and hence
p̂ �T p.

Notice that the function from 2N to A(NN) which sends p to {p̂} is computable. Therefore,
from (p,A) ∈ 2N × A(NN) we can compute {p̂} × ({0ω} ∪ 1A) ∈ A(NN). From any solution to
wPTT2({p̂} × ({0ω} ∪ 1A)) we can compute a solution to wPTT2(A) with the argument of the
first part of the proof of Proposition 7.15. Moreover, any solution to wPTT2({p̂}× ({0ω}∪ 1A))
is ≥T p̂, and hence solves NON(p).

In [18], products with LPO and NON are used to separate Weihrauch degrees in a similar
fashion.

8 TCNN – a candidate for ATR0?

Our separation proofs of principles like DetΣ and PTT2 from CNN relied on being able to trans-
form an arbitrary closed subset into an input for the former, with specified behaviour occurring
only for non-empty closed sets. We can capture this using the notion of total continuation of
closed choice on NN:

Definition 8.1. Let TCNN : A(NN)⇒ NN be defined via p ∈ TCNN(A) iff A 6= ∅ ⇒ p ∈ A.

In the same vein, we can define the total continuation of other choice principles. The com-
putable compactness of 2N yields TC2N ≡W C2N . The principle TCN was studied in [31].

Proposition 8.2. 1. CNN <W TCNN ;

2. TCNN <W LPO× TCNN .

3. If NON× f ≤W TCNN , then f ≤W CNN ;

4. TCNN <W wPTT2;

5. TCNN <W DetΣ;

6. [if SΣ1
1
then CNN else UCNN ] <W TCNN × CNN .

Proof. 1. The reduction is trivial. Separation follows from LPO ? CNN ≡W CNN and χΠ1
1
≤W

LPO ? TCNN (the latter is straightforward because LPO can check whether the output of
TCNN(A) belongs to A).

2. Again, the reduction is trivial. For the separation, assume that LPO × TCNN ≤W TCNN

via computable H, K1, K2. Recall that LPO(r) = 1 iff r = 0ω. Consider the input 0ω

for LPO and NN ∈ A(NN) (coded as some name t) for TCNN on the left. There has to be
some p ∈ NN such that K1(0ω, t, p) = 1. By continuity, we find that K1(0kq, t≤kt

′, p) = 1
for sufficiently large k and arbitrary q, t′.

For any A ∈ A(NN) we can compute some name of the form t≤kt
′. Now consider what

happens if the inputs on the left are 0k1ω and some t≤kt
′: If H(0k1ω, t≤kt

′) ever returns a
name for the empty set, then p is a valid solution to TCNN on the right. But then K1 will
answer incorrectly 1. Thus, H(0k1ω, t≤kt

′) never returns a name for the empty set. But
then we obtain a reduction TCNN ≤W CNN , contradicting (1).
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3. As TCNN(∅) has computable solutions, the reduction NON× f ≤W TCNN already has to be
a reduction to CNN .

4. The reduction given in Proposition 6.4 works for this, by using the following observation:
given A ∈ A(NN), T ∈ Tr such that [T ] = A × NN and (T ′, 〈b0p0, b1p1, . . .〉) ∈ PTT2(T ),
if we realize that T ′ is not pruned (which can happen only if A = ∅) we can continue our
output with 0ω.

Strictness follows by (3), Proposition 7.20 and Corollary 7.5.

5. The reduction given in Proposition 6.19 works for this, by using the following observation:
if A = ∅ then Player 1 has a winning strategy in the Σ0

1 game we constructed (in fact, any
strategy for 1 is winning), however following the strategy for 2 provided by DetΣ we find
an element of TCNN(A).

Strictness follows by (2), Proposition 7.16 and Corollary 7.5.

6. The arguments used to establish Lemma 6.8 or 6.22 show that the total continuation
TUCNN of UCNN (i.e. the total multivalued function defined on A(NN) which extends UCNN

and is defined as NN on non-singletons) is reducible to CNN . For example, given an arbitrary
closed A ⊆ NN we can compute the nonempty Σ1

1 set of the mCB-certificates of A and,
choosing an element in it, compute the list of the elements of A whenever A is a countable,
and in particular a singleton.

Thus, we can consider TCNN × TUCNN in place of TCNN × CNN . Given some input b, A,B
to [if SΣ1

1
then CNN else UCNN ] we ignore b, we feed A to TCNN , and B to TUCNN . Any

resulting output pair is a valid output to [if SΣ1
1
then CNN else UCNN ].

To see that TCNN × CNN 6≡W [if SΣ1
1
then CNN else UCNN ] first notice that TCNN × CNN ×

CNN ≡W TCNN × CNN . On the other hand, we have

[if SΣ1
1
then CNN else UCNN ]× CNN �W [if SΣ1

1
then CNN else UCNN ] :

otherwise, since by Corollaries 7.7 and 3.6 we have PTT2 ≤W [if SΣ1
1
then CNN else UCNN ]

and NHA ≤W CNN , we would have PTT2 × NHA ≤W [if SΣ1
1
then CNN else UCNN ] and

Proposition 7.9 would imply PTT2 ≤W CNN , against Corollary 7.5.

Corollary 8.3. PTT∗2 ≡W Det∗Σ ≡W TC∗NN .

Proof. TC∗NN ≤W PTT∗2 is immediate from Proposition 8.2(4). On the other hand we have

PTT∗2 ≤W [if SΣ1
1
then CNN else UCNN ]∗ ≤W (TCNN × CNN)∗ ≤W TC∗NN ,

using Corollary 7.7 and Proposition 8.2(6).
The argument for Det∗Σ is similar.

It is reasonable to expect a Weihrauch degree corresponding to an axiom system from reverse
mathematics to be closed under finite parallelization. For candidates for WKL0 or ACA0 this
happens inherently. Here, we might need to demand it explicitly, and thus consider the degree
TC∗NN rather than any directly defined one to be one of the most promising candidates.

A potentially convenient way to think about the separation between CNN and TCNN is in
terms of translations between truth values. TCNN allows us to treat a single Π1

1-set as an open
set, whereas CNN cannot even bridge the gap from Σ1

1 to Borel.
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Proposition 8.4.
(
id : SΠ1

1
→ S

)
≤W TCNN , but

(
id : SΣ1

1
→ SB

)
�W CNN .

Proof. For the reduction, we observe that A = ∅ iff p /∈ A for some p ∈ TCNN(A).

For the non-reduction, we recall that id : SB → 2 ≤W UCNN was shown in [37], and that
UCNN ? CNN ≡W CNN as shown in [5]. Thus, assuming the reduction would hold, we would

even have that
(
id : SΠ1

1
→ 2

)
≤W CNN , which contradicts [5, Theorem 7.7] because the unique

realizer of id : SΠ1
1
→ 2 is not effectively Borel measurable.

Next, we shall see that the additional computational power of TCNN (even of its parallelization

T̂CNN) over UCNN concerns only multivalued problems.

Theorem 8.5. The following are equivalent for single-valued f : X→ NN:

1. f ≤W UCNN ;

2. f ≤W T̂CNN .

Proof. That 1 implies 2 is trivial. For the other direction, we show that for single-valued

f :⊆ NN → {0, 1}, f ≤sW T̂CNN implies f ≤W ∆1
1-CA and invoke Theorem 3.11. This suffices.

In fact we can consider codomain {0, 1} instead of NN because NN computably embeds into 2N

and because UCNN is parallelizable. We can start from a strong Weihrauch reduction because

T̂CNN is a cylinder.

Assume that f :⊆ NN → {0, 1} and f ≤sW T̂CNN via computable K, H. The outer reduction
witness K essentially consists of two open sets U0, U1 ∈ O((NN)N), while the inner reduction
witness H gives us for each p ∈ NN a sequence (An(p))n∈N of closed sets. For S ⊆ N and
U ∈ O((NN)N), let πS(U) denote the projection of U to the components in S. Now we find that:

f(p) = b⇔ ∀S ⊆ N
∏
n∈S

An(p) ⊆ πS(U b).

(Notice that
∏
n∈NAn(p) ⊆ U b does not imply f(p) = b in general because some of the An(p)

could be empty.) This is a Π1
1-condition. Since exactly one of f(p) = 0 and f(p) = 1 holds, we

thus have a valid instance for ∆1
1-CA.

In particular, T̂CNN does not reach the level of Π1
1-CA0.

Corollary 8.6. χΠ1
1
�W T̂CNN .

9 Open questions and discussion

The results reported in Section 7 immediately lead to three interlinked questions, which unfor-
tunately we have been unable to resolve so far:

Question 9.1. Does DetΣ ≡W [if SΣ1
1
then CNN else UCNN ]?

Question 9.2. Does PTT2 ≡W [if SΣ1
1
then CNN else UCNN ]?

Question 9.3. How do PTT2 and DetΣ relate?
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We would expect that other theorems equivalent to ATR0 (e.g. open Ramsey) exhibit sim-
ilar behaviour, i.e. a non-constructive disjunction between cases equivalent to CNN and UCNN

respectively. Proving any reductions between the two-sided versions of these theorems could be
very illuminating. Until then, we might have to settle for classifications in the Weihrauch lattice
up to ∗, and strive to understand better the degree TC∗NN .

Brattka has also raised the question whether the strong two-sided versions, which return
an answer on the applicable case together with a witness, are worthwhile studying. It seems
conceivable that finding reductions here would be easier. Up to ∗, these problems would have
the degree TC∗NN × χ∗Π1

1
. Would this be an acceptable candidate for an ATR0-equivalent, or is

this degree too close to Π1
1-CA0?

Given that TC∗NN is not closed under composition, one could make the case that TC�NN

(its closure under generalized register machines, cf. [31]) is the better candidate. Note that

TC�NN ≡W

(
TCNN × χΠ1

1

)�
, so the distinction between the weak and strong two-sided versions of

the theorems would disappear here. How well justified this step would be in particular depends
on whether there exists a natural theorem equivalent to ATR0 in reverse mathematics where
ATR0 is actually used in a sequential way, i.e. a theorem naturally associated with a Weihrauch
degree not reducible to TC∗NN .
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