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Abstract

Every computable function has to be continuous. To develop computability theory of
discontinuous functions, we study low levels of the arithmetical hierarchy of nonuni-
formly computable functions on Baire space. First, we classify nonuniformly com-
putable functions on Baire space from the viewpoint of learning theory and piecewise
computability. For instance, we show that mind-change-bounded-learnability is equiv-
alent to finite (Π0

1)2-piecewise computability (where (Π0
1)2 denotes the difference of two

Π0
1 sets), error-bounded-learnability is equivalent to finite∆0

2-piecewise computability,
and learnability is equivalent to countableΠ0

1-piecewise computability (equivalently,
countableΣ0

2-piecewise computability). Second, we introduce disjunction-like opera-
tions such as the coproduct based on BHK-like interpretations, and then, we see that
these operations induce Galois connections between the Medvedev degree structure
and associated Medvedev/Muchnik-like degree structures. Finally, we interpret these
results in the context of the Weihrauch degrees and Wadge-like games.
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1. Summary

1.1. Introduction

Imagine the floor function, a real function that takes the integer part of an input. Al-
though it seems easy to draw a rough graph of the floor function, it isnot computable
with respect to the standard real number representation [82], because computability
automatically induces topological continuity. One way to study the floor function in

∗Corresponding author
Email addresses:khiguchi@g.math.s.chiba-u.ac.jp (K. Higuchi),kihara@jaist.ac.jp

(T. Kihara)

Preprint submitted to Annals of Pure and Applied Logic December 20, 2013



computability theory is to “computabilize” it by changing the representation/topology
of the real space (see, for instance, [84]). However, it is also important to enhance our
knowledge of the noncomputability/discontinuity level of such seemingly computable
functions without changing representation/topology. Our main objective is to study low
levels of the arithmetical/Baire hierarchy of functions on Baire space from the view-
point of approximate computability/continuity and piecewise computability/continuity.

We postulate that anearly computablefunction shall be, at the very least,nonuni-
formly computable, where a functionf is said to be nonuniformly computable if for
every inputx, there exists an algorithmΨx that computesf (x) using x as an oracle,
where we do not require the mapx 7→ Ψx to be computable. The notion of nonuni-
form computability naturally arises in Computable Analysis [12, 88]. However, of
course, most nonuniformly computable discontinuous functions are far from being
computable. Then, what type of discontinuous functions are recognized as being nearly
computable? A nearly computable/continuous function has to be approximated using
computable/continuous functions. For instance, a Baire function appears to bedynam-
ically approximatedby a sequence of continuous functions and a piecewise continuous
(σ-continuous) function appears to bestatically approximatedby countably many con-
tinuous functions.

There have been many challenges [15, 83–88] in developing computability theory
of (nonuniformly computable) discontinuous functions using the notion oflearnabil-
ity (dynamical-approximation) andpiecewise computability(statical-approximation).
Indeed, one can show the equivalence of effective learnability andΠ0

1-piecewise com-
putability: the class of functions that are computable with finitely many mind changes
is exactly the class of functions that are decomposable into countably many computable
functions withΠ0

1 domains. In this paper, we introduce various concepts of dynamic-
approximability, and then, we characterize these concepts as static-approximability.

Now, we focus our attention on the concepts lying between (uniform) computability
and nonuniform computability. In 1950-60th, Medvedev [51] and Muchnik [54] intro-
duced the degree structure induced by uniform and nonuniform computability to for-
mulate semantics for the intuitionistic propositional calculus based on Kolmogorov’s
idea of interpreting each proposition as a problem. The degree structure induced by the
Medvedev (Muchnik) reduction forms a Brouwer algebra (the dual of a Heyting alge-
bra), where the (intuitionistic) disjunction is interpreted as the coproduct of subsets of
Baire space.

Our objective is to reveal the hidden relationship between the hierarchy of nonuni-
formly computable functions and the hierarchy of disjunction operations. When a cer-
tain suitable disjunction-like operation such as the coproduct is introduced, we will
see that one can recover the associated degree structure from the disjunction opera-
tion. As a consequence, we may understand the noncomputability feature of functions
by observing the degree-theoretic behavior of associated disjunction operations. This
phenomenon can be explained by using the terminology of Galois connections or ad-
joint functors. For instance, one can introduce a disjunction operation on Baire space
using the limit-BHK interpretation ofLimit Computable Mathematics[31] (abbrevi-
ated asLCM), a type of constructive mathematics based on Learning Theory, whose
positive arithmetical fragment is characterized as Heyting arithmetic with the recursive
ω-rule and theΣ0

1 law of excluded middle [6, 78]. Then, the “limit-BHK disjunction”
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includes all the information about the reducibility notion induced by learnable func-
tions on Baire space.

Furthermore, in this paper, we introduce more complicated disjunction-like opera-
tions using BHK-like interpretations represented as “dynamic proof models” or “nested
models”. For instance, a dynamic disjunction along a well-founded tree realizes the
concept of learnability with ordinal-bounded mind changes, and a dynamic disjunction
along an ill-founded tree realizes the concept of decomposability into countably many
computable functions along aΣ0

2 formula.
We also interpret these results in the context of the Weihrauch degrees and Wadge-

like games. We introduce a partial interpretation of nonconstructive principles includ-
ing LLPO and LPO in the Weihrauch degrees and characterize the noncomputabil-
ity/discontinuity level of nearly computable functions using these principles.

1.2. Results

In section 2, we introduce the notion of (α, β|γ)-computability for partial functions
onNN, for each ordinalα, β, γ ≤ ω. Then, the notion of (α, β|γ)-computability induces
just seven classes closed under composition.

• [CT ]1
1 denotes the set of all partial computable functions onNN.

• [CT ]1
<ω denotes the set of all partial functions onNN learnable with bounded

mind changes.

• [CT ]1
ω|<ω denotes the set of all partial functions onNN learnable with bounded

errors.

• [CT ]1
ω denotes the set of all partial learnable functions onNN.

• [CT ]<ω1 denotes the set of all partialk-wise computable functions onNN for some
k ∈ N.

• [CT ]<ωω denotes the set of all partial functions onNN learnable by a team.

• [CT ]ω1 denotes the set of all partial nonuniformly computable functions onNN

(i.e., all functionsf satisfying f (x) ≤T x for anyx ∈ dom(f )).

We will see that the following inclusions hold.

⊂ [CT ]<ω1 ⊂
[CT ]1

1 ⊂ [CT ]1
<ω ⊂ [CT ]1

ω|<ω [CT ]<ωω ⊂ [CT ]ω1⊂ [CT ]1
ω ⊂

These notions are characterized as the following piecewise computability notions, re-
spectively.

• dec1p[−] also denotes the set of all partial computable functions onNN.

• dec<ωd [Π0
1] denotes the set of all partial functions onNN that are decomposable

into finitely many partial computable functions with (Π0
1)2 domains, where a

(Π0
1)2 set is the difference of twoΠ0

1 sets.
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• dec<ωp [∆0
2] denotes the set of all partial functions onNN that are decomposable

into finitely many partial computable functions with∆0
2 domains.

• decωp [Π0
1] denotes the set of all partial functions onNN that are decomposable

into countably many partial computable functions withΠ0
1 domains.

• dec<ωp [−] denotes the set of all partial functions onNN that are decomposable
into finitely many partial computable functions.

• dec<ωp decωp [Π0
1] denotes the set of all partial functions onNN that are decompos-

able into finitely many partialΠ0
1-piecewise computable functions.

• decωp [−] denotes the set of all partial functions onNN that are decomposable into
countably many partial computable functions.

⊂ dec<ωp [−] ⊂
dec1p[−] ⊂ dec<ωd [Π0

1] ⊂ dec<ωp [∆0
2] dec<ωp decωp [Π0

1] ⊂ decωp [−]
⊂ decωp [Π0

1] ⊂

In Section 3, we formalize the disjunction operations. Medvedev interpreted the
intuitionistic disjunction as the coproduct (direct sum)⊕ : P(NN) × P(NN) → P(NN).
We will introduce the following disjunction operations⟦· ∨ ·⟧∗∗ : P(NN) × P(NN) →
P(NN):

• ⟦· ∨ ·⟧3LCM[n] is the disjunction operation onP(NN) induced by the backtrack
BHK-interpretation with mind-changes< n.

• ⟦· ∨ ·⟧2LCM is the disjunction operation onP(NN) induced by the two-tape BHK-
interpretation with finitely many mind-changes.

• ⟦· ∨ ·⟧3LCM is the disjunction operation onP(NN) induced by the backtrack BHK-
interpretation with finitely many mind-changes.

• ⟦· ∨ ·⟧2CL is the disjunction operation onP(NN) induced by the two-tape BHK-
interpretation permitting unbounded mind-changes.

Then, the direct sum⊕ is characterized as theLCM disjunction without mind-changes
⟦· ∨ ·⟧3LCM[1] . In section 5, we also introduce more complicated disjunction operations,
which will play key roles in Part II.

In section 4, we study the interaction between the disjunction operations and the
learnable/piecewise computable functions. We will construct new operations by iterat-
ing the disjunction operations introduced in Section 3 in the following way:

≥
⊕

m∈N⟦
∨(m) P⟧2CL ≥

P ≥
⊕

m∈N⟦P∨ P⟧3LCM[m] ≥
⊕

m∈N⟦
∨(m) P⟧2LCM

⊕
m∈N⟦

∨(m)⟦P∨ P⟧3LCM⟧
2
CL ≥

∪
m∈N⟦

∨(m) P⟧2CL≥ ⟦P∨ P⟧3LCM ≥

Every such operation induces a functor from the associated Medvedev/Muchnik-
like degree structure to the Medvedev degree structure. The main result is that every
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such functor is left adjoint to the canonical map from the Medvedev degree structure
onto the associated degree structure.

In section 6, we will see that how our classes of nonuniformly computable functions
relate to the arithmetical hierarchy of non-intuitionistic principles such asthe law of
excluded middle(LEM), the lessor limited principle of omniscienceor de Morgan’s
law (LLPO), andthe double negation elimination(DNE). The arithmetical hierarchy of
non-intuitionistic principles is illustrated as follows:

— Σ0
2-LLPO —

HA — Σ0
1-LEM — ∆0

2-LEM Σ0
2-LEM — Σ0

3-DNE
—

Σ0
2-DNE —

Here,Γ-LEM represents the sentenceφ∨¬φ for Γ-sentencesφ; Γ-LLPO represents
the sentence¬(φ∧ψ)→ ¬φ∨¬ψ for Γ-sentencesφ, ψ; andΓ-DNE represents the sen-
tence¬¬φ→ φ for Γ-sentencesφ. We interpret these principles as partial multi-valued
functions onNN, and then we characterize our notions of nonuniform computability by
using these principles in the context of the Weihrauch degrees. We also characterize
our notions by Wadge-like games.

1.3. Notations and Conventions
For any setsX andY, we say thatf is a function from X to Y(written f : X→ Y) if

the domain dom(f ) of f includesX, and the range range(f ) of f is included inY. We
also use the notationf :⊆ X→ Y to denote thatf is a partial function fromX to Y, i.e.,
the domain dom(f ) of f is included inX, and the range rng(f ) of f is also included in
Y.

For basic terminology in Computability Theory, see Soare [73]. Forσ ∈ N<N, we
let |σ| denote the length ofσ. Forσ ∈ N<N and f ∈ N<N ∪ NN, we say thatσ is an
initial segmentof f (denoted byσ ⊂ f ) if σ(n) = f (n) for eachn < |σ|. Moreover,
f ↾ n denotes the unique initial segment off of lengthn. Letσ− denote an immediate
predecessor node ofσ, i.e.σ− = σ ↾ (|σ| − 1). We also define [σ] = { f ∈ NN : f ⊃ σ}.
A tree is a subset ofN<N closed under taking initial segments. For any treeT ⊆ N<N,
we also let [T] be the set of all infinite paths ofT, i.e., f belongs to [T] if f ↾ n belongs
to T for eachn ∈ N. A nodeσ ∈ T is extendibleif [ T] ∩ [σ] , ∅. Let Text denote the
set of all extendible nodes ofT. We say thatσ ∈ T is a leafor a dead endif there is no
τ ∈ T with τ ⊋ σ.

For any setX, the treeX<N of finite words onX forms a monoid under concatenation
⌢. Herethe concatenation ofσ andτ is defined by (σ⌢τ)(n) = σ(n) for n < |σ| and
(σ⌢τ)(|σ| + n) = τ(n) for n < |τ|. We use symbols⌢ and

⊓
for the operation on this

monoid, where
⊓

i≤nσi denotesσ0
⌢σ1

⌢ . . . ⌢σn. To avoid confusion, the symbols×
and
∏

are only used for a product of sets. We often consider the following three left
monoid actions ofX<N: The first one is the setXN of infinite words onX with an
operation⌢ : X<N × XN → XN; (σ⌢ f )(n) = σ(n) for n < |σ| and (σ⌢ f )(|σ| + n) = f (n)
for n ∈ N. The second one is the setT (X) of subtreesT ⊆ X<N with an operation
⌢ : X<N × T (X) → T (X); σ⌢T = {σ⌢τ : τ ∈ T}. The third one is the power setP(XN)
of XN with an operation⌢ : X<N × P(XN)→ P(XN); σ⌢P = {σ⌢ f : f ∈ P}.

We say that a setP ⊆ NN isΠ0
1 if there is a computable relationRsuch thatP = { f ∈

NN : (∀n)R(n, f )} holds. Equivalently,P = [TP] for some computable treeTP ⊆ N<N.
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Let {Φe}e∈N be an effective enumeration of all Turing functionals (all partial computable
functions1) on NN. Then thee-th Π0

1 subset of 2N is defined byPe = { f ∈ 2N :
Φe( f ; 0) ↑}. Note that{Pe}e∈N is an effective enumeration of allΠ0

1 subsets of Cantor
space 2N. If (an indexeof) aΠ0

1 setPe ⊆ 2N is given, thenTe = {σ ∈ 2<N : Φe(σ; 0) ↑}
is calledthe corresponding tree for Pe. HereΦ(σ; n) for σ ∈ N<N andn ∈ N denotes
the computation ofΦ with an oracleσ, an inputn, and step|σ|. Whenever aΠ0

1 set
P is given, we assume that an indexe of P is also given. IfP ⊆ 2N is Π0

1, then
the corresponding treeTP ⊆ 2<N of P is computable, and [TP] = P. Moreover, the
set LP of all leaves of the computable treeTP is also computable. We also say that
a sequence of{Pi}i∈I of Π0

1 subsets of a spaceX is computableor uniform if the set
{(i, f ) ∈ I × X : f ∈ Pi} is again aΠ0

1 subset of the product spaceI × X. A setP ⊆ NN
is specialif P is nonempty andP has no computable member. Forf ,g ∈ NN, f ⊕ g is
defined by (f ⊕g)(2n) = f (n) and (f ⊕g)(2n+1) = g(n) for eachn ∈ N. ForP,Q ⊆ NN,
put P⊕ Q = (⟨0⟩⌢P) ∪ (⟨1⟩⌢Q) andP⊗ Q = { f ⊕ g : f ∈ P & g ∈ Q}.
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2. Nonuniformly Computable Discontinuous Functions

2.1. Piecewise Computable Functions

Our main objective in the paper is to study the intermediate notions of(uniform)
computabilityandnonuniform computability. The concept of nonuniform computabil-
ity can be rephrased ascountable computability, i.e., partial functions that are decom-
posable into countably many computable functions. One can expect that the class of
nonuniformly computable functions is classified on the basis of the least cardinality
and least complexity of the decomposition (see also Pauly [60]). For instance, if a
partial functionΓ :⊆ NN → NN is decomposable intok many computable functions,
we say that it isk-wise computableor (k, 1)-computable, and if Γ is decomposable
into countably many (finitely many, resp.) computable functions with uniformlyΛ-
definable domains, we say that it iscountable (finite, resp.)Λ-piecewise computable,
whereΛ is a lightface pointclass.

An important subclass of the piecewise computable functions consists of partial
functions that are identifiable in the limit ([29]). The relationship between the com-
putability with trial-and-error (limit computability or effective learnability) and the
subhierarchy of the level∆0

2 has been common knowledge among recursion theorists
since the last fifty years or so (see also Shoenfield [67], Gold [29], Putnam [62], and
Ershov [27]). A basic observation (see Theorem 26) regarding the concept of type-
two learnability (see also de Brecht-Yamamoto [24, 25]) is that a partial function on
NN isΠ0

1-piecewise computable if and only if it is identifiable in the limit or learnable
in the following sense: a partial functionΓ :⊆ NN → NN will be called learnable
or (1, ω)-computableif there is a computable functionΨ :⊆ N<N → N such that
Φlimn→∞ Ψ( f↾n)( f ) = Γ( f ) for every f ∈ dom(Γ), where recall that{Φe}e∈N is a fixed
enumeration of all partial computable functions. Such aΨ is called alearner.

We say that partial function̂Ψ :⊆ N<N → N dominatesΨ :⊆ N<N → N as a learner
if lim s Ψ̂( f ↾ s) converges to limsΨ( f ↾ s) whenever limsΨ( f ↾ s) converges. We
say that{Ψe}e∈N enumerates all learners if every partial functionΨ :⊆ N<N → N is
dominated by someΨe as a learner. To get a nice enumeration of all learners, we first
check the following proposition.
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Proposition 1. There is an effective enumeration{Ψe}e∈N of all learners that consists
of total functionsΨe : N<N → N.

Proof. For thee-th partial computable functionφe :⊆ N<N → N and an indexk, we
effectively define a total computable functionΨ⟨e,k⟩ : N<N → N that dominatesφe as a
learner. We defineΦ byΦ(⟨⟩) = k andΦ(σ) = φe(σ) for all nonempty stringsσ. Given
σ ∈ N<N, putσ∗ = max{τ ⊆ σ : Φ(τ) ↓ by stage|σ|}. Then defineΨ⟨e,k⟩(σ) = Φ(σ∗)
for everyσ ∈ N<N. If lim sΦe( f ↾ s) converges then clearly limsΨ⟨e,k⟩( f ↾ s) also
converges to the same value. Hence,Ψ⟨e,k⟩ dominatesφe. □

The set{Ψe}e∈N in Proposition 1 is referred asthe effective enumeration of all learn-
ers, andΨe is calledthe e-th learner.

Remark. We urge the reader not to confuse the notionsΨ(σ) andΦ(σ) for a learner
Ψ and a computable functionΦ (onNN). In the former case,Ψ(σ) simply denotes the
output (the inference) of the learnerΨ based on the current inputσ. In the latter case,
however, we useσ as an initial segment of some oracle information, and so reallyΦ(σ)
denotes a string⟨Φ(σ; 0),Φ(σ; 1),Φ(σ; 2), . . .⟩.

Notation. Let Ψ : N<N → N be a learner. For any stringσ ∈ N<N, the set ofmind-
change locations of the learnerΨ on the informantσ (denoted bymclΨ(σ)) is defined
by

mclΨ(σ) = {n < |σ| : Ψ(σ ↾ n+ 1) , Ψ(σ ↾ n)}.
We also definemclΨ( f ) =

∪
n∈N mclΨ( f ↾ n) for any f ∈ NN. Then, #mclΨ( f ) de-

notes thenumber of times that the learnerΨ changes her/his mind on the informant f.
Moreover, the set ofindices predicted by the learnerΨ on the informantσ (denoted by
indxΨ(σ)) is defined by

indxΨ(σ) = {Ψ(σ ↾ n) : n ≤ |σ|}.

We also defineindxΨ( f ) =
∪

n∈N indxΨ( f ↾ n) for any f ∈ NN.

We now introduce various subclasses of nonuniformly computable functions onNN

based on Learning Theory.

Definition 2. Let D be a subset of Baire spaceNN, andα, β, γ ≤ ω be ordinals. A
functionΓ : D→ NN is (α, β|γ)-computableif there is a setI ⊆ N of cardinalityα such
that, for anyg ∈ D, there is an indexe ∈ I satisfying the following three conditions.

1. (Learnability) limnΨe(g ↾ n) converges, andΦlimnΨe(g↾n)(g) = Γ(g).
2. (Mind-Change Condition) #mclΨe(g) = #{n ∈ N : Ψe(g ↾ n+ 1) , Ψe(g ↾ n)} <

β.
3. (Error Condition) #indxΨe(g) = #{Ψe(g ↾ n) : n ∈ N} ≤ γ.

If γ = ω, then we simply say thatΓ is (α, β)-computablefor (α, β|γ)-computable
function Γ. Let [CT ]αβ (resp. [CT ]α

β|γ) denote the set of all (α, β)-computable (resp.
(α, β|γ)-computable) functions. Hereafter, the symbol< ω will be used in referring
to “some natural numbern”. For instance,Γ is said to be (< ω, 2| < ω)-computable if
there area, c ∈ N such that it is (a, 2|c)-computable.
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Table 1: Seven Classes of Nonuniformly Computable Functions

[CT ]1
1 (Uniformly) computable

[CT ]1
<ω Learnable with bounded mind changes

[CT ]1
ω|<ω Learnable with bounded errors

[CT ]1
ω Learnable

[CT ]<ω1 k-wise computable for somek ∈ ω
[CT ]<ωω Learnable by a team
[CT ]ω1 Nonuniformly computable

⊆ [CT ]<ω1 = [CT ]<ω
ω|<ω ⊆

[CT ]1
1 ⊆ [CT ]1

<ω ⊆ [CT ]1
ω|<ω [CT ]<ωω ⊆ [CT ]ω1 = [CT ]ωω⊆ [CT ]1

ω ⊆

Table 2: Seven monoids of nonuniformly computable functions

Remark. Some of (α, β|γ)-computability notions are related to learnability notions:
Every (1, < ω)-computable function islearnable with bounded mind-changes; ev-
ery (1, ω| < ω)-computable function islearnable with bounded errors; every (1, ω)-
computable function islearnable; every (< ω,1)-computable function isk-wise com-
putable; and every (< ω,ω)-computable function isteam-learnable. The concept of
learnability in the context of real number computation has been studied by several re-
searchers including Chadzelek-Hotz [21], Ziegler [85, 86], and de Brecht-Yamamoto
[24, 25]. The notion of mind-change is also related to the level of discontinuity studied
by several researchers, for instance, Hertling [33], and Hemmerling [32]. See also Sec-
tion 5.3 for more information on the relationship between the notion of mind-changes
and the level of discontinuity. The notion ofk-wise computability has been also studied
by, for example, Pauly [60] and Ziegler [88].

We first mention the topological interpretation of the learnability. For a sequence
{σn}n∈N ∈ (N<N)N of strings, limnσn is defined by (limnσn)(m) = limn(σn(m)). If
limnσn : N → N is total, say limnσn = h ∈ NN, then we say that limnσn ∈ NN
converges to h.

Proposition 3. Fix an ordinalα ≤ ω. A partial functionΓ :⊆ NN → NN is (1, α)-
computable if and only if there is a total computable functionψ : N<N → N<N such
that limnψ(g ↾ n) converges toΓ(g), and#{n ∈ N : ψ(g ↾ n+ 1) ⊉ ψ(g ↾ n)} < α, for
any g∈ dom(Γ).

Proof. Assume thatΓ is (1, α)-computable via a learnerΨ. We putψ(σ) = ΦΨ(σ)(σ)
for eachσ ∈ N<N. Then the condition #mclΨ(g) < α implies #{n ∈ N : ψ(g ↾ n+ 1) ⊉
ψ(g ↾ n)} < α, for any g ∈ dom(Γ). Because ifΨ(g ↾ n + 1) = Ψ(g ↾ n), then
ψ(g ↾ n) = ΦΨ(g↾n)(g ↾ n) ⊆ ΦΨ(g↾n)(g ↾ n + 1) = ψ(g ↾ n + 1). Thus, clearly,
limnψ(g ↾ n) converges toΦlimnΨ(g↾n)(g) = Γ(g).
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Assume thatΓ(g) = limnψ(g ↾ n) for any g ∈ dom(Γ) for someψ satisfying the
condition in Proposition 3. We define a computable functionΦe(σ) : NN → NN for each
σ ∈ N<N. For anyg ∈ NN, putΦe(σ)(g; n) = ψ(g ↾ s)(n) for eachn ∈ N, wheres≥ |σ| is
the least number such thatψ(g ↾ s)(n) is defined. Clearly,Φe(σ) is partial computable,
and indeed, we can compute an indexe(σ) of Φe(σ) uniformly in σ ∈ N<N. Then, we
define a learnerΨ inductively. PutΨ(⟨⟩) = e(⟨⟩). Fix σ ∈ N<N, and assume thatΨ(σ−)
has already been defined. Ifψ(σ) ⊇ ψ(σ−), then setΨ(σ) = Ψ(σ−). If ψ(σ) ⊉ ψ(σ−),
then setΨ(σ) = e(σ). Clearly, the condition #{n ∈ N : ψ(g ↾ n+ 1) ⊉ ψ(g ↾ n)} < α
implies #mclΨ(g) < α, for any g ∈ dom(Γ). In particular, limnΨ(g ↾ n) converges
to some indexe(σ) for any g ∈ dom(Γ). Hence,ΦlimnΨ(g↾n)(g) =

∪
n≥|σ| ψ(g ↾ n) =

limn∈N ψ(g ↾ n) = Γ(g), since{ψ(g ↾ n)}n≥|σ| is an increasing sequence of strings.□

Corollary 4 (de Brecht-Yamamoto [24]). A partial functionΓ :⊆ NN → NN is (1, ω)-
computable if and only if there is a computable sequence{Γn}n∈N of partial computable
functions which converges pointwise toΓ ondom(Γ) with respect to the discrete topol-
ogy onNN.

Proof. By Proposition 3. □

2.2. Seven Classes of Nonuniformly Computable Functions

We first check several basic properties of (α, β|γ)-computability to show the fol-
lowing theorem stating that the classes obtained from Definition 2 closed under com-
position are exactly the classes listed in Table 1.

Theorem 5. {[CT ]α
β|γ : α, β, γ ∈ N ∪ {< ω,ω}} contains just seven monoids,[CT ]1

1,

[CT ]1
<ω, [CT ]1

ω|<ω, [CT ]<ω1 , [CT ]1
ω, [CT ]<ωω , and[CT ]ω1 .

Proposition 6. LetΓ be a partial function on Baire spaceNN.

1. If Γ is (α0, β0|γ0)-computable,α0 ≤ α1, β0 ≤ β1, and γ0 ≤ γ1, then Γ is
(α1, β1|γ1)-computable.

2. Γ is (α,1)-computable if and only ifΓ is (α, β|1)-computable.
3. Γ is (α, β)-computable if and only ifΓ is (α, β|β)-computable.
4. Γ is (1,1)-computable if and only ifΓ is computable.
5. Γ is (ω, 1)-computable if and only ifΓ is (ω,ω)-computable if and only ifΓ is

nonuniformly computable, i.e.,Γ(g) ≤T g for any g∈ dom(Γ), where recall that
≤T denotes the Turing reducibility.

Proof. The items (1) and (2) easily follow from the definitions. The item (3) follows
from #indxΨ(g) − 1 ≤ #mclΨ(g).

(4) If Γ is computable viaΦe, thenΓ is (1,1)-computable via the singleton{i(e)},
whereΨi(e)(σ) = e for anyσ ∈ N<N. Assume thatΓ is (1,1)-computable via a sin-
gleton{e}. ThenΨe(σ) = Ψe(⟨⟩) for anyσ extendible to an element of dom(Γ), since
#mclΨe(g) = 0 for anyg ∈ dom(Γ). Therefore,Γ is computable viaΦΨe(⟨⟩).

(5) If Γ is nonuniformly computable, thenΓ is (ω,1)-computable via{i(e)}e∈N,
whereΨi(e)(σ) = e for any σ ∈ N<N. Assume thatΓ is (ω,ω)-computable viaI .
For anyg ∈ dom(Γ), there ise ∈ I such that limnΨe(g ↾ n) converges to some value
p ∈ N, andΦp(g) = Γ(g). Thus,Γ(g) ≤T g viaΦp. □
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Proposition 7. For each m,n ∈ N, every(m, ω|n)-computable function is(m · n,1)-
computable.

Proof. Assume thatΓ : D → NN is (m, ω|n)-computable withm-learners{Ψe}e<m with
n-errors. Now, we define an algorithmΦe

k for anye < m andk < n, and we ensure the
following property:

(∀g ∈ D)(∃e< m)(k < n) Φe
k(g) = Γ(g).

The algorithmΦe
k proceeds as follows forg. Recall thatindxΨe(g) represents the set

of all indices occurring in hypothesis of the learnerΨe. We have an effective enumer-
ationde

0(g),de
1(g), . . . of all indices contained inindxΨe(g) uniformly in g. Then, we

setΦe
k(g) = Φde

k(g)(g) if de
k(g) is defined. For anyg ∈ D, there ise < m such that

limsΨ
e(g ↾ s) converges to some correct computationd of Γ(g), i.e.,Φd(g) = Γ(g).

Since #indxΨe(g) < n, we havede
k(g) = d for somek < n. Thus, for anyg ∈ D,

there aree < m andk < n such thatΦe
k(g) = Γ(g). Therefore, ifiek is an index of

Φe
k for eache < m and k < n, thenΓ is (m · n,1)-computable via an upper bound

max{iek : e< m & k < n}. □

Corollary 8. Γ is (< ω,ω| < ω)-computable if and only ifΓ is (< ω, 1)-computable.

Proof. Every (< ω,ω| < ω)-computable functionΓ is (m, ω|n)-computable for some
m,n < ω. Therefore, by Proposition 7,Γ is (m · n,1)-computable. In particular,Γ is
(< ω,1)-computable, sincem · n < ω. □

Proposition 9. For each i < 2, let Γi be a partial (αi , βi |γi)-computable function on
Baire spaceNN, whereαi , βi , γi ≤ ω are ordinals. ThenΓ1◦Γ0 is (α0∗α1, β0∗β1|γ0∗γ1)-
computable, where∗ is the multiplication as the cardinals, or equivalently,κ ∗ λ =
min{κ · λ, ω} for ordinalsκ, λ ≤ ω.

Proof. For eachi < 2, sinceΓi is (αi , βi |γi)-computable, there is a collection of learners,
{Ψi

j} j<αi and a cover{U i
j} j<αi of dom(Γi) such thatΓi( f ) = ΦlimnΨ

i
j ( f↾n)( f ↾ n) and

#mclΨi
j
( f ) < βi and #indxΨi

j
( f ) < γi , for any j < αi and f ∈ U i

j . Fix j < α0 and
k < α1. ThenΨ∗j,k(σ) is defined as follows. LetJ(σ) be the longest interval [r, |σ|)
satisfyingΨ0

j (σ ↾ r) = Ψ0
j (σ), and defineJ+(σ) = J(σ) \ {r}. If #(mclΨ1

k
∩ J+(σ)) <

β1 and #(indxΨ1
k
∩ J(σ)) < γ1, then putΨ∗j,k(σ) = Ψ1

k(ΦΨ0
j (σ)(σ)). Otherwise, put

Ψ∗j,k(σ) = Ψ∗j,k(σ
−). For givenσ, we compute an indexΨ j,k(σ), whereΦΨ j,k(σ)( f ) =

ΦΨ∗j,k(σ))(ΦΨ0
j (σ)( f )) for any f .

Note that f ∈ dom(Γ1 ◦ Γ0) if and only if f ∈ dom(Γ0) andΓ0( f ) ∈ dom(Γ1).
Therefore, for suchf , there arej < α0 andk < α1 such thatf ∈ U0

j andΓ0( f ) ∈ U1
k .

Assume thatf ∈ dom(Γ1 ◦ Γ0) ∩ U0
j andΓ0( f ) ∈ U1

k . It is easy to see thatΨ∗j,k is
computable, #mlcΨ∗j,k( f ) < β0 ∗ β1 and #indxΨ∗j,k( f ) < γ0 ∗ γ1. Moreover, there exist

s ande0 such thatΨ0
j ( f ↾ t) = Ψ0

j ( f ↾ s) = e0 for any t ≥ s. Fix suchs. Since

Φe0( f ) = Γ0( f ) ∈ U1
k , for any t ≥ s, #(mclΨ1

k
∩ J+( f ↾ t)) < β1 and #(indxΨ1

k
∩

J( f ↾ t)) < γ1, sinceJ( f ↾ t) = J( f ↾ s) and by our choice ofΨ1
k. Therefore,

limnΨ
∗
j,k( f ↾ n) converges to limnΨ1

k(Γ0( f ↾ n)). However, there existu ≥ s ande1
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such thatΨ1
k(Γ0( f ↾ v)) = Ψ1

k(Γ0( f ↾ u)) = e1 for anyv ≥ u, since{Γ0( f ↾ u)}u≥s is
an increasing sequence of strings andΓ0( f ) ∈ dom(Γ1). HereΦe1(Γ0( f )) = Γ1(Γ0( f )).
Thus,

ΦlimnΨ j,k( f↾n)( f ) = ΦlimnΨ
∗
j,k( f↾n)(ΦlimnΨ

0
j ( f↾n)( f )) = ΦlimnΨ

1
k(Γ0( f )↾n)(Γ0( f )) = Γ1(Γ0( f )).

Consequently,Γ1 ◦ Γ0 is (α0 ∗ α1, β0 ∗ β1|γ0 ∗ γ1)-computable, via{Ψ j,k} j<α0,k<α1. □

Corollary 10. [CT ]α
β|γ forms a monoid under composition, for anyα, β, γ ∈ {1, < ω, ω}.

Proof. Straightforward from Proposition 9. □

Proposition 11. [CT ]1
<ω is the smallest monoid including[CT ]1

2; [CT ]1
ω|<ω is the small-

est monoid including[CT ]1
ω|2. [CT ]<ω1 is the smallest monoid including[CT ]2

1; [CT ]<ωω is

the smallest monoid including[CT ]2
ω.

Proof. The first result is known, and indeed, it has also been proved in Mylatz’s PhD
thesis [56], but we also give a proof here for the sake of completeness. We first show
that every (1,n+ 1)-computable functionΓ can be represented asΓ = Γ1 ◦ Γ0 for some
(1,n)-computable functionΓ0 and (1, 2)-computable functionΓ1. LetΨ be a learner for
Γ. We define a learnerΨ0 for Γ0 and a learnerΨ1 for Γ1. For a given stringσ ∈ N<N,
let σ∗ ⊆ σ be the longest initial segment ofσ satisfying #mclΨ(σ∗) < n. Then, onσ,
the learnerΨ0 guesses an index of the partial computable functiong 7→ g⊕ ΦΨ(σ∗)(g),
i.e., Γ0(g) = ΦΨ0(σ)(g) = g ⊕ ΦΨ(σ∗)(g) for anyg ∈ NN. Note that #mclΨ0(g) < n for
anyg ∈ NN. Therefore,Γ0 is (1,n)-computable. Forσ ⊕ τ ∈ NN, if σ∗ = σ then the
learnerΨ1 guesses an index of the partial computable functiong⊕ h 7→ h. If σ∗ , σ,
thenΨ1 guesses an index of the partial computable functiong ⊕ h 7→ ΦΨ(σ)(g), i.e.,
ΦΨ1(σ⊕τ)(g⊕ h) = ΦΨ(σ)(g). SinceΓ is (1,n+ 1)-computable, and by the definition of
σ∗, it is easy to see thatΓ1 is (1,2)-computable. Forg ∈ NN, if #mclΨ(g) < n, then

Γ1(Γ0(g)) = Γ1(g⊕ Γ(g)) = Γ(g).

If #mclΨ(g) = n, then

Γ1(Γ0(g)) = Γ1(g⊕ ΦΨ(g∗)(g)) = Γ(g).

Consequently,Γ = Γ1 ◦ Γ0 as desired.
We next show that every (1, ω|n+ 1)-computable functionΓ can be represented as

Γ = Γ1◦Γ0 for some (1, ω|n)-computable functionΓ0 and (1, ω|2)-computable function
Γ1. Assume thatΨ is a learner forΓ, and we enumerate #indxΨ(σ) as{iσm}m≤|σ|. Here,
if m< n thenΨ guessesiσm beforeΨ guessesiσn on some initial segment ofσ. Note that,
if σ ⊆ τ andiσm is defined, theniσm = iτm. Onσ ∈ N<N, if Ψ(σ) , iσn , thenΨ0 guesses
an index of the partial computable functiong 7→ g⊕ ΦΨ(σ)(g). Otherwise,Ψ0 guesses
an index of the partial computable functiong 7→ g⊕ Φiσ0

(g). Then, the partial function
Γ0 identified by the learnerΨ0 is (1, ω|n)-computable. Onσ ⊕ τ ∈ N<N if Ψ(σ) , iσn ,
thenΨ1 guesses an index of the partial computable functiong⊕ h 7→ h. Otherwise,Ψ1

guesses an index of partial computable functiong⊕ h 7→ ΦΨ(σ)(g).
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We show that every (n+1,1)-computable functionΓ can be represented asΓ = Γ1◦
Γ0 for some (n, 1)-computable functionΓ0 and (2,1)-computable functionΓ1. Assume
thatΓ is (n+ 1,1)-computable via a collection{∆i}i≤n of partial computable functions.
For g ∈ NN, if Γ(g) = ∆i(g) for somei < n, thenΓ0(g) = g ⊕ ∆i(g). Otherwise, we
setΓ0(g) = g⊕ ∆0(g). Then, clearlyΓ0 is (n,1)-computable via{λg.g⊕ ∆i(g)}i<n. For
g ⊕ h ∈ NN, if Γ(g) = ∆i(g) for somei < n, thenΓ1(g ⊕ h) = h. Otherwise, we
setΓ1(g ⊕ h) = ∆n(g). Clearly,Γ1 is (2,1)-computable. Note that, ifg ∈ dom(Γ),
thenΓ(g) = ∆i(g) for somei ≤ n. If Γ(g) = ∆i(g) for somei < n, thenΓ1(Γ0(g)) =
Γ1(g ⊕ ∆i(g)) = ∆i(g). If Γ(g) = ∆n(g), thenΓ1(Γ0(g)) = Γ1(g ⊕ ∆0(g)) = ∆n(g).
Therefore,Γ(g) = Γ1 ◦ Γ0(g) for anyg ∈ dom(Γ). By the similar way, it is easy to see
that every (n+ 1, ω)-computable functionΓ can be represented asΓ = Γ1 ◦ Γ0 for some
(n, ω)-computable functionΓ0 and (2, ω)-computable functionΓ1. □

Proof of Theorem 5.By Proposition 6, we have [CT ]1
1|1 = [CT ]1

1|<ω = [CT ]1
1|ω = [CT ]1

<ω|1 =

[CT ]1
ω|1; [CT ]1

<ω|<ω = [CT ]1
1|<ω; and [CT ]ω1|1 = [CT ]ω

β|γ for any β, γ ∈ {1, < ω, ω}.
Moreover, by Proposition 6 and Proposition 7, [CT ]<ω1|1 = [CT ]<ω

β|γ whenever⟨β, γ⟩ ,
⟨ω,ω⟩. Therefore, by Proposition 9 and 11, we have just seven monoids, [CT ]1

1, [CT ]1
<ω,

[CT ]1
ω|<ω, [CT ]<ω1 , [CT ]1

ω, [CT ]<ωω , and [CT ]ω1 . □

2.3. Degree Structures and Brouwer Algebras

We will see some intuitionistic feature of our classes of nonuniformly computable
functions.

Definition 12. Let F be a monoid consisting of partial functionsΓ :⊆ NN → NN
under composition. Then,P(NN) is preordered by the relationP ≤F Q indicating the
existence of a functionΓ ∈ F from Q into P, that is,P ≤F Q if and only if there is
a partial functionΓ :⊆ NN → NN such thatΓ ∈ F andΓ(g) ∈ P for everyg ∈ Q.
LetD/F andP/F denote the quotient setsP(NN)/ ≡F andΠ0

1(2N)/ ≡F , respectively.
Here,Π0

1(2N) denotes the set of all nonemptyΠ0
1 subsets of 2N. For P ∈ P(NN), the

equivalence class{Q ⊆ NN : Q ≡F P} ∈ D/F is calledtheF -degreeof P.

Recall from Corollary 10 thatF = [CT ]α
β|γ forms a monoid for everyα, β, γ ∈ {1, <

ω, ω}.

Notation. If F = [CT ]α
β|γ for someα, β, γ ∈ {1, < ω, ω}, we write≤α

β|γ, Dα
β|γ, andPα

β|γ
instead of≤F ,D/F andP/F .

Remark. By Proposition 6 (4) and (5), the preorderings≤1
1 and≤ω1 are equivalent to

the Medvedev reducibility [51] and the Muchnik reducibility [54], respectively.

We also introduce the truth-table versions of Definition 2.

Definition 13. Let D be a subset of Baire spaceNN, andα, β, γ ≤ ω be ordinals. A
functionΓ : D → NN is (α, β|γ)-truth-table if there are a setI ⊆ N of cardinalityα,
and a collection{p(e, k) : e ∈ I & k < min{β, γ}} of indices oftruth-table functionals
(i.e., dom(Φp(e,k)) = NN) such that

1. (Popperian Condition) for anye ∈ I andσ ∈ N<N, there isk < z such that
Ψe(σ) = p(e, k).
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2. Γ is (α, β|γ)-computable via the family{Ψe}e∈I .

Here, we do not assume the uniform computability of the collection{p(e, k) : e ∈
I & k < min{β, γ}}. If γ = ω, then we simply say thatΓ is (α, β)-truth-tablefor (α, β|γ)-
truth-table functionΓ. Let [Ctt]αβ (resp. [Ctt]αβ|γ) denote the set of all (α, β)-truth-table
(resp. (α, β|γ)-truth-table) functions.

Remark. It is easily checked that the truth-table versions of Proposition 6, Proposition
9, Corollary 10 and Proposition 11 hold.

Notation. If F = [Ctt]αβ|γ for someα, β, γ ∈ {1, < ω, ω}, we write≤αtt,β|γ, Dα
tt,β|γ, and

Pαtt,β|γ instead of≤F ,D/F andP/F .

Proposition 14. ℵ0 = #[Cr ]1
1 = #[Cr ]1

<ω = #[Cr ]1
ω|<ω = #[Cr ]1

ω < #[Cr ]<ω1 = #[Cr ]<ωω =

#[Cr ]ω1 = 22ℵ0 , for each r∈ {tt,T}.

Proof. Every learnerΨ determines just one learnable functionΓ ∈ [CT ]1
ω. Therefore,

[CT ]1
ω is countable. For non-uniform computability, we first see #[CT ]ω1 ≤ 22ℵ0 since

#(NN)N
N

= 22ℵ0 by cardinal arithmetic. On the other hand, every functionΓ : NN →
{0N,1N} is (< ω, 1)-truth-table via two constant truth-table functionalsΓ0( f ) = 0N and
Γ1( f ) = 1N for any f ∈ NN. Therefore, #[Ctt]<ω1 ≥ 22ℵ0 . □

Proposition 15. For eachα, β, γ ∈ {1, < ω, ω}, the order structuresDα
β|γ,Dα

tt,β|γ, Pαβ|γ,
andPαtt,β|γ form lattices with top and bottom elements.

Proof. It is easy to see that the product⊗ and the sum⊕ form supremum and infimum
operations in these structures. Moreover, every degree structure has top and bottom
elements since it is coarser thanD1

1, that has top and bottom elements. □

If a lattice (L,≤,∨,∧) has the top element 1, the bottom element 0, and max{c :
c∧ a ≤ b} (denoted bya→L b) exists for anya,b ∈ L, thenL = (L,≤,∨,∧,→L,0,1)
is called aHeyting algebra. An algebraL = (L,≤,∨,∧,→,⊥,⊤) is aBrouwer algebra
if its dualLop = (L,≥,∧,∨,←,⊤,⊥) is a Heyting algebra. Recall that the Medvedev
latticeD1

1 and the Muchnik latticeDω
1 form Brouwer algebras [51, 54].

Proposition 16. The degree structuresD1
ω andD1

tt,ω are Brouwerian.

Proof. We just give a proof forD1
ω, although it is straightforward to modify the proof

for the truth-table version.
Set B(P,Q) = {R ⊆ NN : P ≤1

ω Q ⊗ R}. We need to a construct a functionβ :
P(NN) × P(NN) → P(NN) such thatβ(P,Q) = min B(P,Q) for any P,Q ⊆ NN. Let
Λe denote thee-th (1, ω)-computable function, i.e.,Λe(g) = ΦlimnΨe(g↾n)(g) for any
g ∈ dom(Λe). Defineβ as follows.

β(P,Q) = {e⌢g ∈ NN : (∀ f ∈ Q) Λe( f ⊕ g) ∈ P}.

It is easy to see thatβ(P,Q) ∈ B(P,Q) for any P,Q ⊆ NN. If R ∈ B(P,Q), say
Λe : Q⊗ R→ P, then clearlye⌢g ∈ β(P,Q) for anyg ∈ R. Thus,β(P,Q) ≤1

1 R. □
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In contrast, we will show in Part II thatneitherD1
<ω, nor D1

ω|<ω, nor D<ω
1 , nor

D<ω
ω form Brouwer algebras. In the meantime, the following modifications ofD1

<ω,
D1
ω|<ω, D<ω

1 , andD<ω
ω look more natural than our original definitions, from the view-

point of constructive mathematics. Indeed, in Proposition 20, we will see that these
modifications form Brouwer algebras.

Definition 17. Let D be a subset of Baire spaceNN, andα, β, γ ≤ ω be ordinals, or
eff. We generalize the (α, β|γ)-computability as follows. Ifα = eff, then we revise
the term “for anyg ∈ D, there ise ∈ I ” to the term “there is a partial computable
function B0 :⊆ NN → N such that, for anyg ∈ D, there ise < B0(g)”. If β = eff,
then we revise the mind change condition as #mclΨe(g) < B1(g), whereB1 is a partial
computable function fromNN to N. If γ = eff, then we revise the error condition as
#indxΨe(g) < B2(g), whereB2 is a partial computable function fromNN toN. For new
notions,≤α

β|γ,Dα
β|γ, andPα

β|γ are also defined as the usual way.

Proposition 18. Suppose that, ifτ = eff, then letτ∗ mean the symbol< ω, and
otherwise, setτ∗ = τ. Then, every(α, β|γ)-computable function with a compact domain
is (α∗, β∗|γ∗)-computable.

Proof. By continuity ofB0, B1, andB2 in Definition 17,{B−1
i ({e})}e∈N for eachi < 3 is

an open cover ofD. Hence, by compactness ofD, we have the desired condition. □

Corollary 19. P1
eff
= P1

<ω; P1
ω|eff = P1

ω|<ω; Peff1 = P<ω1 ; andPeffω = P<ωω . □

That is to say, forΠ0
1 subsets of Cantor space 2N, no new reducibility notion is con-

structed from Definition 17. However, from the perspective of intuitionistic caluculus,
our new notions in Definition 17 have nice features.

Proposition 20. D1
eff

,D1
ω|eff,Deff1 , andDeffω are Brouwerian.

Proof. Fix α, β, γ ∈ {1, < ω, eff, ω}, and setB(P,Q) = {R ⊆ NN : P ≤α
β|γ Q ⊗ R}.

We need to construct a functionβ : P(NN) × P(NN) → P(NN) such thatβ(P,Q) =
min B(P,Q) for anyP,Q ⊆ NN. LetΛe denote thee-th (1, ω)-computable function, and
Θe be thee-th partial computable function fromNN to N. Put changee(g) = #{n ∈ N :
Λe(g ↾ n+ 1) , Λe(g ↾ n)}, and errore(g) = #{Λe(g ↾ n) : n ∈ N}. Then,

β(P,Q) =



{(e, d)⌢g : (∀ f ∈ Q) Λe( f ⊕ g) ∈ P & #mclΛe( f ⊕ g) < Θd( f ⊕ g)},
if (α, β, γ) = (1, eff, ω),

{(e, d)⌢g : (∀ f ∈ Q) Λe( f ⊕ g) ∈ P & #indxΛe( f ⊕ g) < Θd( f ⊕ g)},
if (α, β, γ) = (1, ω, eff),

{d⌢g : (∀ f ∈ Q)(∃e< Θ( f ⊕ g)) Φe( f ⊕ g) ∈ P},
if (α, β, γ) = (eff,1, ω),

{d⌢g : (∀ f ∈ Q)(∃e< Θ( f ⊕ g)) Λe( f ⊕ g) ∈ P},
if (α, β, γ) = (eff, ω, ω),

It is easy to see thatβ(P,Q) ∈ B(P,Q) for any P,Q ⊆ NN. For the minimality, if
R ∈ B(P,Q), we have suitabled ande such that (d, e)⌢g ∈ β(P,Q) for anyg ∈ R. Thus,
β(P,Q) ≤1

1 R. □
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Remark. Unfortunately, neitherP1
eff

nor P1
ω|eff nor Peff1 nor Peffω form Brouwer

algebra (see Part II).

2.4. Falsifiable Problems and Total Functions

In Part II, we will mainly pay attention to the behavior of nonuniform computability
on Π0

1 subsets of Cantor space2N. Such a restriction has an interesting feature by
thinking of Π0

1 sets asfalsifiable mass problems. Consider a learnerΨ identifies a
(1, ω)-computable functionΓ : Q→ P. On an observationσ ∈ N<N with [σ] ∩ Q , ∅,
a learnerΨ conjectures thate is a correct algorithm computing a solution ofP from
σ, that is,ΦΨ(σ)( f ) = Φe( f ) ∈ P for any future observationf ∈ Q ∩ [σ]. If Q is Π0

1,
Proposition 21 (3) suggests that we may assume thate is an index of a total computable
function. Then, the learnerΨ can find mistakes of his hypothesis onP wheneverP is
also aΠ0

1 subset of the Baire spaceNN. Therefore, restricting toΠ0
1 subsets is expected

to be an analogy ofPopperian learning. In this context, the usual Popperian learning
on total computable functions could be regarded as a learning process onΠ0

1 singletons.
We first see that, if we restrict our attention toΠ0

1 sets, then some reducibility notions
collapse.

Proposition 21. Let P be aΠ0
1 subset ofNN, and X be any subset ofNN.

1. X ≤1
tt,1 P if and only if X≤1

1 P.

2. X ≤1
tt,<ω P if and only if X≤1

<ω P.
3. X ≤1

tt,ω P if and only if X≤1
ω P.

4. P ≤1
tt,<ω X if and only if P≤<ωtt,ω|<ω X.

5. P ≤1
tt,ω X if and only if P≤<ωtt,ω X.

Proof. (1) See Simpson [68].
(2,3) Assume thatX ≤1

ω P via a learnerΨ. FromΨ, we construct a Popperian
learnerΨ∗ : N<N → N, i.e.,Ψ(σ) is an index of truth-table functional for eachσ ∈ N<N.
We may assume thatΨ(σ) is defined, by Proposition 1. LetTP be the corresponding
computable tree forP. If σ < TP, thenΨ∗(σ) returns an index of the constant function
f 7→ 0N. If σ ∈ TP, then letΨ∗(σ) be an index of the following computation procedure.
Given f ∈ NN, at stages ∈ N, if σ 1 f , then returns 0N. If f ↾ s ∈ TP extendsσ,
andΨ( f ↾ t) = σ for any |σ| ≤ t ≤ s, then simulate the computation ofΦΨ(σ)( f ↾ s).
Otherwise, for the least such stages, returnsΦΨ(σ)( f ↾ s− 1)⌢0N. Clearly,ΦΨ∗(σ)( f )
defines an element ofNN, for any f ∈ NN. Moreover,Ψ∗ agrees withΨ on P, i.e.,
ΦlimnΨ∗( f↾n)( f ) = ΦlimnΨ( f↾n)( f ) for any f ∈ P.

(4,5) Assume thatP ≤<ωtt,ω|<ω X via n Popperian learners,{Ψi}i<n. Giveng ∈ X, on
the first challenge, our leaner∆ guesses thatΨ0(g ↾ 0) is a correct algorithm. As each
Ψi is Popperian, andP isΠ0

1, the predicateΦΨ0(g↾0)(g) ∈ P isΠ0
1. Therefore, whenever

ΦΨ0(g↾0)(g) ∈ P is incorrect, the learner∆ is able to understand that his guess is refuted.
If it happens, the learner goes to the next challenge. On the (ns+ i)-th challenge,∆
guesses thatΨi(g ↾ s) is correct. By continuing this procedure, eventually∆ learns a
collect algorithm to solve the problemP. Note that, if an (n,b, c)-computable function
exists fromX to P, then the learning procedure of∆ is stabilized before the (nc)-th
challenge starts, i.e.,∆ determines a (1,nc)-truth-table computable function. □
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Corollary 22. P1
tt,1 = P1

1; P1
tt,<ω = P1

tt,ω|<ω = P<ωtt,ω|<ω = P1
<ω; andP1

tt,ω = P<ωtt,ω = P1
ω.

Hence,{Pα
β|γ,Pαtt,β|γ : α, β, γ ∈ {1, < ω, ω}} consists of at most nine lattices:P1

1, P<ωtt,1,

P1
<ω, P1

ω|<ω, P<ω1 , P1
ω, P<ωω , Pωtt,1, andPω1 . □

One can interpreted≤1
1 (≤1

ω, resp.) as computable reducibility with no (finitely
many, resp.) mind-changes. We see how≤1

ω behaves like a dynamical-approximation
procedure.

Proposition 23. For anyΠ0
1 set P⊆ NN and any set Q⊆ NN, P ≤ω1 Q if and only if

(∃Ψ)(∀ f ∈ Q) Φlim inf nΨ( f↾n)( f ) ∈ P.

HereΨ ranges over all learners (i.e., computable functions fromN<N toN).

Proof. The “only if” part is obvious. For the “if” part, we will inductively defineΨ(σ)
and l(σ,e) for eachσ ∈ N<N ande ∈ N. Let TP denote the corresponding tree forP.
First, putΨ(⟨⟩) = 0 andl(⟨⟩,e) = 0 for eache. Now assume that, for anyτ ∈ N<N with
|τ| < |σ|, we have already definedΨ(τ), and l(τ,e) for eache ∈ N. Then, we define
Ψ(σ) andl(σ,e) for eacheas follows:

Ψ(σ) =

µe< |σ| [Φe(σ) ↾ (l(σ−,e) + 1) ∈ TP] if sucheexists,

|σ| otherwise

l(σ,e) =

l(σ−,e) + 1 if e= Ψ(σ),

l(σ−,e) otherwise.

By our assumptionP ≤ω1 Q, lim inf nΨ( f ↾ n) exists for all f ∈ P. Thus, the desired
conditionΦlim inf nΨ( f↾n)( f ) ∈ Q holds. □

Remark. Recall that a subset of 2N isΠ0
1 if and only if it is the set of all infinite paths

through a computable subtree of 2<N. Thus, in our model of inductive inference, each
learner tries to learn a program for an infinite branch ofT from a given infinite branch
of another treeT∗. Another model ofbranch learninghas been studied by Kummer-
Ott [47], and Ott-Stephan [59] in which each learner tries to learn a program for an
infinite computablebranch ofT from the global information aboutT. They pointed
out that the concept of branch learning is equivalent to learning winning strategies for
closed computable Gale-Stewart games, since the class ofΠ0

1 subsets of 2N correspond
exactly to the class of winning strategies for such games (see also Cenzer-Remmel
[20]). Case-Ott-Sharma-Stephan [17] explains the concept of branch learning by using
a temperature controller. In their model, each learner tries to learn a program for an
infinite computable branch ofT from the global information aboutT with an additional
information about one infinite branch of T, i.e., the learner may watch a humanmaster.
A k-wise variation for branch learning calledweak k-search problemhas been studied
by Kaufmann-Kummer [44].

2.5. Learnability versus Piecewise Computability

Now we characterize our classes of nonuniformly computable functions using the
concept of piecewise computability.
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Definition 24. For a classΛ of subsets of Baire spaceNN, we say that a collection
{Qi}i∈I is uniformlyΛ if the set{(i, f ) ∈ I × NN : f ∈ Qi} belongs toΛ. A partition or
a cover{Qi}i∈I of Q is (uniformly)Λ if there is a (uniform)Λ collection{Q∗i }i∈I such
thatQi = Q∩ Q∗i for any i ∈ I . We say that{Qi}i∈I is a (uniform)Λ layer of Qif there
is a uniformΛ collection{Q∗i }i∈I such thatQ∗i ⊆ Q∗i+1 for eachi ∈ I , {Q∗i }i∈I coversQ,
andQi = Q ∩ Q∗i . We also say that{Qi}i∈I is a (uniform)Λ d-layer of Qif there is a
(uniform)Λ layer{Q∗i }i∈I of Q such thatQi = Q∗i \ Q∗i−1 for any i ∈ I , whereQ∗−1 = ∅.

Remark. The terminology “layer” comes from the concept oflayerwise computability
in algorithmic randomness theory (see Hoyrup-Rojas [36]).

Definition 25. Let F be a class of partial functions onNN. For X ∈ ω ∪ {< ω,ω}
andx ∈ {p, c, d}, a partial functionsΓ :⊆ NN → NN is of class decXx [Λ]F if there is a
uniformΛ partition (if x = p), uniform cover (ifx = c) or uniformd-layer (if x = d),
{Qi}i∈I , of dom(Γ) such thatΓ ↾ Qi is contained inF uniformly in i ∈ I , whereI = X if
X ∈ ω ∪ {ω} andI ∈ ω if X =< ω. If F is the class of all partial computable functions,
we simply write decXx [Λ] instead of decXx [Λ]F . Moreover, ifΛ is the class of all subsets
of Baire space, then we write decX

x [−] and decXxF instead of decXx [Λ] and decXx [Λ]F ,
respectively. If we does not assume uniformity in the definition, we say thatΓ is of
decXx [Λ]F .

If Λ ∈ {Σ0
n,Π

0
n,∆

0
n}n∈N, for everyX ∈ {< ω,ω}, we have decXp [Λ] ⊆ decXc [Λ] ⊆

decXd [Λ] ⊆ decXp [(Λ)2]. Here a set is (Λ)2 if it is the difference of twoΛ sets. Note
that decωp [Π0

n] = decωc [Σ0
n+1] holds for everyn ∈ N. Our seven concepts of nonuniform

computability listed in Table 1 can be characterized as classes of piecewise computable
functions.

Theorem 26. Let k be any finite number.

1. [CT ]1
k = deckd[Π0

1].

2. [CT ]1
ω|k = deckx[∆

0
2] = deckc[Σ

0
2] for any x∈ {p, c,d}.

3. [CT ]1
ω = decωx [Π0

1] = decωx [∆0
2] = decωc [Σ0

2] for any x∈ {p, c,d}.
4. [CT ]k

1 = deckx[−] for any x∈ {p, c,d}.
5. [CT ]k

ω = deckydecωx [Π0
1] = deckydecωx [∆0

2] = deckydecωc [Σ0
2] for any x, y ∈ {p, c,d}.

6. [CT ]ω1 = decωx [−] for any x∈ {p, c, d}.

Proof. (1) LetΨ : N<N → N be a learner witnessingΓ ∈ [CT ]1
k. Then for eachm < k,

let mcΨ(≤ m) denote the set of allg ∈ NN such that #mclΨ(g) ≤ m. The setsmcΨ(< m)
andmcΨ(= m) are also defined by the same manner. Then, it is easy to check that
mcΨ(≤ m) andmcΨ(< m) areΠ0

1. For eachm < k, consider the following computable
procedureΦe(m): given g ∈ mcΨ(= m), look for the leastn ∈ N such that [g ↾ n] is
included in the open setmcΨ(≥ m), and then returnΦΨ(g↾n)(g). It is not hard to see
thatΓ is decomposable intok many computable functions{Φe(m)}m<k with Π0

1 d-layered
domains{mcΨ(= m)}m<k.

Conversely, assume thatΓ ∈ deckd[Π0
1] is given. Then,Γ is decomposed into com-

putable functions{Φe(m)}m<k with d-layered domains{Qm \ Qm−1}m<k, where{Qm}m<k

computable increasing sequence{Qm}m<k of Π0
1 sets withQ−1 = ∅. For eachσ ∈ N<N,
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we compute the leasti(σ) such thatσ ∈ TQi(σ) , i.e.,σ ∈ TQi(σ) \ TQi(σ)−1. Then, onσ ∈
N<N, the learnerΨ guessesΨ(σ) = e(i(σ)). By our assumption, for anyg ∈ dom(Γ),
we haveg ∈ Qi for somei ∈ N. Then, limnΨ(g ↾ n) converges to the leaste(i) such
thatg ∈ Qi . Again, by our assumption, we haveΦlimnΨ(g↾n)(g) = Φe(i)(g) = Γ(g) for any
g ∈ dom(Γ) ∩ (Qi \ Qi−1). Therefore, we haveΓ ∈ [CT ]1

k.

(2) LetΨ : N<N → N be a learner witnessingΓ ∈ [CT ]1
ω|k. We definereindexΨ :

N<N → N reindexingΨ(σ) in order of occurrence. PutreindexΨ(⟨⟩) = 0. Fix σ ∈
N<N, and assume thatreindexΨ(τ) has been already defined for eachτ ⊊ σ. If Ψ(σ) =
Ψ(τ) for someτ ⊊ σ, then we setreindexΨ(σ) = reindexΨ(τ) for suchτ. If there is
no suchτ, then we setreindexΨ(σ) = max{reindexΨ(τ) : τ ⊊ σ}+1. Our assumption
Γ ∈ [CT ]1

ω|k implies that for everyg ∈ dom(Γ), reindexΨ(g) = limn reindexΨ(g ↾ n)
converges to a value less thank. Hence,Rm = {g ∈ N<N : limn reindexΨ(g ↾ n) = m}
is∆0

2 in dom(Γ) uniformly inm< k. For eachm< k, consider the following computable
procedureΦe(m): giveng ∈ Rm, look for the leastn ∈ N such thatreindexΨ(g ↾ n) = m,
and then returnΦΨ(g↾n)(g). It is not hard to see thatΓ is decomposable intok many
computable functions{Φe(m)}m<k with ∆0

2 domains{Rm}m<k.
Conversely, assume thatΓ ∈ deckc[Σ

0
2] is given. Then,Γ is decomposed into com-

putable functions{Φe(m)}m<k with Σ0
2 domains{Qm}m<k. Then, there is a computable

relationR ⊆ N × N<N such thatQm = {g ∈ dom(Γ) : (∃s)(∀t > s) R(m, g ↾ t)} for
everym ∈ N. We setΨ(σ) = e(min({m : R(m, σ)} ∪ {k− 1})). Since dom(Γ) is covered
by {Qm}m<k, for anyg ∈ dom(Γ), limnΨ(g ↾ n) converges to some valuee(m), where
g ∈ Qm. Moreover, the definition ofΨ ensures that #{Ψ(σ) : σ ∈ N<N} ≤ k. Therefore,
we haveΓ ∈ [CT ]1

ω|k.

(3) It is straightforward to show the [CT ]1
ω = decωd [Π0

1] by the similar argument used
in proof of (1). Here, we note that decω

p [Π0
1] = decωc [Σ0

2] as mentioned above.

(4) It is obvious from the definition.

(5) Combine (3) and (4).

(6) It is obvious from the definition. □

Remark. It is not hard to see that dec<ω
p [Π0

1] is exactly the class of all partial com-
putable functions, because, given a finiteΠ0

1 partition {Qi}i<k andg ∈ dom(Γ), we can
effectively find the unique piece containingg.

Proposition 27. Let P and Q be subsets ofNN, where P isΠ0
n for n ≥ 2. Let k be any

finite number.

1. There isΓ : Q → P with Γ ∈ [CT ]k
1 if and only if there isΓ : Q → P with

Γ ∈ deckd[Π0
n].

2. There isΓ : Q → P with Γ ∈ [CT ]<ωω if and only if there isΓ : Q → P with
Γ ∈ dec<ωd [Π0

n]decωp [Π0
1].

3. There isΓ : Q → P with Γ ∈ [CT ]ω1 if and only if there isΓ : Q → P with
Γ ∈ decωd [Π0

n].
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Table 3: Seven Classes of Nonuniformly Computable Functions

[CT ]1
<ω dec<ωd [Π0

1] finite (Π0
1)2-piecewise computable

[CT ]1
ω|<ω dec<ωp [∆0

2] finite ∆0
2-piecewise computable

[CT ]1
ω decωp [Π0

1] Π0
1-piecewise computable

[CT ]<ω1 dec<ωp [−] finite piecewise computable
[CT ]<ωω dec<ωp decωp [Π0

1] finite piecewiseΠ0
1-piecewise computable

[CT ]ω1 decωp [−] countably computable

Hence,P<ω1 = P/dec<ωd [Π0
2], P<ωω = P/dec<ωd [Π0

2]decωp [Π0
1], andPω1 = P/decωd [Π0

2].
Here, recall from Definition 12 thatP/F denotes theF -degree structure of nonempty
Π0

1 subsets of Cantor space.

Proof. We can show the assertions (1) and (3) by the same argument. To see the asser-
tion (3), we assume thatP ≤ω1 Q. Every partial computable functionΦe can be assumed
to have aΠ0

2 domainDe. Then,Qe =
∪

d≤e(Dd∩Φ−1
d [P]) is Π0

n, and{Qe}e∈N forms aΠ0
n

layer. Moreover, it is not hard to see thatΦe maps every element ofQe \ Qe−1 into P.
For (2), we assume thatP ≤<ωω Q is witnessed by two functionsΓ ∈ dec2pdecωp [Π0

1]
by Theorem 26. Then there is a collection of partial computable functions{Γi

n}i<2,n∈N
and a partition{Ei}i<2 of Q and collections{Qi

n}n∈N of pairwise disjointΠ0
1 sets that

coversEi andΓ agrees withΓi
n on the domainEi ∩Qi

n for everyi < 2 andn ∈ N. Then,
E∗1 =

∪
n∈N(Q0

n ∩ (Γ0
n)−1[NN \ P]) is Σ0

n and included inE1. Thus,{E∗0,E∗1} forms aΠ0
n

d-layer, whereE∗0 = N
N \ E∗1. It is not hard to see thatΓ agrees withΓi

n on the domain
Q∩ E∗i ∩ Qi

n for everyi < 2 andn ∈ N. □

3. Strange Set Constructions

3.1. Medvedev’s Semantics for Intuitionism

To introduce useful set constructions, let us return back to Medvedev’s original
idea. To formulate semantics for the intuitionistic propositional calculus (IPC), Kol-
mogorov tried to interpret each proposition as a problem. Medvedev [51] formalized
his idea by interpreting each propositionp as a mass problem⟦p⟧ ⊆ NN. Under the
interpretation:

1. A proof π is a dynamical process represented by an infinite sequence of natural
numbers, i.e.,π ∈ NN.

2. ⟦p⟧ is the set of all proofs of a propositionp, i.e.,⟦p⟧ ⊆ NN.
3. A propositionp is provableif p has a computable proof, i.e.,⟦p⟧ ⊆ NN contains

a computable element.

To prove the disjunctionp0 ∨ p1, we need to algorithmically decide which part is
valid, i.e., we first declare one part to be valid and then construct a witness for this
part. Consequently,p0 ∨ p1 is provable under that interpretation if and only if we can
algorithmically construct an element of⟦p0∨p1⟧ = ⟦p0⟧⊕⟦p1⟧ = {⟨i⟩⌢ f : i < 2 & f ∈
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⟦pi⟧}. Generally, letForm denote the all propositional formulas. Medvedev’s idea is
defining a mass-problem-interpretation ofIPC by a function⟦·⟧ : Form → P(NN) as
in Definition 28.

Definition 28. We say that a function⟦·⟧ : Form → P(NN) is a Medvedev interpreta-
tion if it satisfies the following six conditions.

1. ⟦⊤⟧ contains a computable element.
2. ⟦⊥⟧ = ∅.
3. ⟦φ ∧ ψ⟧ = ⟦φ⟧ ⊗ ⟦ψ⟧ = { f ⊕ g : f ∈ ⟦φ⟧ & g ∈ ⟦ψ⟧}.
4. ⟦φ ∨ ψ⟧ = ⟦φ⟧ ⊕ ⟦ψ⟧ = {⟨0⟩⌢ f : f ∈ ⟦φ⟧} ∪ {⟨1⟩⌢g : g ∈ ⟦ψ⟧}.
5. ⟦φ→ ψ⟧ = ⟦φ⟧→⟦ψ⟧ = {e⌢g | Φe(g⊕ ∗) : ⟦φ⟧→ ⟦ψ⟧}.
6. ⟦¬φ⟧ = ⟦φ→ ⊥⟧.

Here,Φ(g⊕ ∗) denotes the partial functionλ f .Φ(g⊕ f ) :⊆ NN → NN, and recall that
Φe is thee-th partial computable function onNN. Arithmetical quantifications can also
be interpreted as follows.

7. ⟦∃nφ(n)⟧ =
⊕

n∈N⟦φ(n)⟧.
8. ⟦∀nφ(n)⟧ =

⊗
n∈N⟦φ(n)⟧.

As mentioned in Section 2.3, Medvedev [51] showed that the quotient algebraD1
1

called the Medvedev lattice is Brouwerian under Medvedev’s interpretation (Defini-
tion 28). Following him, Muchnik [54] showed thatDω

1 called the Muchnik lattice is
Brouwerian. Usually, the Medvedev reducibility is written as≤M or ≤s rather than≤1

1,
and the Muchnik reducibility is written by≤w rather than≤ω1 .

Remark.
1. Both of the Medvedev latticeD1

1 and the Muchnik latticeDω
1 provide sound and

complete semantics forJankov’s LogicKC = IPC + ¬p∨ ¬¬p, the intuitionistic
propositional logic withthe weak law of excluded middle, which is also called
De Morgan logic. The Medvedev lattice and the Muchnik lattice are extensively
studied from the aspect of Intermediate Logic. See Sorbi-Terwijn [76] and Hin-
man [35].

2. Forty years after the pioneering work by Muchnik, the Muchnik reducibility be-
come useful in the context of Reverse Mathematics (see Simpson [71]). The
reason is that the Muchnik reducibility≤ω1 is strongly associated with the prov-
ability relation inRCA, the recursive comprehension axiom. Then, the Muchnik
degrees ofΠ0

1 subsets of 2N might be seen as instances ofWKL, the weak König’s
lemma. For example, by using a result of Binns and Simpson [8] for the Much-
nik degrees ofΠ0

1 subsets of 2N, Mummert [55] obtains an embedding theorem
about the Lindenbaum algebra betweenRCA0 andWKL0.

3. For more basic results about the Medvedev and Muchnik degrees ofΠ0
1 subsets

of 2N, see Simpson [68–70, 72]. There are lots of research on the algebraic
structure of the Medvedev degrees ofΠ0

1 subsets of 2N, such as density [19], em-
beddability of distributive lattices [8], join-reducibility [7], meet-irreducibility
[2], noncuppability [18], decidability [22], and undecidability [66]. The struc-
ture of Weihrauch degrees, an extension of the Medvedev degrees, has also been
widely studied as a computable-analysistic approach to (Constructive) Reverse
Mathematics (see [11–13]).
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3.2. Disjunction Operations Based on Learning Theory

Hayashi [30, 31] introducedLimit Computable Mathematics(LCM), an extended
constructive mathematics based onLearning Theory. Like the BHK-interpretation for
intuitionistic logic, there is alimit-BHK interpratation for Limit Computable Math-
ematics. We introduce three mass-problem-interpretations⟦·⟧iLCM : Form → P(NN)
of LCM based on the limit-BHK interpretation. To formulate a mass-problem-style
interpretation ofLCM, imagine the followingdynamicproof models.

The one-tape modelis defined as follows: When a verifierΨ tries to prove that “P0

or P1”, a tapeΛ is given. At each stage,Ψ declares 0 or 1, and writes one letter on the
tapeΛ.

• Intuitionism : Ψ does not change his declaration, sayi ∈ {0,1}, and the infinite
word written on the tapeΛ witnesses the validity ofPi .

• LCM : the sequence of declarations ofΨ converges, sayi ∈ {0,1}, and the infinite
word written on the tapeΛ witnesses the validity ofPi .

• Classical: any declaration ofΨ is nonsense, and the infinite word written on the
tapeΛ witnesses the validity ofP0 or P1.

The two-tape modelis follows: When a verifierΨ tries to prove “P0 or P1”, two tapes
Λ0 andΛ1 are given. At each stage,Ψ declares 0 or 1, sayi, and he writes one letter on
the tapeΛi .

• Intuitionism : For eitheri < 2, the word written onΛ1−i is empty, and the infinite
word written onΛi witnesses the validity ofPi .

• LCM : For eitheri < 2, the word written onΛ1−i is finite, and the infinite word
written onΛi witnesses the validity ofPi .

• Classical: For eitheri < 2, the infinite word written onΛi witnesses the validity
of Pi .

The backtrack-tape model is follows: When a verifierΨ tries to prove that “P0 or
P1”, a cell□, and two infinite tapesΛ,∆ are given. The cell□ is calledthe declaration,
Λ is calledthe working tape, and∆ is calledthe record tape. At each stage, the verifier
Ψ works as follows.

1. If no letter is written on the declaration□, thenΨ declares 0 or 1 and this is
written on the declaration□ and the record tape∆.

2. When some letter is written on the declaration□, the verifierΨ chooses one letter
k fromN ∪ {♯}, and his choicek is written on the record tape∆.

(a) In the casek , ♯, it expresses thatΨ writes the letterk on the working tape
Λ.

(b) In the casek = ♯, it expresses thatΨ erases all letters from the declaration
□ and the working tapeΛ.

• Intuitionism : Ψ does not choose♯, hence he does not change his declaration,
sayi, and the infinite word written on the tapeΛ witnesses the validity ofPi .
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• LCM : Ψ chooses♯ at most finitely often, hence the sequence of declarations of
Ψ converges, sayi, and the infinite word written on the tapeΛ witnesses the
validity of Pi .

• Classical: No classical counterpart.

To give formal definitions of these dynamic proof models, we introduce some aux-
iliary definitions.

Definition 29 (Notations for One/Two-Tape Models). Let I ⊆ N be a set of indices
of working tapes. A pair (x0, x1) ∈ I × N indicates the instruction to write the let-
ter x1 ∈ N on the x0-th tape. Then every stringσ = (i(t),n(t))t<s ∈ (I × N)<N

can be think of as therecord of the process that obeys the sequence of instructions
(i(0),n(0)), (i(1),n(1)), . . . , (i(s− 1),n(s− 1)). Fixσ ∈ (I × N)<N, andi ∈ I . Thenthe
i-th projection ofσ is inductively defined as follows.

pri(⟨⟩) = ⟨⟩, pri(σ) =

pri(σ
−)⌢n, if σ = σ−⌢⟨(i,n)⟩,

pri(σ
−), otherwise.

The stringpri(σ) represents the word written on thei-th tape reconstructed from the
recordσ. Moreover,the number of times of mind-changes of (the process reconstructed
from a record)σ ∈ (I × N)<N is given by

mc(σ) = #{n < |σ| − 1 : (σ(n))0 , (σ(n+ 1))0}.

Here, forx = (x0, x1) ∈ I × N, the first (second, resp.) coordinatex0 (x1, resp.) is
denoted by (x)0 ((x)1, resp.). Furthermore, forf ∈ (I × N)N, we definepri( f ) =∪

n∈N pri( f ↾ n) for eachi ∈ I , andmc( f ) = limn mc( f ↾ n), where if the limit does not
exist, we writemc( f ) = ∞.

Definition 30 (Notations for Backtrack-Tape Models). For any setX and stringσ ∈
X<N, the n-th shiftσ↼n is defined asσ↼n(m) = σ(n+m) for eachm< |σ| − n. Thetail
ofσ is defined by

tail(σ) = σ↼n, for n = min{m ∈ N : σ(k) , ♯ for all k ≥ m}.

Intuitively, the symbol♯ indicates the instruction to erase all letters written on the
working tape. Hence, the stringtail(σ) extracts the remaining data from the record
σ after the latest erasing. Furthermore, forf ∈ XN, we definef↼n =

∪
m≥n( f ↾ m)↼n,

andtail( f ) = limmtail( f ↾ m) if the limit exists. Here, note that limmtail( f ↾ m)
exists if and only iff contains only finitely many♯’s.

Example 31. We consider two functionsσ ∈ (2× N)<N andτ ∈ (N ∪ {♯})<N.

1. If σ = ⟨(1,3), (1,1), (0,4), (0,15), (1, 9), (0, 26), (0,5)⟩, then the projections ofσ
arepr0(σ) = ⟨4, 15,26,5⟩, andpr1(σ) = ⟨3,1,9⟩. Moreover,mc(σ) = 3.

2. If τ = ⟨0,2,7,18,28, ♯,1,8,2,8,45, 9, ♯,0,4,52,35,3,6⟩, then the tail ofτ is
tail(τ) = τ↼13 = ⟨0,4,52,35,3,6⟩.
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Definition 32 (One-Tape Disjunctions). Let P0 andP1 be subsets of Baire spaceNN.

1. ⟦P0 ∨ P1⟧1Int =
∪

i<2({iN} ⊗ Pi).
2. ⟦P0 ∨ P1⟧1LCM =

∪
i<2({ f ∈ 2N : (∀∞n) f (n) = i} ⊗ Pi).

3. ⟦P0 ∨ P1⟧1CL =
∪

i<2(2N ⊗ Pi).

Here,iN denotes the infinite sequence consisting ofi’s, i.e., iN = ⟨i, i, i, . . . , i, i, i, . . .⟩.

Definition 33 (Two-Tape Disjunctions). Let P0 andP1 be subsets of Baire spaceNN.

1. ⟦P0 ∨ P1⟧2Int = { f ∈ (2× N)N : ((∃i < 2) pri( f ) ∈ Pi) & mc( f ) = 0}.
2. ⟦P0 ∨ P1⟧2LCM = { f ∈ (2× N)N : ((∃i < 2) pri( f ) ∈ Pi) & mc( f ) < ∞}.
3. ⟦P0 ∨ P1⟧2CL = { f ∈ (2× N)N : (∃i < 2) pri( f ) ∈ Pi}.

Definition 34 (Backtrack Disjunctions). Let P0 andP1 be subsets of Baire spaceNN.

1. ⟦P0 ∨ P1⟧3Int = { f ∈ (N ∪ {♯})N : tail( f )↼1 ∈ Ptail( f ;0) & (∀n) f (n) , ♯}.
2. ⟦P0 ∨ P1⟧3LCM = { f ∈ (N ∪ {♯})N : tail( f )↼1 ∈ Ptail( f ;0) & (∀∞n) f (n) , ♯}.

In Definition 34, for example, the stringτ = ⟨♯⟩⌢⟨i⟩⌢σ represents the record that a
verifierΨ erased all letters from tapes (this action is indicated by♯), declared thatPi is
valid, and wrote the wordσ on the working tape. That is to say,tail(τ; 0) = i is the
current declaration of the verifier andtail(τ)↼1 = σ is the current word written on
the working tape.

Remark. Note that we always have to choose a new symbol♯ which has not been
already used, since we may need to distinguish the new♯ from other symbols and other
♯’s used in other disjunctions. Formally, we can assume that all objects in our paper
are elements ofNN, subsets ofNN, or (partial) functions onNN by setting 0• = ♯,
(n+ 1)• = n, and f •(n) = f (n•) for everyn ∈ N. For instance,⟦P0 ∨ P1⟧3LCM is always
interpreted as the set⟦P0 ∨ P1⟧3•LCM of all f ∈ NN such thatf • ∈ ⟦P0 ∨ P1⟧3LCM, and
then⟦Q∨ ⟦P0 ∨ P1⟧3LCM⟧

3
LCM is interpreted as⟦Q∨ ⟦P0 ∨ P1⟧3•LCM⟧

3•
LCM of all f ∈ NN

such thatf • ∈ ⟦P0 ∨ P1⟧3LCM. Then, note that outer♯’s are automatically distinguished
from inner♯’s contained inf ∈ ⟦Q ∨ ⟦P0 ∨ P1⟧3•LCM⟧

3•
LCM. Hereafter,⟦P0 ∨ P1⟧3LCM is

identified with⟦P0 ∨ P1⟧3•LCM.

Notation. Hereafter, we frequently use the notationwrite(i, σ) for any i ∈ N and
σ ∈ N<N.

write(i, σ) = i |σ| ⊕ σ = ⟨(i, σ(0)), (i, σ(1)), (i, σ(2)), . . . , (i, σ(|σ| − 1))⟩.

This string indicates theinstruction to write the stringσ on the i-th tapein the one/two-
tape model. We also use the notationwrite(i, f ) =

∪
n∈N write(i, f ↾ n) = iN ⊕ f for

any f ∈ NN.

Proposition 35. Let P and Q be subsets of Baire spaceNN.

1. ⟦P∨ P⟧1X ≡1
1 P for each X∈ {Int, LCM,CL}.

2. ⟦P∨ Q⟧iCL ≤1
1 ⟦P∨ Q⟧iLCM ≤1

1 ⟦P∨ Q⟧iInt for each i∈ {1,2,3} (except forCL if
i = 3).
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3. ⟦P∨ Q⟧iX ≤1
1 ⟦P∨ Q⟧ j

X for each j≤ i and X∈ {Int, LCM,CL}.
4. P⊕ Q ≡1

1 ⟦P∨ Q⟧iInt for each i∈ {1,2,3}.
5. P∪ Q ≡1

1 ⟦P∨ Q⟧1CL.

Proof. (1) The reductionf ⊕ g 7→ g witnessesP ≤1
1 ⟦P ∨ P⟧1X, and the reduction

f 7→ write(0, f ) witnesses⟦P∨ P⟧1X ≤1
1 P, for eachX ∈ {Int, LCM,CL}. Intuitively,

write(0, f ) indicates the instruction, in the one-tape model, to declare “P0 is correct”
at each stage and to write the infinite wordf on the tapeΛ.

(2) Clearly,⟦P∨Q⟧iCL ⊇ ⟦P∨Q⟧iLCM ⊇ ⟦P∨Q⟧iInt for eachi ∈ {1,2,3} (except for
CL if i = 3).

(3) Fix X ∈ {Int, LCM,CL}. We inductively construct a computable functionΞ
witnessing⟦P ∨ Q⟧2X ≤1

1 ⟦P ∨ Q⟧1X. First setΞ(⟨⟩) = ⟨⟩, and assume thatΞ(σ ⊕ τ)
has been already defined for every stringsσ and τ of length s. Then we now de-
fine Ξ(σ ⊕ τ) for each stringsσ andτ of length s+ 1. We inductively assume that
pri(Ξ(σ− ⊕ τ−)) ⊆ τ− for eachi < 2 (recall thatσ− denotes the immediate predecessor
of σ). For p = |prσ(s)(Ξ(σ− ⊕ τ−))|, we putΞ(σ ⊕ τ) = Ξ(σ− ⊕ τ−)⌢write(σ(s), τ↼p).
Intuitively, this indicates the instruction to add some tailτ(p), τ(p+ 1), . . . , τ(s) to the
wordτ(0), τ(1), . . . , τ(p− 1) written on theσ(s)-tape. Then, we can inductively ensure
the following condition.

prσ(s)(Ξ(σ ⊕ τ)) = prσ(s)(Ξ(σ− ⊕ τ−))⌢(τ↼p) = (τ− ↾ p)⌢τ↼p = τ.

Finally, we setΞ( f ⊕ g) =
∪

n∈N Ξ(( f ↾ n) ⊕ (g ↾ n)), for any f ,g ∈ NN. Therefore,
for any f ⊕ g ∈ ⟦P∨ Q⟧1X and eachi < 2, if f (n) = i for infinitely manyn ∈ N, then
pri(Ξ( f ⊕ g)) is total, andpri(Ξ( f ⊕ g)) = g. By definition,pri(Ξ( f ⊕ g)) = g ∈ Pi for
somei < 2. Hence,Ξ( f ⊕ g) ∈ ⟦P∨ Q⟧2X.

Fix X ∈ {Int, LCM}. We inductively construct a computable functionΞ witnessing
⟦P ∨ Q⟧3X ≤1

1 ⟦P ∨ Q⟧2X. First setΞ(⟨(i,n)⟩) = ⟨i,n⟩ for each (i,n) ∈ 2 × N. Fix
σ = σ−−⌢⟨(i,m), ( j, n)⟩ ∈ (2× N)<N, and assume thatΞ(σ−) has been already defined.
Then, let us defineΞ(σ) as follows:

Ξ(σ−−⌢⟨(i,m), ( j,n)⟩) =
Ξ(σ−)⌢⟨n⟩ if j = i;

Ξ(σ−)⌢⟨♯, j⟩⌢pr j(σ) otherwise.

Finally setΞ( f ) =
∪

nΞ( f ↾ n), for any f ∈ (2 × N)N. It is easy to see thattail( f )
is defined for anyf ∈ ⟦P ∨ Q⟧2X, since #{k ∈ N : Ξ( f ; k) = ♯} = mc( f ). Therefore,
tail↼1(Ξ( f )) ∈ Ptail(Ξ( f );0). If X = Int, then no♯ occurs inΞ( f ).

(4) By definition,⟦P ∨ Q⟧3Int = P ⊕ Q. (5) The reductionf ⊕ g 7→ g witnesses
P ∪ Q ≤1

1 ⟦P ∨ Q⟧1CL, and the reductionf 7→ write(0, f ) = 0N ⊕ f witnesses⟦P ∨
Q⟧1CL ≤1

1 P∪ Q. □

Definition 36. For each proof model, there are variations ofLCM disjunctions, for any
bound of mind changes. Let P0,P1 be any subsets of Baire spaceNN, andn be any
natural number.

1. The one-tapeLCM disjunction of P0 and P1 with mind-changes-bound nis de-
fined as follows.

⟦P0∨P1⟧1LCM[n] = ⟦P0∨P1⟧1LCM∩{ f ∈ 2N : #{n ∈ N : f (n+1) , f (n)} < n}⊗2N.
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2. The two-tapeLCM disjunction of P0 and P1 with mind-changes-bound nis de-
fined as follows.

⟦P0 ∨ P1⟧2LCM[n] = ⟦P0 ∨ P1⟧2LCM ∩ { f ∈ (2× N)N : mc( f ) < n}.

3. The backtrack-tapeLCM disjunction of P0 and P1 with mind-changes-bound n
is defined as follows.

⟦P0 ∨ P1⟧3LCM[n] = ⟦P0 ∨ P1⟧3LCM ∩ { f ∈ (N ∪ {♯})N : #{k ∈ N : f (k) = ♯} < n}.

Proposition 37. Let P,Q be subsets of Baire spaceNN.

1. P⊕ Q ≡1
1 ⟦P∨ Q⟧iLCM[1] for each i∈ {1,2,3}.

2. ⟦P∨P⟧2LCM[2] ≡1
1 ⟦P∨P⟧3LCM[2] . Indeed,⟦

∨
i<n Pi⟧2LCM[n] ≡1

1 ⟦P∨P⟧3LCM[n] , where
Pi = P for each i< n. Here, for each collection{Pi}i<k of subsets of Baire space,
⟦
∨

i<k Pi⟧2LCM[n] is defined as follows.

{ f ∈ (k× N)N : ((∃i < k) pri( f ) ∈ Pi) & mc( f ) < n}.

Proof. (1) Clearly⟦P∨Q⟧iLCM[1] = ⟦P∨Q⟧iInt for eachi ∈ {1,2,3}. By Proposition 35
(4), we haveP⊕ Q ≡1

1 ⟦P∨ Q⟧iInt.
(2) The reductionΞ : h 7→ h∗ in the proof of Proposition 35 (3) also witnesses

⟦P ∨ P⟧3LCM[n] ≤1
1 ⟦
∨

i<n Pi⟧2LCM[n] . We inductively define a computable functionΞ∗

witnessing⟦
∨

i<n Pi⟧2LCM[n] ≤1
1 ⟦P ∨ P⟧3LCM[n] . PutΞ∗(⟨⟩) = ⟨⟩, and fixσ = σ−⌢⟨k⟩ ∈

(N ∪ {♯})<N. Assume thatΞ∗(σ−) has been already defined. Then,Ξ∗(σ) is defined as
follows.

count(σ) = #{m< |σ| : σ(m) = ♯},

Ξ∗(σ−⌢⟨k⟩) =
Ξ∗(σ−)⌢⟨(count(σ), k)⟩ if k , ♯,
Ξ∗(σ−) otherwise.

For anyg ∈ ⟦P ∨ P⟧3LCM[n] , we havecount(g ↾ s) < n for any s ∈ N, and hence
mc(Ξ∗(g)) < n, sinceg contains at mostn many♯’s. Moreover,prlims count(g↾s)(Ξ

∗(g)) =
tail(g)↼1 ∈ P. □

Proposition 38. Let P0, P1, Q0, and Q1 be subsets of Baire spaceNN, and fix i∈ {2,3}
and X ∈ {Int, LCM,CL} ∪ {LCM[n] : n ∈ N}. If P0 ≤1

1 Q0 and P1 ≤1
1 Q1, then

⟦P0 ∨ P1⟧iX ≤1
1 ⟦Q0 ∨ Q1⟧iX. Hence, the operatorDi

X : D1
1 × D1

1 → D1
1 introduced

byDi
X(deg1

1(P),deg1
1(Q)) = deg1

1(⟦P∨ Q⟧iX) is well-defined. Here,deg1
1(P) denotes the

equivalent class{R⊆ NN : R≡1
1 P}.

Proof. We first consider the two-tape model. Assume thatP0 ≤1
1 Q0 andP1 ≤1

1 Q1 via
computable functionsΓ0 andΓ1, respectively. We construct a computable function∆
witnessing⟦P0 ∨ P1⟧2X ≤1

1 ⟦Q0 ∨ Q1⟧2X. Set∆(⟨⟩) = ⟨⟩. Fix σ ∈ (2× N)<N and assume
that∆(σ−) has been already defined. For eachi < 2, we definenewΓi(pri(σ)) ∈ N<N by
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P∪ Q P⊕ Q

≡ ≡

⟦P∨ Q⟧1CL ≤ (≡) ⟦P∨ Q⟧1LCM ≤ (≡) ⟦P∨ Q⟧1LCM[2] ≤ (≡) ⟦P∨ Q⟧1Int

≤ ≤ ≤ ≡

⟦P∨ Q⟧2CL ≤ ⟦P∨ Q⟧2LCM ≤ ⟦P∨ Q⟧2LCM[2] ≤ ⟦P∨ Q⟧2Int

≤ ≤ ( ≡) ≡

⟦P∨ Q⟧3LCM ≤ ⟦P∨ Q⟧3LCM[2] ≤ ⟦P∨ Q⟧3Int

Table 4: Degrees of difficulty of disjunctions, where≤ and≡ denote the Medvedev reducibility and equiva-
lence, and (≡) denotes the Medvedev equivalence whenP = Q

the unique string such thatΓi(pri(σ)) = Γi(pri(σ
−))⌢newΓi(pri(σ)). Then we define

∆(σ) as follows.

∆(σ) = ∆(σ−)⌢write(0, newΓ0(pr0(σ)))⌢write(1, newΓ1(pr1(σ))).

Note thatnewΓi(pri(σ)) = ⟨⟩ for somei < 2, sincepri(σ) = pri(σ
−) for either

i < 2. Therefore,mc(∆(g)) = mc(g) for any g ∈ NN. Furthermore, for anyg ∈ NN,
we havepri(∆(g)) = Γi(pri(g)) for eachi < 2. Thus,∆(g) ∈ ⟦P0 ∨ P1⟧2X for any
g ∈ ⟦Q0 ∨ Q1⟧2X.

Next we consider the backtrack-tape model. Assume thatP0 ≤1
1 Q0 andP1 ≤1

1 Q1

via computable functionsΓ0 andΓ1, respectively. We construct a computable function
Θ witnessing⟦P0 ∨ P1⟧3X ≤1

1 ⟦Q0 ∨ Q1⟧3X. SetΘ(⟨⟩) = ⟨⟩. Fix σ ∈ (N ∪ {♯})<N and
assume thatΘ(τ) has been already defined for eachτ ⊊ σ. If σ = σ−−⌢⟨m,n⟩ for some
m,n ∈ N, then we haveΓtail(σ;0)(tail(σ)↼1) = Γtail(σ;0)(tail(σ)↼1)⌢η for some
η ∈ N<N, and we defineΘ(σ) = Θ(σ−)⌢η. If σ = σ−−⌢⟨♯, i⟩ for somei < 2, i.e.,
tail(σ; 0) = i, then defineΘ(σ) = Θ(σ−)⌢⟨♯, i⟩. Otherwise, we setΘ(σ) = Θ(σ−).
Note that #{n ∈ N : Θ(g; n) = ♯} = #{n ∈ N : g(n) = ♯} for anyg ∈ NN. Furthermore,
tail(Θ(g); 0) = tail(g; 0), andtail(Θ(g))↼1 = Γtail(g;0)(tail(g)↼1) for any g ∈
⟦Q0 ∨ Q1⟧3X. Hence,Θ(g) ∈ ⟦P0 ∨ P1⟧3X for anyg ∈ ⟦Q0 ∨ Q1⟧3X. □

Remark. Though the original limit-BHK interpretation of the disjunctive notion seems
to be a one-tape notion, we will observe that the two-tape notions and the backtrack
notions exhibit amazing and fascinating behaviors as operations on the subsets of Baire
space. While the one-tape models are almost static, the two-tape models can be under-
stood as learning proof models withbounded-errors, and the backtrack tape models
can be understood as learning proof models with no predetermined bound for errors.
In Part II, we adopt the two-tape notions except for the classical one-tape disjunction
∪, since the two-tape notions (the bounded-errors learning models) are useful to clarify
differences among the classes [CT ]1

1, [CT ]1
<ω, [CT ]1

ω|<ω, [CT ]<ω1 of bounded-errors func-
tions. In Part II, we also adopt dynamic generalizations of the backtrack tape models
since such models turn out to be a strong tool to establish many theorems.
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4. Galois Connection

4.1. Decomposing Disjunction by Piecewise Computable Functions
The main theorem in this section (Theorem 40) states that our degree structures

Dα
β|γ (Definition 12) are completely characterized by the disjunction operations (Defi-

nitions 32, 33, and 34).

Proposition 39(Untangling). Let P,Q be subsets of Baire spaceNN.

1. There is a(1,n|2)-truth-table functionΓ : ⟦P∨ Q⟧1LCM[n] → P⊕ Q.

2. There is a(1,n|2)-computable functionΓ : ⟦P∨ Q⟧2LCM[n] → P⊕ Q.

3. There is a(1,n)-computable functionΓ : ⟦P∨ Q⟧3LCM[n] → P⊕ Q.

4. There is a(1, ω|2)-truth-table functionΓ : ⟦P∨ Q⟧1LCM → P⊕ Q.
5. There is a(1, ω|2)-computable functionΓ : ⟦P∨ Q⟧2LCM → P⊕ Q.
6. There is a(1, ω)-computable functionΓ : ⟦P∨ Q⟧3LCM → P⊕ Q.
7. There is a(2,1)-truth-table functionΓ : ⟦P∨ Q⟧1CL → P⊕ Q.
8. There is a(2,1)-computable functionΓ : ⟦P∨ Q⟧2CL → P⊕ Q.

Proof. For the items (1), (4), and (7), we consider the truth-table functionals∆0 :
f ⊕ g 7→ 0⌢g and∆1 : f ⊕ g 7→ 1⌢g. By the definition of⟦P ∨ Q⟧1CL, obviously
∆0( f ⊕ g) ∈ P⊕ Q or ∆1( f ⊕ g) ∈ P⊕ Q for any f ⊕ g ∈ ⟦P∨ Q⟧1CL. Let e0 ande1 be
indices of∆0 and∆1, respectively. Onσ ⊕ τ ∈ (2× N)<N, we setΨ(σ ⊕ τ) = eσ(|σ|−1).
Note that the partial functionΓ identified by the learnerΨ is (1,n|2)-truth-table on
⟦P∨ Q⟧1LCM[n] , and (1, ω|2)-truth-table on⟦P∨ Q⟧1LCM. Moreover, clearlyΓ( f ⊕ g) =
(lims f (s))⌢g ∈ P⊕ Q for every f ⊕ g ∈ ⟦P∨ Q⟧1LCM.

For the items (2), (5), and (8), we consider the partial computable functions∆0 :
f 7→ 0⌢pr0( f ) and∆1 : f 7→ 1⌢pr1( f ). By the definition of⟦P ∨ Q⟧2CL, obviously
∆0( f ) ∈ P ⊕ Q or ∆1( f ) ∈ P ⊕ Q for any f ∈ ⟦P∨ Q⟧2CL. Let e0 ande1 be indices of
∆0 and∆1, respectively. Onσ ∈ (2 × N)<N, we setΨ(σ) = e(σ(|σ|−1))0. Note that the
partial functionΓ identified by the learnerΨ is (1,n|2)-computable on⟦P∨ Q⟧2LCM[n] ,
and (1, ω|2)-computable on⟦P ∨ Q⟧2LCM. Moreover, clearlyΓ( f ) ∈ P ⊕ Q for every
f ∈ ⟦P∨ Q⟧2LCM.

For the items (3) and (6), onσ ∈ (N ∪ {♯})<N, Ψ(σ) guesses an index of the partial
computable functiong 7→ g↼t(σ), wheret(σ) = max{n : σ(n) = ♯} + 1 if suchn exists;
otherwise,t(σ) = 0. Note that the partial functionΓ identified by the learnerΨ is
(1,n)-computable on⟦P∨Q⟧3LCM[n] , and (1, ω)-computable on⟦P∨Q⟧3LCM. Moreover,

clearlyΓ( f ) ∈ P⊕ Q for every f ∈ ⟦P∨ Q⟧3LCM. □

Notation. One can iterate two-tape disjunction operations as⟦
∨(1) P⟧2X = P, and

⟦
∨(n+1) P⟧2X = ⟦P ∨ ⟦

∨(n) P⟧2X⟧
2
X. Then, for instance,⟦

∨(n) P⟧2LCM can be identified
with the following subset of Baire space.

{ f ∈ (n× N)N : ((∃i < n) pri( f ) ∈ P) & mc( f ) < ∞}.
As in the proof of Proposition 38, we use the notationnewΓ(σ) for any function

Γ : N<N → N<N andσ ∈ N<N in the proof of the next theorem. Here,newΓ(σ) is the
unique string that satisfies the following condition.

Γ(σ) = Γ(σ−)⌢newΓ(σ).
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Theorem 40. Let P and Q be any subsets of Baire spaceNN.

1. P ≤1
<ω Q if and only if⟦P∨ P⟧3LCM[m] ≤1

1 Q for some m∈ N.

2. P ≤1
ω|<ω Q if and only if⟦

∨(m) P⟧2LCM ≤1
1 Q for some m∈ N.

3. P ≤1
ω Q if and only if⟦P∨ P⟧3LCM ≤1

1 Q.

4. P ≤<ω1 Q if and only if⟦
∨(m) P⟧2CL ≤1

1 Q for some m∈ N.

5. P ≤<ωω Q if and only if⟦
∨(m)⟦P∨ P⟧3LCM⟧

2
CL ≤1

1 Q.

6. P ≤ω1 Q if and only if
∪

m∈N⟦
∨(m) P⟧2CL ≤1

1 Q.

Proof. The “if” parts of all items follow from Proposition 39. We show the “only if”
part for every item.

(1) Assume thatP ≤1
<ω Q via a learnerΨ with mind-change-boundn. We need to

construct a computable function∆ witnessing⟦P ∨ P⟧3LCM[n] ≤1
1 Q. For anyg ∈ Q,

by uniformly computable procedure, we can enumerate all elements ofmclΨ(g) as
mg

0,m
g
1, . . . ,m

g
k−1, wherek < n. Then, we define∆(g) as follows.

∆(g) = 0⌢ΦΨ(⟨⟩)(g ↾ mg
0)⌢♯⌢0⌢

⊓
j<k−1

ΦΨ(g↾mg
i +1)(g ↾ mg

i )⌢♯⌢0

 ⌢ΦΨ(g↾mg
k−1+1)(g).

It is easy to see that∆ is computable. Note thattail(∆(g)) = ΦΨ(g↾mg
k−1+1)(g) ∈ P, since

P ≤1
<ω Q viaΨ, and limsΨ(g ↾ s) converges toΨ(g ↾ mg

k−1+ 1). Furthermore,♯ occurs
k times in∆(g), andk < n because of mind-change-boundn. Thus,∆(g) ∈ ⟦P∨P⟧3LCM[n]
for anyg ∈ Q, as desired.

(2) Assume thatP ≤1
ω|<ω Q via a leanerΨ, where #indxΨ(g) < n for anyg ∈ Q.

We need to construct a computable function∆ witnessing⟦
∨(n) P⟧2LCM ≤1

1 Q. We again
use the functionreindexΨ : N<N → N defined in the proof of Theorem 26 (2). Fix
σ ∈ N<N. Pick the greatest substringτ ⊊ σ such thatΨ(τ) = Ψ(σ). Then, define
new∗ΦΨ(σ)(σ) by the uniqueη such thatΦΨ(σ)(σ) = ΦΨ(σ)(τ)⌢η. Here, if there is no
suchτ, then we definenew∗ΦΨ(σ)(σ) = ΦΨ(σ)(σ). Assume that∆(σ−) has been already
defined. Then, we define∆(σ) as follows.

∆(σ) = ∆(σ−)⌢write(reindexΨ(σ), new∗ΦΨ(σ)(σ)).

Fix g ∈ Q. Note thatreindexΨ(g ↾ s) < n for eachs ∈ N, since #indxΨ(g) <
n. Thus, we have∆(g) ∈ (n × N)N. Moreover,mc(∆(g)) < ∞, sinceΨ is a learner
converging onQ. Thus, limsΨ(g ↾ s) and hence limsreindexΨ(g ↾ s) converge.
Therefore,prlims reindexΨ(g↾s)(∆(g)) = ΦlimsΨ(g↾s)(g) ∈ P. Hence,⟦

∨(n) P⟧2LCM ≤1
1 Q.

(3) By similar argument used in proof of (1).

(4) Assume thatP ≤<ω1 Q via a finite collection{Φe}e<n of partial computable
functions. We need to construct a computable function∆ witnessing⟦

∨(n) P⟧2CL ≤1
1 Q.

Assume that∆(σ−) is already defined. Define∆(σ) as follows.

∆(σ) = ∆(σ−)⌢
⊓
e<n

write(e, newΦe(σ)).
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Note thatpre(∆(g)) ∈ P if Φe(g) ∈ P. Thus, for anyg ∈ Q, we havepre(∆(g)) ∈ P
for somee< n. In other words,⟦

∨(m) P⟧2CL ≤1
1 Q via ∆.

(5) Assume thatP ≤<ωω via a team{Ψi}i<n of learners. We construct a computable
function∆. We first set∆(⟨⟩) = ⟨⟩. Fix σ ∈ N<N, and assume that∆(σ−) has been
already defined. We defineησi ∈ N<N for eachi < n as follows. Fixi < n. If Ψi(σ) =
Ψi(σ−), putnew∗∗ΦΨi (σ)(σ) = newΦΨi (σ)(σ). If Ψi(σ) , Ψi(σ−), putnew∗∗ΦΨi (σ)(σ) =
♯⌢ΦΨi (σ)(σ). Then, we define∆(σ) as follows.

∆(σ) = ∆(σ−)⌢
⊓
i<n

write(i, new∗∗ΦΨi (σ)(σ)).

Pick g ∈ Q. Then, by our assumption,ΦlimnΨi (g↾n)(g) ∈ P for somei < b. Then
tail(pri(∆(g))) converges, andtail(pri(∆(g)))↼1 = ΦlimnΨi (g↾n)(g) ∈ P. Thus,∆(g) ∈
⟦
∨(m)⟦P∨ P⟧3LCM⟧

2
CL.

(6) Assume thatP ≤ω1 Q. We need to construct a computable function∆ witnessing∪
m∈N⟦
∨(m) P⟧2CL ≤1

1 Q. Assume that∆(σ−) has been already defined. Define∆(σ) as
follows.

∆(σ) = ∆(σ−)⌢
⊓

e<|σ|
write(e, newΦe(σ))

 ⌢(write(|σ|,Φ|σ|(σ))).

Note thatpre(∆(g)) = Φe(g). Thus, for anyg ∈ Q, we havepre(∆(g)) ∈ P for some
e ∈ N. In other words,

∪
m∈N⟦
∨(m) P⟧2CL ≤1

1 Q via ∆. □

Remark. Given an operationO : P(NN) × P(NN) → P(NN), one can introduce the
reducibility notion≤O by definingP ≤O Q asO(n)(P) ≤1

1 Q for somen ∈ N, where
O(1)(P) = P and O(n+1)(P) = O(P,O(n)(P)). Then, Theorem 40 indicates that our
reducibility notions induced by seven monoids in Theorem 5 are also induced from
corresponding disjunction operations.

4.2. Galois Connection between Degree Structures

Remark. For degree structuresDu andDr on P(NN), each operatorO : P(NN) →
P(NN) induces the new operatorOur : Du→ Dr defined byOur(degu(P)) = degr (O(P))
for any P ⊆ NN. We identifyO with Our wheneverOur is well-defined. Recall that
every partially ordered set can be viewed as a category. Sorbi [75] showed thatD̂eg :
Dω

1 → D1
1 is left-adjoint to id :D1

1→ Dω
1 , and id◦ D̂eg :Dω

1 → Dω
1 is identity, where

D̂eg(P) denotes the Turing upward closure ofP ⊆ NN.

Definition 41.

1. V1
eff

(P) =
⊕

m∈N⟦P∨ P⟧3LCM[m] .

2. V1
ω|eff(P) =

⊕
m∈N⟦
∨(m) P⟧2LCM.

3. V1
ω(P) = ⟦P∨ P⟧3LCM.

4. Veff1 (P) =
⊕

m∈N⟦
∨(m) P⟧2CL.

5. Veffω (P) =
⊕

m∈N⟦
∨(m)⟦P∨ P⟧3LCM⟧

2
CL.
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6. Vω1 (P) =
∪

m∈N⟦
∨(m) P⟧2CL.

Corollary 42.

1. V1
eff

: D1
eff
→ D1

1 is left-adjoint toidP(NN) : D1
1 → D1

eff
, and idP(NN) ◦ V1

eff
is

the identity onD1
eff

.
2. V1

ω|eff : D1
ω|eff → D1

1 is left-adjoint toidP(NN) : D1
1 → D1

ω|eff, and idP(NN) ◦
V1
ω|eff is the identity onD1

ω|eff.

3. V1
ω : D1

ω → D1
1 is left-adjoint toidP(NN) : D1

1 → D1
ω, and idP(NN) ◦ V1

ω is the
identity onD1

ω.
4. Veff1 : Deff1 → D1

1 is left-adjoint toidP(NN) : D1
1 → Deff1 , and idP(NN) ◦ Veff1 is

the identity onDeff1 .
5. Veffω : Deffω → D1

1 is left-adjoint toidP(NN) : D1
1 → Deffω , and idP(NN) ◦ Veffω is

the identity onDeffω .
6. Vω1 : Dω

1 → D1
1 is left-adjoint toidP(NN) : D1

1 → Dω
1 , and idP(NN) ◦ Vω1 is the

identity onDω
1 .

Proof. By Theorem 26. □

4.3. Σ0
2 Decompositions

In computability theory, we sometimes encounter conditional branching given by a
Σ0

2 formulaS ≡ ∃nS̃(n). That is, ifS is true, one chooses a procedurep1, and if S is
false, one chooses another procedurep2. Thus, one may definethe computability with
a Σ0

2 conditional branchingas the class dec2
d[Π0

2]. However, even if we know thatS is
true, we have no algorithm to find a witness ofS sinceS̃(n) isΠ0

1, while we sometimes
require a witness ofS. This observation motivates us to study a missing interesting
subclass of the nonuniformly computable functions.

Proposition 43. dec<ωd [Π0
2]decωp [Π0

1] is the smallest monoid includingdec2d[Π0
2] and

decωp [Π0
1].

Proof. It suffices to show that everyΓ ∈ dec2d[Π0
2]decωp [Π0

1] is the composition of some
Γ0 ∈ dec2d[Π0

2] and Γ1 ∈ decωp [Π0
1]. For everyΓ ∈ dec2d[Π0

2]decωp [Π0
1], there exist a

Π0
2 d-layer {D0,D1} andΠ0

1 partitions{{P0
n}n∈N, {P1

n}n∈N} such thatΓi
n = Γ ↾ Di ∩ Pi

n
is computable uniformly ini < 2 andn ∈ N, where{Pi

n}n∈N is a partition ofDi for
every i ∈ {0,1}. Let Γ0 : D0 ∪ D1 → D0 ⊕ D1 be the union of two computable
homeomorphismsD0 ≃ 0⌢D0 andD1 ≃ 1⌢D1. For instance, putΓ0(g) = i⌢g for g ∈ Di .
ThenΓ0 ∈ dec2d[Π0

2] since {D0,D1} is aΠ0
2 d-layer. DefineΓ1(i⌢g) = Γi

n(g) for any
i < 2 andg ∈ i⌢Pi

n. Then,Γ1 ∈ decωp [Π0
1], since{Γi

n}i<2,n∈N is uniformly computable,
and{Pi

n}i<2,n∈N is uniformlyΠ0
1. Clearly we haveΓi

n ↾ Di ∩ Pi
n = Γ1 ◦ Γ0 ↾ Di ∩ Pi

n for
any i < 2 andn ∈ N. Hence,Γ = Γ1 ◦ Γ0. □

The following concept ofhyperconcatenation(Definition 45) plays a key role in
many proofs in Part II. In the next section, we will see that the hyperconcatenation
can be defined asinfinitary disjunction along an ill-founded treeor iterated concate-
nation along an ill-founded tree. Before defining the notion of hyperconcatenation, we
introduce some auxiliary notations.
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Definition 44. For any stringsσ ∈ (N ∪ {pass})<N andτ ∈ (N ∪ {♯, pass})<N, the
content ofσ, content(σ) ∈ N<N, and thewalk ofτ, walk(τ) ∈ (N ∪ {pass})<N, are
inductively defined as follows.

content(⟨⟩) = ⟨⟩, content(σ) =

content(σ−)⌢σ(|σ| − 1) if σ(|σ| − 1) , pass,
content(σ−) otherwise.

walk(τ ↾ 1) = ⟨⟩, walk(τ) =

walk(τ−)⌢v if τ(|τ| − 2) = ♯ & τ(|τ| − 1) = v , ♯,
walk(τ−) otherwise.

Then, thecontentof f ∈ (N ∪ {pass})N and thewalk of g ∈ (N ∪ {♯, pass})N are
defined bycontent( f ) =

∪
n∈N content( f ↾ n) andwalk(g) =

∪
n∈N walk(g ↾ n),

respectively.

The walk produces a sequence by extracting only the immediate successorsr ∈
N ∪ {pass} of ♯’s, but it may contain the symbolpass. Then, the content removes
all symbolspass from this sequence. For instance, letτ ∈ (N ∪ {♯, pass})<N be the
following sequence.

τ = ⟨1,6, ♯, 1,8,0, ♯, ♯, ♯, 3,3,9, ♯, pass,8, ♯, 8, ♯, ♯, pass,7, . . .⟩

Then,walk(τ) = ⟨1,3, pass,8, pass, . . .⟩, and its content iscontent ◦ walk(τ) =
⟨1,3,8, . . .⟩. Now we introduce the concept of the hyperconcatenation.

Definition 45 (Hyperconcatenation). Let P andQ beanysubsets of Baire spaceNN.
Thehyperconcatenation⟦Q∨P⟧▼

Σ0
2
and thenon-Lipschitz hyperconcatenation⟦Q∨P⟧Σ0

2

of Q andP are defined as follows.

⟦Q∨ P⟧▼
Σ0

2
= {g ∈ (N ∪ {♯})N : walk(g) ∈ Q or tail(g)↼1 ∈ P},

⟦Q∨ P⟧Σ0
2
= {g ∈ (N ∪ {♯, pass})N : content ◦ walk(g) ∈ Q or tail(g)↼1 ∈ P}.

Theorem 46(As the Law of Excluded Middle). The implications (b+)→ (a)→ (a−)
↔ (b−) hold for any P,Q,R⊆ NN:

(a) ⟦Q∨ P⟧▼
Σ0

2
≤1

1 R.

(a−) ⟦Q∨ P⟧Σ0
2
≤1

1 R.

(b+) There is aΣ0
2 sentenceφ ≡ ∃vθ(v) with a uniform sequence{Γi}i∈N,∆ of partial

computable functions onNN such that

• if g ∈ R satisfiesθ(v), thenΓv(g; u) ↓ for any u∈ N, andΓv(g) ∈ P.

• if g ∈ R satisfies¬θ(v), then∆(g; u) ↓ for any u≤ v, and[∆(g) ↾ v + 1]
intersects with Q.

• if g ∈ R satisfies¬∃vθ(v), then∆(g; u) ↓ for any u∈ N, and∆(g) ∈ Q.

(b−) There is aΣ0
2 sentenceφ ≡ ∃vθ(v) with a uniform sequence{Γi}i∈N,∆ of partial

computable functions onNN such that

• if g ∈ R satisfiesθ(v), thenΓv(g; u) ↓ for any u∈ N, andΓv(g) ∈ P.
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• if g ∈ R satisfies¬∃vθ(v), then∆(g; u) ↓ for any u∈ N, and∆(g) ∈ Q.

Proof. (b+)→(a): Assume thatSi = {g ∈ NN : Θ(g; i) ↑} for some computable function
Θ, and thatP ≤1

1 R∩Si via Γi andQ ≤1
1 R\∪i∈N Si via∆. For a stringσ ∈ N<N, define

d(σ) andt(σ; i) as follows:

d(σ) = max{d ∈ N : (∀i < d) Θ(σ; i) ↓};
t(σ; i) = min{t ∈ N : Θ(σ ↾ t; i) ↓}, for any i < d(σ).

Then let us defineΛ(σ) =
⊓

i<d(σ)
(
Γi(σ ↾ t(σ; i))⌢♯⌢∆(σ; i)

) ⌢Γd(σ)(σ).
(a−)→(b−): Assume that⟦Q ∨ P⟧Σ0

2
≤1

1 R via a computable functionΦ. SetSv =

{g ∈ NN : (∀n ≥ v) Φ(g; n) , ♯}. For a stringσ ∈ N<N, we first computes the following
count(σ) andmcl♯(σ, n) for eachn ∈ N:

count(σ) = #{m< |σ| : Φ(σ; m) = ♯},
mcl♯(σ,n) = min{m≤ |σ| : count(σ ↾ m) > n}, if suchm exists.

Then setΓv(σ) = Φ(σ)↼mcl♯(σ,count(σ↾v))+1; and set∆(σ) = λn.Φ(σ, mcl♯(σ,n)). Note
that if g ∈ R∩ Sk for somek ∈ N, thenΓk(g) ∈ P; otherwise,∆(g) ∈ Q. Therefore,
P ≤1

1 R∩ Sv via Γv andQ ≤1
1 R\ S via ∆.

(b−)→(a−): For eachσ ∈ N<N, let v(σ) be the leastv such thatR(u, v, σ) holds for
all u < |σ|, whereφ(g) ≡ (∃v)(∀u)R(u, v,g ↾ u). We inductively define a computable
functionΦ as follows. We first setΦ(⟨⟩) = ⟨⟩. Assume thatΦ(σ−) has been already
defined.

Φ(σ) =


Φ(σ−)⌢γ, if v(σ) = v(σ−) & Γv(σ)(σ) = tail+(Φ(σ−))⌢γ,

Φ(σ−)⌢⟨♯, δ(0)⟩, if v(σ) , v(σ−) & ∆(σ) = content ◦ walk(Φ(σ−))⌢δ,

Φ(σ−)⌢⟨♯, pass⟩, if v(σ) , v(σ−) & ∆(σ) = content ◦ walk(Φ(σ−)).

For anyg ∈ NN, if φ(g) ≡ (∃v)(∀u)R(u, v,g ↾ u), then for the least suchv ∈ N, we have
tail+(Φ(g)) = Γv(g). Otherwise, we havecontent ◦ walk(Φ(g)) = ∆(g). Hence,
Φ(g) ∈ ⟦Q∨ P⟧Σ0

2
, for anyg ∈ R. □

Definition 47. Let {Sn}n∈N be an increasing sequence of subsets ofNN. We say that
a partial functionΓ :⊆ N → N is computable along{Sn}n∈N if Γ ↾ dom(Γ) \ ∪n Sn

andΓ ↾ dom(Γ) ∩ Sn \ Sn−1 is computable uniformly inn ∈ N, whereS−1 = ∅.
Moreover, we also say that a partial functionΓ :⊆ N→ N is computable strictly along
{Sn}n∈N if there is a uniform sequence of computable functions{Γn}n∈N and∆ such that
Γ ↾ dom(Γ) \ ∪n Sn = ∆ ↾ dom(Γ) \ ∪n Sn andΓ ↾ dom(Γ) ∩ Sn \ Sn−1 = Γn ↾
dom(Γ) ∩ Sn \ Sn−1 and∆(g) ↾ n is defined for anyg ∈ dom(Γ) \ Sn.

Remark. Theorem 46 implies that there is a functionΓ : ⟦Q ∨ P⟧Σ0
2
→ P ⊕ Q (Γ :

⟦Q∨ P⟧▼
Σ0

2
→ P⊕ Q) such thatΓ is computable (strictly) along sequences ofΠ0

1 sets.

Corollary 48. dec<ωd [Π0
2]decωp [Π0

1] is the smallest monoid containing all functions
computable (strictly) along sequences ofΠ0

1 sets.
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Proof. Let S be the class of all functions computable (strictly) along sequences ofΠ0
1

sets. Then, clearly, we have dec2
d[Π0

2] ∪ Γ1 ∈ decωp [Π0
1] ⊆ S ⊆ dec<ωd [Π0

2]decωp [Π0
1].

Thus, the desired condition follows from Proposition 43. □

Remark. It is easy to see that the hyperconcatenation operations are non-commutative
as follows. For instance, iff andg are Turing incomparable, then⟦{g} ∨ { f }⟧▼

Σ0
2
≰1

1

⟦{ f }∨{g}⟧▼
Σ0

2
. Otherwise, we have a witnessΓ of the reduction, and thenwalk◦Γ( f̃ ) ⪯ g

for any f̃ with walk( f̃ ) ⪯ f . This is because for anyn, g̃ = ( f̃ ↾ n)♯ig ∈ ⟦{ f } ∨ {g}⟧▼
Σ0

2

for a suitablei, and it is Turing equivalent tog. Hence,Γ(g̃) cannot havef as a tail,
since f ≰T g Therefore,walk ◦ Γ(g̃) = g.

Thus, givenσn with walk(σn)⌢i ≺ f , concatenate a sufficiently long initial segment
τn of ♯ig to force walk ◦ Γ(σn

⌢τn) ⪰ g ↾ n. Now, consider the closed subspace
C f = {h ∈ (N ∪ {♯})N : walk(h) ⪯ f } that is f -computably homeomorphic toNN. If we
can extendσn

⌢τn to some stringρ extendible inC f that forcesΦn(ρ; k) , g(k) for some
k ∈ ω, then go to the next step. If not, there existsk such thatΦn(h; k) is undefined
for anyh ∈ C f extendingσn

⌢τn, since otherwise, givenk, one canf -computably find
ρk ⪰ σn

⌢τn in C f such thatΦn(ρk; k) converges, but then it must be equal tog(k), and
this contradicts our assumptiong ≰T f .

Consequently, one can extendσn
⌢τn to some stringσn+1 which forces not to com-

pute g via the n-th Turing functional, that is,Φn(h) , g for every h ∈ C f extend-
ing σn+1. Finally, put f̂ =

∪
nσn. By our construction, we haveg ≰T f̂ , and

g = walk ◦ Γ( f̂ ) ≤T f̂ , a contradiction.

5. Going Deeper and Deeper

5.1. Falsifiable Mass Problems
We are mostly interested in local degree structures such as Turing degrees of c.e. sub-

sets ofN and Medvedev degrees ofΠ0
1 subsets of 2N. In such cases, the straightforward

two-tape (backtrack) notions in Definitions 33 and 34 are hard to use, since, for in-
stance,⟦P∨ Q⟧2LCM[2] may not belong toΠ0

1 even ifP andQ areΠ0
1. This observation

prompts us to defineconsistenttwo-tape disjunctions.
Let {Ti}i∈I be a sequence of treesTi ⊆ N<N. Then,the consistency setCon(Ti)i∈I

for {Ti}i∈I is defined as follows.

Con(Ti)i∈I = { f ∈ (I × N)N : (∀i ∈ I )(∀n ∈ N) pri( f ↾ n) ∈ Ti}.

The notion of consistency sets has a relationship with consistent learning (see also
Remark below Proposition 54). The consistency sets are useful to reduce the complex-
ity of our disjunctions to beΠ0

1. We now introduce the following consistent modifica-
tions of our disjunctive notions.

Definition 49. Let P0 andP1 denoteΠ0
1 subsets ofNN.

P0▽ωP1 = ⟦P0 ∨ P1⟧2LCM ∩ Con(TP0,TP1).

P0▽nP1 = ⟦P0 ∨ P1⟧2LCM[n] ∩ Con(TP0,TP1).

P0▽∞P1 = ⟦P0 ∨ P1⟧2CL ∩ Con(TP0,TP1).
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Here TP0 and TP1 are corresponding (computable) trees forP0 and P1, respectively
(where recall from Section 1.3 that such a tree is assumed to be uniquely determined
when an index ofPi is given).

Remark. Obviously, Definition 49 depends on our choice of indices (hence, corre-
sponding trees) of givenΠ0

1 sets, that is, the operations in Definition 49 is defined on
subtrees ofN<N rather than subsets ofNN. However, Proposition 50 indicates that it
does not really matter what we chose, if we only focus on the degree-theoretic behav-
ior. We will frequently use index-dependent definitions (e.g., Definitions 49 and 52) in
order to simplify our notations, but in each case, one can easily ensure that it cause no
problems at all (e.g., Propositions 50 and 54).

Proposition 50. Let P and Q beΠ0
1 subsets ofNN.

1. P▽nQ ≡1
1 ⟦P∨ Q⟧2LCM[n] for each n∈ N.

2. P▽ωQ ≡1
1 ⟦P∨ Q⟧2LCM.

3. P▽∞Q ≡1
1 ⟦P∨ Q⟧2CL.

Proof. For each item, clearlyP▽∗Q ≥1
1 ⟦P ∨ Q⟧2∗. Thus, it suffices to construct a

computable functionalΦ witnessingP▽∗Q ≤1
1 ⟦P ∨ Q⟧2∗. Let T0 andT1 denote the

corresponding computable trees forP and Q respectively. SetΦ(⟨⟩) = ⟨⟩. Fix σ ∈
(2× N)<N. Assume thatΦ(σ−) has already been defined, andσ = σ−⌢⟨(i, k)⟩ for some
i < 2 andk ∈ N. Then,

Φ(σ) =

Φ(σ−)⌢⟨(i, k)⟩ if pri(σ) ∈ Ti ,

Φ(σ−) if pri(σ) < Ti ,

Clearly,Φ is a computable function, sinceTi is computable for eachi < 2. For any
g ∈ (2×N)N, clearlymc(Φ(g)) ≤ mc(g). Fix g ∈ ⟦P∨Q⟧2∗, where∗ ∈ {LCM, LCM[n],CL}.
Thenpri(g) ∈ Pi for somei < 2, whereP0 = P andP1 = Q. Therefore,Φ(g) is total,
andpri(Φ(g)) ∈ Pi for suchi < 2. □

Proposition 51. Let P and Q beΠ0
1 subsets ofNN.

1. P▽nQ isΠ0
1, for any n∈ N.

2. P▽ωQ isΣ0
2.

3. P▽∞Q isΠ0
1.

Proof. Let T0 andT1 denote corresponding computable trees forP andQ respectively.
We consider the following computable tree:

TP,Q,n = {σ ∈ (2× N)<N : (∀i < 2) pri(σ) ∈ Ti & mc(σ) < n}.

Note thatTP,Q,n is uniformly computable inn, sincepri(σ) andmc(σ) are computable
uniformly in σ ∈ N<N. Clearly, P▽nQ ⊆ [TP,Q,n]. Moreover, for anyg ∈ [TP,Q,n],
pri(g) is total for somei < 2. Then,pri(g) ∈ [Ti ] for suchi, andmc(g) ≤ n, since the
relationmc( f ) ≤ n is equivalent to (∀k) mc( f ↾ k) ≤ n. Thus,g ∈ P▽nQ. Consequently,
P▽nQ = [TP,Q,n] is Π0

1. Hence,P▽ωQ =
∪

n[TP,Q,n] is Σ0
2. The items (3) also follows

from the similar argument. □
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Definition 52. Theconcatenationof treesT0,T1 ⊆ N<N is defined as

T0
⌢T1 = {σ⌢⟨♯⟩⌢τ : σ ∈ T0 & τ ∈ T1}.

One can introduce the concatenation ofΠ0
1 setsP0,P1 ⊆ NN by the set [TP0

⌢TP1] for
corresponding computable treesTP0 andTP1 of P0 andP1. Here, this definition is also
index-dependent (recall Remark below Definition 49).

However, we adopt the followingconservativeversion as our definition of the con-
catenation, which is easier to handle in many proofs. LetLP denote the set of all leaves
of the corresponding computable tree for a nonemptyΠ0

1 setP. Thenthe (conservative)
concatenation of P and Qis defined as follows.

P⌢Q = P∪
∪
ρ∈LP

ρ⌢Q.

The commutative (conservative) concatenation of P and Qis defined byP▽Q = (P⌢Q)⊕
(Q⌢P).

Remark. On the study of Wadge degrees of finite level of Borel hierarchy, Duparc
[26] introduced various operators such asP−→Q = P∪∪ρ∈N<N ρ

⌢⟨♯⟩⌢Q. The following
proposition indicates that our non-commutative concatenation is essentially same as
Duparc’s operationP−→Q.

Proposition 53. Let P,Q beΠ0
1 subsets of Baire spaceNN. Then, the concatenation

P⌢Q is (1,1)-equivalent to the set P→Q := [TP
⌢TQ].

Proof. To seeP→Q ≤1
1 P⌢Q, we inductively define a total computable functioncut :

NN → NN. First setcut(⟨⟩) = ⟨⟩, and fixσ = σ−⌢⟨n⟩ ∈ N<N. We assume thatcut(σ−)
has been already defined. Ifσ = σ−⌢⟨n⟩ ∈ LP, then we setcut(σ) = cut(σ−)⌢⟨n, ♯⟩.
Otherwise, we setcut(σ) = cut(σ−)⌢⟨n⟩. Then,cut is computable, sinceP isΠ0

1 and
thenTP is computable. Moreover, we can see the following.

cut( f ) =

 f if f ∈ P,

( f ↾ k)⌢⟨♯⟩⌢ f↼k if (∃k ∈ N) f ↾ k ∈ LP.

Clearly,P→Q ≤1
1 P⌢Q via the computable functioncut.

Conversely, we consider the computable functionleaf : N<N → N<N which
mapsσ to the least leaf ofLP extendingσ. Then, we inductively define a com-
putable functionΓ witnessingP⌢Q ≤1

1 P→Q as follows. First setΓ(⟨⟩) = ⟨⟩, and
fix σ = σ−⌢⟨n⟩ ∈ (N ∪ {♯})<N. We assume thatΓ(σ−) has been already defined. If
n , ♯, then we setΓ(σ) = Γ(σ−)⌢⟨n⟩. If n = ♯, then we setΓ(σ) = leaf(Γ(σ−)). It is
easy to see thatP⌢Q ≤1

1 P→Q via Γ. □

Remark. Inspired by our method used in Part II, Cenzer-Kihara-Weber-Wu [18] ex-
plicitly employed the concept of the (non-commutative) concatenation to show that
CPA⌢CPA has a greatest Medvedev degree ofΠ0

1 subsets of 2N with no tree-immune.
Here, aΠ0

1 setP ⊆ 2N is tree-immuneif the Π0
1 tree{σ ∈ 2<N : P∩ [σ] , ∅} includes

no infinite computable subtree, andCPA is the set of allcomplete consistent extensions
of Peano Arithmetic. Note thatCPA is aMedvedev completeΠ0

1 subset of 2N.
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Proposition 54. Let P,Q beΠ0
1 subsets ofNN.

1. P▽P ≡1
1 P⌢P.

2. P▽Q ≡1
1 ⟦P∨ Q⟧2LCM[2] .

Proof. (1) P▽P = (P⌢P)⊕(P⌢P) ≡1
1 P⌢P. (2) By Proposition 50 (1), we haveP▽2Q ≡1

1
⟦P∨ Q⟧2LCM[2] . Then,P▽2Q ≤1

1 P▽Q is witnessed by the following reduction∆.

∆( f ) =

write( f (0), f↼1), if f↼1 ∈ [Tσ(0)],

write( f (0), f↼1 ↾ k)⌢write(1− f (0), f↼k+1), if (∃k ∈ N) f↼1 ↾ k ∈ Lσ(0).

Here, T0 and T1 are the corresponding computable trees forP and Q respectively,
and Li is the set of all leaves ofTi for eachi < 2. Clearly,∆ is computable. Fix
⟨i⟩⌢g ∈ P▽Q. Obviously,mc(⟨i⟩⌢g) < 2. If g ∈ [Ti ] thenpri(∆(⟨i⟩⌢g)) = g ∈ [Ti ], and
if g = σ⌢h for someσ ∈ Li andh ∈ [T1−i ] thenpri(∆(⟨i⟩⌢σ⌢h)) = h ∈ [T1−i ]. Hence,
∆(⟨i⟩⌢g) ∈ P▽2Q.

To seeP▽Q ≤1
1 P▽2Q, it suffices to construct a computable functionalΓ witnessing

(P→Q) ⊕ (Q→P) ≤1
1 P▽2Q by Proposition 53. SetΓ(⟨⟩) = ⟨⟩, andΓ(⟨(i, n)⟩) = ⟨i,n⟩

for any i < 2 andn ∈ N. Fix σ = σ−−⌢⟨(i,m), ( j,n)⟩ ∈ (2 × N)<N, and assume
thatΓ(σ−) is already defined. Ifi , j, then setΓ(σ) = Γ(σ−)⌢⟨♯, n⟩. Otherwise, set
Γ(σ) = Γ(σ−)⌢⟨n⟩. Clearly Γ is computable. Fixg ∈ P▽2Q. If mc(g) = 0, then
Γ(g) = ⟨i⟩⌢pri(g) ∈ P ⊕ Q ⊆ (P→Q) ⊕ (Q→P), wherei = (g(0))0. If mc(g) = 1,
thenpri(g) is a finite string, wherei = (g(0))0. In this case, we can easily seeΓ(g) =
⟨i⟩⌢pri(g)⌢⟨♯⟩⌢pr1−i(g) ∈ (P→Q) ⊕ (Q→P). □

In the case ofP▽P, we use the non-commutative concatenationP⌢P to simplify
our proof without mentioning.

Remark. These disjunctions have some connection withconsistent conservative Pop-
perian learning(see [37]).

• The term “consistent” means: the scientist should modify his hypothesis when-
ever it was found to be refuted.

• The term “conservative” means: the scientist changes his hypothesis only when
it was found to be refuted.

• The term “Popperian” means: the scientist can test whether his hypothesis is
currently consistent or refuted.

The notion ofPopperian learningis introduced by Case and Ngo-Manguelle [16] based
on Gold’s theory of “identification in the limit” [29]. A learner (a scientist) is a com-
putable functionΨ : N<N → N, and a natural phenomenon is a computable function
f : N → N. Then the formulaΨ( f ↾ n) = e means the following situation: the sci-
entistΨ predicts that a rule generating the phenomenonf can be explained by a word
(a formula, or an algorithm)e (i.e., f = Φe) when he observesf (0), . . . f (n − 1). We
say thatΨ learns f if ΦlimnΨ( f↾n) = f . The learnerΨ is Popperianif ΦΨ(σ) is total for
eachσ ∈ N<N. The learnerΨ is consistentatσ ∈ N<N if ΦΨ(σ) ↾ |σ| = σ. The learner
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Table 5: Hierarchy of Consistent Disjunctions

P⊕ Q ⟦P∨ Q⟧1Int Intuitionistic disujunction (= P▽1Q)
P∪ Q ⟦P∨ Q⟧1CL Classical one-tape disjunction
P▽Q ⟦P∨ Q⟧2LCM[2] Commutative concatenation (≡ P⌢Q if P = Q)
P▽nQ ⟦P∨ Q⟧2LCM[n] LCM disjunction with mind-changes-boundn
P▽ωQ ⟦P∨ Q⟧2LCM LCM disjunction
P▽∞Q ⟦P∨ Q⟧2CL Classical disjunction

Ψ is conservativeif, for any σ ∈ N<N, Ψ(σ) = Ψ(σ−) wheneverΦΨ(σ−) ↾ |σ| = σ.
Note that, for every Popperian learnerΨ, he can algorithmically determine whetherΨ
is consistent atσ or not, for a givenσ ∈ N<N. The terminology “Popperian” derives
from Popper’s falsifiabillity principle in philosophy of science.

The complexityΠ0
1 reflects the concept of Popperian learning. The consistency

set Con(Ti)i∈I restricts our learning process to be consistent. Additionally, the non-
commutative concatenationP⌢Q of P andQ restricts our learning process to be con-
servative, since it represents the following situation: a choice on the first hypothesisP
is refuted if, and only if, the scientist proposes the second (refutable) hypothesisQ and
start verifying it.

Proposition 55. For Π0
1 sets P,Q ⊆ NN and n∈ N,

⟦P∨ Q⟧2LCM ≤1
1 ⟦P∨ Q⟧2LCM[n+2] ≤1

1 ⟦P∨ Q⟧1CL ≤1
1 ⟦P∨ Q⟧1Int.

Proof. It suffices to showP▽Q ≤1
1 P∪ Q, since⟦P∨ Q⟧1CL ≡1

1 P∪ Q by Proposition
35 (5) and⟦P ∨ Q⟧2LCM[2] ≡1

1 P▽Q by Proposition 54 (2). Indeed, we can show that
(P⌢Q)⊗ (Q⌢P) ≤1

1 P∪Q. We construct a computable functionalΦ witnessingP⌢Q ≤1
1

P ∪ Q. If σ ∈ TP, then setΦ(σ) = σ. If σ < TP, then pick a uniqueρ ⊆ σ such
thatρ ∈ LP, and setΦ(σ) = ρ⌢σ for suchρ, whereLP is the set of all leaves ofTP.
ClearlyΦ is computable, and note thatΦ(σ) ⊆ Φ(τ) wheneverσ ⊆ τ. If g ∈ P, then
Φ(g) = g ∈ P. If g ∈ Q \ P, then there is a uniqueρ ⊂ g such thatρ ∈ LP, and
Φ(g) = ρ⌢g ∈ P⌢Q. Thus,P⌢Q ≤1

1 P∪ Q viaΦ. □

Remark. Our notation▽ is inspired by the sequential disjunction [39] in Computabil-
ity Logic [38]. One may also compare▽ω and▽∞ with the toggling disjunction and the
parallel disjunction [40].

5.2. Compactified Infinitaly Disjunctions

This subsection is concerned with a trick to representinfinitary disjunctive notions
as effective compact sets.

Definition 56. Fix a collection{Pi}i∈I of subsets of Baire spaceNN.

1. ⟦
∨

i∈I Pi⟧Int = { f ∈ (I × N)N : ((∃i ∈ I ) pri( f ) ∈ Pi) & mc( f ) = 0}.
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2. ⟦
∨

i∈I Pi⟧LCM = { f ∈ (I × N)N : ((∃i ∈ I ) pri( f ) ∈ Pi) & mc( f ) < ∞}.
3. ⟦
∨

i∈I Pi⟧CL = { f ∈ (I × N)N : (∃i ∈ I ) pri( f ) ∈ Pi}.

Proposition 57. Let {Pn}n∈N be an infinite collection of subsets of Baire spaceNN.

1. ⟦
∨

n∈N Pn⟧Int ≡1
1

⊕
n∈N Pn, where

⊕
n∈N Pn = {⟨n⟩⌢ f : f ∈ Pn}.

2. ⟦
∨

i,n Pi,n⟧LCM ≡1
1 ⟦P0 ∨ P1⟧3LCM, where Pi,n = Pi for each i< 2 and n∈ N.

Proof. (1) ⟦
∨

n∈N Pn⟧Int ≥1
1

⊕
n∈N Pn is witnessed byf 7→ ( f (0))0⌢pr( f (0))0( f ), and

⟦
∨

n∈N Pn⟧Int ≤1
1

⊕
n∈N Pn is witnessed byf 7→ write( f (0), f↼1), where recall that

write( f (0), f↼1) = ( f (0))N ⊕ (λn. f (n + 1)) indicates the instruction to writing the
infinite word f↼1 on the f (0)-th tape.

(2) We first construct a computable functionΞ witnessing⟦
∨

i,n Pi,n⟧LCM ≥1
1 ⟦P0 ∨

P1⟧3LCM. For ((i,n), v) ∈ (2× N) × N, we first setΞ(⟨((i,n), v)⟩) = ⟨((i,n), v)⟩. For each
stringσ = σ−−⌢⟨((i,n), v), (( j,m),w)⟩ ∈ ((2×N)×N)<N, inductively assume thatΞ(σ−)
has been already defined. If (i,n) = ( j,m), then we setΞ(σ) = Ξ(σ−)⌢⟨w⟩. Otherwise,
we setΞ(σ) = Ξ(σ−)⌢⟨♯, j,w⟩. For any f ∈ ⟦∨i,n Pi,n⟧LCM, the backtrack symbol♯
occurs inΞ( f ) finitely often, sincemc( f ) < ∞. Therefore,tail(Ξ( f )) converges, and
tail(Ξ( f ))↼1 = pri,m( f ) ∈ Pi for somei < 2 andm ∈ N. Thus,Ξ( f ) ∈ ⟦P0 ∨ P1⟧3LCM.

We next construct a computable functionΞ∗ witnessing⟦
∨

i,n Pi,n⟧LCM ≤1
1 ⟦P0 ∨

P1⟧3LCM. SetΞ∗(⟨⟩) = ⟨⟩. Forσ = σ−−⌢⟨v,w⟩ ∈ (N ∪ {♯})<N, inductively assume that
Ξ∗(σ−) has been already defined. To defineΞ∗(σ), recall the definitioncount(σ) =
#{n < |σ| : σ(n) = ♯}. ThenΞ∗(σ) is defined as follows.

Ξ∗(σ) =

Ξ∗(σ−)⌢⟨((tail(σ; 0), count(σ)),w)⟩, if v , ♯ andw , ♯,
Ξ∗(σ−), otherwise

For any f ∈ ⟦P0 ∨ P1⟧3LCM, we havemc(Ξ∗( f )) < ∞, sincecount( f ) = #{k ∈
N : f (k) = ♯} is finite. Therefore, we havepr(tail( f ;0),count( f ))(Ξ

∗( f )) = tail( f )↼1 ∈
Ptail( f ;0). Thus,Ξ∗( f ) ∈ ⟦∨i,n Pi,n⟧LCM. □

We again use the consistent modifications of infinitary models,
[`

ω

]
n∈N

Pn =

⟦
∨

n∈N Pn⟧LCM ∩ Con(TPn)n∈N, and
[`
∞
]
n∈N Pn = ⟦

∨
n∈N Pn⟧CL ∩ Con(TPn)n∈N.

Proposition 58. Let {Pn}n∈N be a computable collection ofΠ0
1 subsets of Baire space

NN.

1. ⟦
∨

n∈N Pn⟧LCM ≡1
1

[`
ω

]
n∈N

Pn.

2. ⟦
∨

n∈N Pn⟧CL ≡1
1

[`
∞
]
n∈N Pn.

Proof. As in the proof of Proposition 50. □

However, the problem is that our models of infinitary disjunctions are not compact.
A modification of infinitary sum was introduced by Binns-Simpson [8] to embed a free
Boolean algebra into the Muchnik lattice ofΠ0

1 subsets of Cantor space, and such a
variation was calleda recursive meet. An important feature of their modification is that
it is aΠ0

1 subset of the compact space 2N.
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Definition 59 (Binns-Simpson [8]). Let P and {Qn}n∈N be computable collection of
Π0

1 subsets of 2N, and letρn denote the length-lexicographicallyn-th leaf of the cor-
responding computable tree ofP. Then, we define theinfinitary concatenationand
recursive meetas follows:

P⌢{Qi}i∈N = P∪
∪

n

ρn
⌢Qn,

⊕
−→
i∈NQi = CPA⌢{Qi}i∈N.

Here, recall thatCPA is a Medvedev complete set, which consists of allcomplete
consistent extensions of Peano Arithmetic. The Medvedev completeness ofCPA en-
sures that for any nonemptyΠ0

1 subsetP ⊆ 2N, a computable functionΦ : CPA → P
exists. Of course, these definitions are also index-dependent (recall Remark below
Definition 49).

Proposition 60. For any computable sequence{Pn}n∈N of nonemptyΠ0
1 subsets of2N,⊕ −→

n∈NPn ≡1
<ω

⊕
n∈N Pn.

Proof. The condition
⊕ −→

n∈NPn ≤1
1

⊕
n∈N Pn is witnessed by a computable function

n⌢g 7→ ρn
⌢g. We will construct a learner witnessing

⊕ −→
n∈NPn ≥1

<ω

⊕
n∈N Pn. Fix

a computable functionΦe : CPA → 0⌢P0. SuchΦe exists, since every nonempty
Π0

1 subset of 2N is (1,1)-reducible toCPA. We also fix a partial computable function
Φi(n) : ρn

⌢g 7→ n⌢g, for eachn ∈ N. Forσ ∈ 2<N, if σ ∈ TCPA then setΨ(σ) = e. If
σ < TCPA, thenρn ⊆ σ for somen. For suchn, we setΨ(σ) = i(n). The functionΓ
identified by the learnerΨ is clearly (1,2)-computable, andΓ(g) ∈

⊕
n∈N Pn for any

g ∈
⊕ −→

n∈NPn. □

5.3. Infinitary Disjunctions along well-Founded Trees

One can consider a computational learning process withtransfinite mind-changes,
i.e., a model represented by transfinitely iterated concatenations. We use Kleene’sO to
deal with computable ordinals in a uniformly computable way.

Definition 61 (Transfinite Mind-Changes). Let (O,≤O) denoteKleene’s system of or-
dinal notations(see Rogers [63]). Then for eacha ∈ O we introduce thea-th derivative
of P ⊆ NN as follows.

Pa =


P

⟦P∨ Pb⟧2LCM[2]⊕
n∈N PΦe(n)

Pa+ =


P if a = 0,

⟦P∨ Pb+⟧2LCM[2] if a = 2b,

⟦P∨
⊕

n∈N PΦe(n)+⟧2LCM[2] if a = 3 · 5e.

Here, we requireΦe(n) <O Φe(n + 1) for every 3· 5e ∈ O in the definition ofO. In
particular, this implies thatP(Φe(m)) ≤1

1 P(Φe(n)) whenevern ≤ m. Additionally, we may
require thatΦe(n) < Φe(n+ 1) as a natural number by padding. IfP is a nonemptyΠ0

1
subset of 2N, we also define another derivativeP(a) as follows.

P(a) =


P if a = 0,

P⌢P(b) if a = 2b,

P⌢{P(Φe(n))}n∈N if a = 3 · 5e.
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Proposition 62. For any nonemptyΠ0
1 set P⊆ 2N and any notation a∈ O, the a-th

derivative P(a) is aΠ0
1 subset of2N.

Proof. Fix a ∈ O. By our definition, obviouslyP(a) is a subset of 2N. We inductively
assume that{P(b) : b <O a} is uniformlyΠ0

1. For a = 2b, we can easily compute aΠ0
1

index of P(a) = P⌢P(b) is from aΠ0
1 index of P(b). For a = 3 · 5e, we can also easily

compute aΠ0
1 index ofPa = P⌢{P(Φe(n))}n∈N from a computable sequence ofΠ0

1 indices
of {P(Φe(n))}n∈N. Thus,{P(b) : b ≤O a} is uniformlyΠ0

1. □

Proposition 63. For any nonemptyΠ0
1 set P⊆ 2N and any notation a∈ O, the condi-

tion Pa+ ≤1
1 P(a) ≤1

1 Pa holds.

Proof. ClearlyP⌢P(b) is (1,1)-equivalent to⟦P∨P(b)⟧2LCM[2] , sinceP(b) isΠ0
1 by Propo-

sition 62, where the (1,1)-equivalence follows by Proposition 37 and 54. It is easy to
see that⟦P∨

⊕
n∈N P(Φe(n))⟧2LCM[2] ≤1

1 P⌢{P(Φe(n))}n∈N ≤1
1

⊕
n∈N P(Φe(n)) holds. For suc-

cessor steps, it suffices to show thatP⌢P(b) ≤W (P(b)⌢P). If |b|O is a finite ordinal, it
is clear. If |b|O is an infinite ordinal, sayb = 3 · 5e, thenP(b) ≤1

1 P(b)⌢P holds, since
Φe(n) + 1 ≤O Φe(n+ 1). □

Notation. Every a ∈ O is often identified with the corresponding well-founded tree
Ta consisting of all finite nonempty<O-decreasing sequences⟨a0,a1,a2, . . .⟩, where
a0 = a and for everyi ∈ N, either 2ai+1 = ai or ai+1 = Φe(n) holds for somen ∈ N
ande with 3 · 5e = ai . Our padding assumptionΦe(n) < Φe(n + 1) implies thatTa is
computable.

Definition 61 immediately induces associated piecewise computability notions. For
a notationa ∈ O, a collection{Sκ}κ∈Ta of Σ0

1 subsets ofX ⊆ NN is a-indexedif S⟨a⟩ = X
and the mappingκ 7→ Sκ is an order preserving homomorphism from the tree (Ta,⊆)
onto the ordered set ({Sκ}κ∈Ta,⊇), whereO(≤ a) = {b : b ≤O a}. It is strictly a-indexed
if it is a-indexed andSκ =

∪
n∈N Sκ⌢Φe(n) wheneverκ = κ−⌢3 · 5e. A partial function

Γ :⊆ ωω → ωω is said to be(strictly) a-indexedΠ0
1 d-layerwise computableif there

are a (strictly)a-indexed collection ofΣ0
1 subsets{Sκ}κ∈Ta of the domain ofΓ and a

uniformly computable collection{Γκ}κ∈Ta of partial computable functions such thatΓ
agrees withΓκ on the domainSκ \

∪
λ⊋κ Sλ.

It is easy to see that these notions are subclasses of decω
p [Π0

1]. If the order type|a|O
of {b : b <O a} isω, the stricta-indexedΠ0

1 d-layerwise computability realizes the class
[CT ]1

eff
. Obviously, a stricta-indexedΠ0

1 d-layerwise computable functionΓ : Pa→ P
and ana-indexedΠ0

1 d-layerwise computable functionΓ∗ : Pa+ → P exist.

Remark. Obviously,a-indexedΠ0
1 d-layerwise computability can be viewed as the

effective version of discontinuity level≤O a in the sense of Hertling [33] and Hem-
merling [32]. Here, a partial functionΓ :⊆ NN → NN shall be said to beof effective
discontinuity level≤O a if there is a computable collection{Γb}b≤Oa of partial com-
putable functions with uniformΣ0

1 domains{Sb}b≤Oa such that for everyx ∈ dom(Γ),
Γ(x) = Γb(x) for a uniqueb ≤O a with x ∈ Sb \

∪
c<Ob Sc.

Note that Hemmerling [32] studied its boldface version in the context of levels of
subhierarchy (see Małek [50]) of the Baire one star functionsB∗1 (see O’Malley [58]),
whose original definition seems to be a boldface version of the Blum-Blum locking [9]
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in learning theory. Then, the boldface version of the learnability with mind-change 1
seems to be interpreted as the Baire one double star functionsB∗∗1 (see Pawlak [61]).

Indeed, the notion of the discontinuity level is a useful tool to analyze the Baire
hierarchy of the Borel measurable functions. For instance, Solecki [74, Theorem 3.1]
used a transfinite derivation process in the proof of his dichotomy theorem for the
Baire one functions, and Semmes [65, Lemma 4.3.3] introduced a high level analog of
a transfinite derivation process in the proof of his decomposition theorem for theΛ2,3

functions (a subclass of the Baire two functions).
See also de Brecht [23] for a systematic study on the levels of discontinuity.

Definition 64 (see Freivalds-Smith [28] and Luo-Schulte [49]). Let Ψ : N<N → N
be a learner. We say thatc : N<N → O is a mind-change counterfor Ψ if, for any
σ ∈ N<N, c(σ) <O c(σ−) wheneverΨ(σ) , Ψ(σ−). A learnerΨ is a-boundedif there
is a computable mind-change counterc : N<N → O for Ψ such thatc(⟨⟩) ≤O a.

Remark. The computational power ofa-bounded learnability is very closely related
to Ershov’s mind-change hierarchy (Ershov hierarchy [27]) of∆0

2 subsets ofN, or the
effective version of the Hausdorff difference hierarchy of∆0

2 subsets ofNN (for Ershov
hierarchy, see also Stephan-Yang-Yu [77]).

Proposition 65. For a notation a∈ O, a partial functionΓ :⊆ NN → NN is of effective
discontinuity level≤O a if and only if it is learnable via an a-bounded learner.

Proof. The desired equivalence is obtained from an interpretation betweenSb and the
Σ0

1 set generated by the c.e. set{σ ∈ N<N : c(σ) ≤ b}. □

5.4. Infinitary Disjunctions along any Graphs

In the classical proof process, a verifierΨ on “P0 or P1” may change his mind
infinitely often. In the backtrack-tape model, this situation means thatΨ chooses the
backtrack symbol♯ infinitely many often. Then the word onΛ is eventually finite, and
it verifies neitherP0 norP1. Therefore, in the model, ifΨ succeeds to verify “P0 or P1”
then the backtrack symbol♯ occurs on the record∆ at most finitely often. Consequently,
in the backtrack-tape model, classical verification coincides withLCM verification.
However, we would like to cover the case that unbounded or infinitely many mind-
changes occur. This may be archived by regarding the backtrack-tape model as a kind
of infinitary tape model.

The dynamic-tape model: Assume that a directed graph (V,E) is given, whereV can
be infinite, E ⊆ V × V, and aninitial vertex ε ∈ V is chosen. For anyv ∈ V, let
adj(v) = {w ∈ V : (v,w) ∈ E}. When a verifierΨ tries to prove that “

∨
v∈V Pv”, infinite

tapes□, andΛv for v ∈ V are given. The tape□ is calledthe declaration, Λv is called
the working tapefor eachv ∈ V. First the letterε is written on□, and no word is
written onΛv for v ∈ V. At each stages, assume thatv[s] is written on□. Then the
verifierΨ executes one or the other of two following actions.

1. Ψ declares somew ∈ adj(v[s]), erases all words on□, and writesw on□; or
2. Ψ writes a letterk ∈ N on the working tapeΛv[s] .

Assume that a verifierΨ tries to prove that “P0 or P1”.
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• Intuitionism : ConsiderV = {ε, 0,1}, E = {(ε,0), (ε,1)}, andPε = ∅.

• LCM with ordinal-bounded mind-changes: For a computable well-founded
treeV = T ⊆ N<N, consider the following.

E = E(T) = {(σ, τ) ∈ T × T : (∃i ∈ N) τ = σ⌢i}, Pσ =

P0, if |σ| is even,

P1, if |σ| is odd,

• LCM : ConsiderV = N; E = {(n,n+ 1) : n ∈ N}; P2n = P0 for anyn ∈ N; and
P2n+1 = P1 for anyn ∈ N. Moreover, the word written on the declaration□must
converge.

• (V,E)-relaxed Classical: (V,E) = (V0,V1,E) is a given directed bipartite graph,
andPτ = Pi for anyτ ∈ Vi andi < 2.

Definition 66 (Dynamic Disjunctions). Let G = (V,E) be a directed graph, and let
{Pv}v∈V be a collection of subsets of Baire space. ForE ⊆ V2, putE = E ∪ {⟨v, v⟩ : v ∈
V}. We define thedynamic disjunction of{Pv}v∈V along the graph(V,E) as follows.�������� ∨

v∈(V,E)

Pv

�������� = { f ∈ (V × N)N : (∀n ∈ N) (⟨( f (n))0, ( f (n+ 1))0⟩ ∈ E) & (∃v ∈ V) prv( f ) ∈ Pv

}
.

Moreover, if{Pv}v∈V is a computable sequence ofΠ0
1 subsets ofNN, andTPv be the

corresponding tree forPv, we also define its consistent versions.

1.
`

v∈(V,E) Pv = ⟦
∨

v∈(V,E) Pv⟧ ∩ Con(TPv)v∈V.

2. ▼v∈(V,E)Pv = { f ∈ (V×N)N : (∀n ∈ N) (⟨( f (n))0, ( f (n+1))0⟩ ∈ E)}∩Con(TPv)v∈V.

Here, recall that, forx = (x0, x1), the first coordinatex0 is denoted by (x)0. If Pv = P
for anyv ∈ V, then we simply writè v∈V P and▼v∈VP for

`
v∈(V,E) Pv and▼v∈(V,E)Pv

respectively.

As our dynamic-tape model is an infinitary-tape model, this model may be natu-
ral to be regarded as expressing a proof process of an infinitary disjunction

∨
v∈V Pv.

Therefore, we refer the model with (V,E) as an infinitary disjunction along(V,E).
Later we will introduce a more complicated model. It will be calledthe nested-tape
model. We first see an upper and lower bound of the degrees of difficulty of these
disjunctive notions, and a relationship among various models we have introduced. Let
D̂eg(P) denote theTuring upward closureof P, i.e., D̂eg(P) = {g : (∃ f ≤T g) f ∈ P},
and [(V,E)] denote the set of all infinite paths through a graph (V,E), i.e., [(V,E)] =
{p ∈ VN : (p(n), p(n+ 1)) ∈ E}.

Proposition 67. Let (V,E) be a computable directed graph, and{Pv}v∈V be a com-
putable sequence ofΠ0

1 subsets ofNN.

1. D̂eg
(⊕

v∈V Pv

)
≤1

1

`
v∈(V,E) Pv ≤1

1

⊕
v∈V Pv.

2. D̂eg
(
[(V,E)] ⊕

⊕
v∈V Pv

)
≤1

1 ▼v∈(V,E)Pv ≤1
1 [(V,E)] ⊕

⊕
v∈V Pv.
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Proof. (1)
`

v∈(V,E) Pv ≤1
1

⊕
v∈V Pv is witnessed byv⌢ f 7→ write(v, f ) = vN ⊕ f . For

any f ∈
`

v∈(V,E) Pv, we haveprv( f ) ∈ Pv for somev ∈ V. Thus, we haveprv( f ) ≤T f ,

sinceprv is partially computable, andf ∈ dom(prv). Hence,f ∈ D̂eg(Pv).
(2) Fix f ∈ [(V,E)]⊕

⊕
v∈V Pv. If f (0) = 1, then we can show the desired condition

as in (1). If f is of the form f = 0⌢g, we haveλn.⟨g(n),0⟩ ∈ ▼v∈(V,E)Pv sinceg ∈
[(V,E)]. Hence,▼v∈(V,E)Pv ≤1

1 [(V,E)]⊕
⊕

v∈V Pv. To seeD̂eg
(
[(V,E)] ⊕

⊕
v∈V Pv

)
≤1

1

▼v∈(V,E)Pv, we inductively define a partial computable functionwalk :⊆ (V × N)N →
VN as follows. Setwalk(⟨⟩) = ⟨⟩, and fixσ = σ−−⌢⟨(u,m), (v, n)⟩ ∈ (V×N)<N. Assume
thatwalk(σ−) has been already defined. Then,walk(σ) is defined as follows.

walk(σ−−⌢⟨(u,m), (v,n)⟩) =
walk(σ−)⌢⟨v⟩ if v , u,

walk(σ−) otherwise.

The notationwalk has already been introduced in Definition 45 with a slightly
different definition, but these two notions are essentially equivalent. Therefore, we
may use the same notation.

For any f ∈ ▼v∈(V,E)Pv, if prv( f ) is total for somev ∈ V, then the desired condition
follows as in (1). Otherwise,mc( f ) = ∞, i.e., there are infinitely manyn ∈ N such
that (f (n + 1))0 , ( f (n))0. In this case,walk( f ) =

∪
s∈N walk( f ↾ s) is an infinite

path through the graph (V,E). In other words, the conditionf ∈ ▼v∈(V,E)Pv ensures
thatprv( f ) is total and belongs toPv for somev ∈ V, or otherwisewalk( f ) is total and
belongs to [(V,E)]. Consequently,f ∈ D̂eg

(
[(V,E)] ⊕

⊕
v∈V Pv

)
, sinceprv andwalk

are partial computable. □

Proposition 68. Let P,P0,P1,Pv, for v ∈ V, beΠ0
1 subsets ofNN, uniformly.

1.
`

v∈(T,E(T)) Pv = ▼v∈(T,E(T))Pv for any well-founded tree T⊆ N<N.

2. P0⊕P1 ≡1
1

`
v∈(V1,E1) Pv ≡1

1 ▼v∈(V1,E1)Pv, where V1 = {ε,0,1}, E1 = {(ε,0), (ε,1)},
and Pε = ∅.

3. P0▽P1 ≡1
1

`
v∈(V2,E2) Pv ≡1

1 ▼v∈(V1,E1)Pv, where V2 = {ε,0, 1,01,10}, E2 =

{(ε,0), (ε,1), (0,01), (1, 10)}, Pε = ∅, P01 = P1, and P10 = P0.
4. Pa+ ≡1

1

`
v∈(Ta,E(Ta)) P for every a∈ O, where recall the definition of Pa+ and Ta

in Definition 61 and the notation below Proposition 63.
5. ⟦P0 ∨ P1⟧2CL ≡1

1

`
v∈({0,1},{0,1}2) Pv.

6. ⟦P0 ∨ P1⟧3LCM ≡1
1

`
v∈(N,S) Pv, where S= {(n,n + 1) : n ∈ N}; P2n = P0 and

P2n+1 = P1 for any n∈ N.
7. ⟦P∨ P⟧3LCM ≡1

1 ⟦
∨

n∈N P⟧LCM ≡1
1

`
v∈(N,S) P.

8. D̂eg
(⊕

v∈N Pv

)
≡1

1 ⟦
∨

v∈N Pv⟧CL ≡1
1

`
v∈(N,N2) Pv ≡1

1

[`
∞
]
v∈N Pv.

Proof. (1) By Definition,
`

v Pv ⊆ ▼vPv. On the other hand, anyf ∈ ▼v∈(T,E(T))Pv can
pass at most finitely many vertices since (T,E(T)) has no infinite path. In other words,
the set{( f (n))0 : n ∈ N} is finite. By Pigeon Hole Principle, there is a vertexv ∈ T
such that (f (n))0 = v occurs for infinitely manyn ∈ N. Then,prv( f ) must be infinite.
Therefore,prv( f ) ∈ [TPv] = Pv since f ∈ Con(TPv)v∈V. Hence,f ∈

`
v∈(T,E(T)) Pv.

(2) The conditioǹ v∈(V1,E1) Pv ≤1
1 P0⊕P1 follows from Proposition 67 (1). For any

f ∈
`

v∈(V1,E1) Pv, there isi < 2 such that (f (n))0 = i for anyn ∈ N. Thus,i⌢ f ∈ P0⊕P1.
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The (1,1)-equivalence of̀ v∈(V1,E1) Pv and▼v∈(V1,E1)Pv follows from the item (1) since
(V1,E1) is finite.

(3) Clearly, P0▽2P1 ⊆
`

v∈(V2,E2) Pv. Thus, by Proposition 54 (2),P0▽P1 ≥1
1`

v∈(V2,E2) Pv. For f ∈
`

v∈(V2,E2) Pv, if |( f (0))0| = 1 thenΦ( f ) = f ∈ P0▽2P1. If
|( f (0))0| = 2, say (f (0))0 = ⟨i, j⟩, thenΦ( f ) = write( j, pr j( f )) ∈ P0▽1P1. Hence,
P0▽P1 ≤1

1

`
v∈(V2,E2) Pv via the computable functionΦ. The (1, 1)-equivalence of`

v∈(V1,E1) Pv and▼v∈(V1,E1)Pv follows from the item (1) since (V1,E1) is finite.
(4) If σ is extendible to an element of̀ v∈(Ta,E(Ta)) P, there is a uniqueκ ∈ Ta

such thatσ can be represented as
⊓

i≤|κ| write(κ ↾ i, cut(σ; i)) for some sequence
cut(σ) ∈ (TP)|κ|. Conversely, ifσ is extendible to an element ofPa+, there is a unique
κ ∈ Ta such thatσ can be represented as (

⊓
i<|κ|−1 κ

∗(i)⌢cut(σ; i)⌢♯)⌢κ∗(|κ|−1) for some
sequencecut(σ) ∈ (TP)|κ|, whereκ∗(i) indicates the location ofκ(i) in the treeTP. The
procedures to interchange these cuts are the desired (1,1)-reductions.

(5) It is easy to see that̀ v∈({0,1},{0,1}2) Pv = P0▽∞P1. Moreover,⟦P0 ∨ P1⟧2CL ≡1
1

P0▽∞P1 by Proposition 50.
(6) For eachσ = τ⌢⟨(i,m), ( j,n)⟩ ∈ (N ×N)<N, we inductively define a computable

functionΞ(σ) as follows. Ifi = j, then we setΞ(σ) = Ξ(τ⌢⟨(i,m)⟩)⌢⟨n⟩. Otherwise, we
setΞ(σ) = Ξ(τ⌢⟨(i,m)⟩)⌢⟨♯, j,n⟩. Then,⟦P0 ∨ P1⟧3LCM ≤1

1

`
v∈(N,S) Pv is witnessed by

Ξ. Conversely, to seè v∈(N,S) Pv ≤1
1 ⟦P0∨P1⟧3LCM, we again inductively define another

computable functionΞ∗(σ), for eachσ ∈ (N∪{♯}). SetΞ∗(⟨⟩) = ⟨⟩, fix σ = σ−−⌢⟨ j, k⟩ ∈
(N∪{♯})<N, and assume thatΞ∗(σ−) has been already defined. Forw ≥ v+2, we consider
the instructionmove(v,w) = ⟨(v+1,0), (v+2,0), . . . , (w−2, 0), (w−1,0)⟩ ∈ (V×N)w−v−1

to move from the tapeΛv to the tapeΛw in the dynamic tape model. Ifw < v+2, then we
assume thatmove(v,w) is the empty string. Putp(σ) = 2·count(σ)+tail(σ; 0), where
recall thatcount(σ) = #{n < |σ| : σ(n) = ♯}. If j , ♯ andk , ♯, then we defineΞ∗(σ) =
Ξ∗(σ−)⌢move(p(σ∗), p(σ))⌢⟨(p(σ), k)⟩, whereσ∗ is the last stringΞ∗(σ∗) ⊋ Ξ∗((σ∗)−).
Otherwise, we setΞ∗(σ) = Ξ∗(σ−). Then, we have⟨(Ξ∗( f ; n))0, (Ξ∗( f ; n + 1))0⟩ ∈ S
for any f ∈ ⟦P0 ∨ P1⟧3LCM. It is easy to verify thatΞ∗( f ) ∈

`
v∈(N,S) Pv.

(7) The (1,1)-equivalence of⟦P∨ P⟧3LCM and⟦
∨

n∈N P⟧LCM follows from Proposi-
tion 57 (2). Thus, the desired condition follows from (5).

(8) Clearly, ⟦
∨

v∈N Pv⟧CL ∩ Con(TPv)v∈N =
`

v∈(N,N2) Pv. Thus, the equivalence
⟦
∨

v∈N Pv⟧CL ≡1
1

`
v∈(N,N2) Pv ≡1

1

[`
∞
]
v∈N Pv follows from Proposition 50 and 58.

D̂eg
(∪

v∈N Pv
) ≤1

1

`
v∈(N,N2) Pv follows from Proposition 67 (1). We may assume that

Φe(⟨⟩) = ⟨⟩ for each indexe ∈ N. We inductively define a computable functionΓ wit-
nessing̀ v∈(N,N2) Pv ≤1

1 D̂eg
(∪

v∈N Pv
)
. For eachσ ∈ N<N ande ∈ N, we also induc-

tively define two parametersacte(σ) ∈ N andrqe(σ) ∈ N ∪ {−1}. Here,acte(σ) will
represent the last stage at which thee-th strategy acts alongσ, andrqe(σ) ≥ 0 will indi-
cate that thee-th strategyrequires attention. First we setacte(⟨⟩) = 0 andrqe(⟨⟩) = −1
for eache ∈ N. Inductively we assume thatΓ(σ−), acte(σ−), andrqe(σ

−) is already
defined. Calculater = min{rqe(σ

−) : e < |σ| & rqe(σ
−) > 0}, and pick the leaste

such thatrqe(σ
−) = r if such r ande exist. In this case, we say thate acts. If there is

no suche, we setΓ(σ) = Γ(σ−), acte(σ) = acte(σ−), andrqe(σ) = rqe(σ
−). If there

is suche, putσ∗ = (Φe(σ))↼|Φe(σ↾|acte(σ)|)|, i.e.,Φe(σ) = (Φe(σ ↾ |acte(σ)|)|)⌢σ∗. Then
we setΓ(σ) = Γ(σ−)⌢write(e, σ∗). Then, putrqe(σ) = −1 andacte(σ) = |σ|. For
eache∗ ∈ N \ {e}, setacte∗(σ) = acte∗(σ−). Moreover, ife∗ ≤ |σ|, rqe∗(σ

−) = −1,
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/.-,()*+P /.-,()*+Q /.-,()*+P // /.-,()*+Q
ww(1) start

bbEEEE
<<xxxx (2) start

bbEEEE /.-,()*+P // /.-,()*+Q

ii /.-,()*+P

55

xx(5) /.-,()*+P // /.-,()*+Q

iiRRRRRRR
(6) /.-,()*+P

77

xx/.-,()*+P // /.-,()*+Q /.-,()*+P
// /.-,()*+Qoo /.-,()*+P // /.-,()*+Q

iiRRRRRRR /.-,()*+P

77

ww(3) start

bbEEEE

""FFF
F (4) start

bbEEEE
<<xxxx /.-,()*+P // /.-,()*+Q

iiRRRRRRR /.-,()*+P

77

/.-,()*+P /.-,()*+Qoo start

bbEEEE
start

OO

Figure 1: The dynamical representations of disjunction operations: (1)⟦P ∨ Q⟧Int (P ⊕ Q); (2) P⌢Q; (3)
⟦P∨ Q⟧2LCM[2] (P▽Q); (4) ⟦P∨ Q⟧2CL (P▽∞Q); (5) ⟦P∨ Q⟧3LCM; (6) D̂eg(P), the Turing upward closure of
P.

and |Φe∗(σ ↾ |acte∗(σ)|)| < |Φe∗ (σ)|, then declarerqe∗(σ) = |σ|. Otherwise, put
rqe∗(σ) = rqe∗(σ

−). Fix g ∈ NN. We claim thatΦe(g) act infinitely often whenever
Φe(g) is total. Our construction ensures that only finitely manye’s require attentions
alongg ↾ s for eachs ∈ N. Therefore, forR = {e ∈ N : rqe(g ↾ s) > 0}, if e ∈ R, then
the strategyeacts by stages+#R, i.e.,acte(g ↾ s+#R) ≥ s. Assume thateact at stage
t ∈ N. Then the algorithmΓ(g ↾ t) writes the new information (g ↾ t)∗ of Φe(g) on the
e-th tape, i.e.,pre(Γ(g ↾ t)) = Φe(g ↾ t). Thus, eventually, we havepre(Γ(g)) = Φe(g).
For anyg ∈ D̂eg

(∪
v∈N Pv

)
, there is an indexe ∈ N such thatΦe(g) ∈ Pv for some

v ∈ N. Consequently,Γ(g) ∈
`

v∈(N,N2) Pv. □

Proposition 69. Let (V,E) be a computable directed graph, and{Pv}v∈V be a com-
putable sequence ofΠ0

1 subsets of2N. Then we have the following.

1.
`

v∈(V,E) Pv is Σ0
3.

2. ▼v∈(V,E)Pv isΠ0
1.

Proof. Clearly, Con(TPv)v∈V isΠ0
1. Moreover, the relation⟨( f (n))0, ( f (n+ 1))0⟩ ∈ E is

computable, uniformly inf ∈ (N×N)N andn ∈ N. Thus,▼v∈(V,E)Pv isΠ0
1. The relation

prv( f ) ∈ Pv isΠ0
2 in v ∈ V and f ∈ NN, since it is equivalent to the following formula.

(∀n ∈ N)(∃m ∈ N) |prv( f ↾ m)| > n & prv( f ↾ m) ∈ TPv.

Therefore,̀ v∈(V,E) Pv is Σ0
3. □

5.5. Infinitary Disjunctions along ill-Founded Trees

To study (< ω,ω)-degrees, the team-learning proof model ofP is expected to be
useful. However, the model may be far fromΠ0

1 wheneverP is Π0
1. To break out

of the dilemma, the following minor modification of consistent dynamic disjunction
is helpful. For any treeTP ⊆ N<N and i ∈ N, we let TP

⌢⟨i⟩ denote the treeTP ∪∪
ρ∈LP

ρ⌢⟨i⟩, andTP
⌢TQ denote the treeTP ∪

∪
ρ∈LP

ρ⌢TQ. In other words,TP
⌢TQ is a

corresponding tree ofP⌢Q.
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Definition 70. Let V be a subtree ofN<N, {Pσ}σ∈V be a computable sequence ofΠ0
1

subsets of 2N, andTσ ⊆ 2<N be the corresponding tree ofPσ for eachσ ∈ V. Thenthe
concatenation of{Pσ}σ∈V along the tree Vis defined as follows.

▼σ∈VPσ =

∪
τ∈V

⊓
i<|τ|

Tτ↾i
⌢⟨τ(i)⟩

 ⌢Tτ
 .

We assume thatTσ is the full binary tree 2<N for eachσ < V. Eachα ∈ 2<N is uniquely
represented as

α = ρ0
⌢⟨τ(0)⟩⌢ρ1

⌢⟨τ(1)⟩⌢ . . . ⌢⟨τ(|τ| − 2)⟩⌢ρ|τ|−1
⌢⟨τ(|τ| − 1)⟩⌢β,

whereτ ∈ 2<N, ρ(i) ∈ Tτ↾i for eachi < |τ|, andβ ∈ Tτ. For suchτ and β, we
setwalk(α) = τ, andcut(α) = ⟨ρ0, ρ1, . . . , ρ|τ|−1, β⟩. We also definetailcut(α) =
cut(α; |walk(α)|) = β. Hence, eachα ∈ 2<N is represented as

α =

 ⊓
i<|walk(α)|

cut(α; i)⌢⟨walk(α; i)⟩
 ⌢cut(α; |walk(α)|).

Then the set▼σ∈VPσ is characterized as follows.

▼σ∈VPσ =
[{
α ∈ 2<N : walk(α) ∈ V & (∀i ≤ |walk(α)|) cut(α; i) ∈ Twalk(α)↾i

}]
.

Remark. The notationwalk has already been introduced in Definition 45 and the
proof of Proposition 67. The meanings of the symbolwalk in Definitions 45 and 70
are formally different, but the ideas behind these definitions are the same. Thus, there
is no confusion in using the same notation.

Proposition 71. Let V be a computable subtree of2<N, and{Pσ}σ∈V be a computable
sequence ofΠ0

1 subsets of2N. Then▼σ∈VPσ isΠ0
1 subset of2N. Moreover,▼σ∈VPσ is

(1,1)-equivalent to▼σ∈(V,E(V))Pσ in the sense of Definition 66.

Proof. Note thatwalk, cut, andtailcut are total computable onN<N. Therefore, it is
Π0

1. Then,

Φ(α) =
⊓

i≤|walk(α)|
write(walk(α) ↾ i, cut(α; i))

witnesses▼σ∈VPσ ≥1
1 ▼σ∈(V,E(V))Pσ.

Conversely, to see▼σ∈VPσ ≤1
1 ▼σ∈(V,E(V))Pσ, we inductively define a computable

functionΞ. SetΦ(⟨⟩). Fix α = α−−⌢⟨(σ,m), (τ,n)⟩ ∈ (V × 2)<N, and assume thatΦ(α−)
has been already defined. Ifσ = τ, then setΞ(α) = Ξ(α−)⌢⟨n⟩. If σ , τ, sayτ = σ⌢⟨i⟩,
then we first calculate the least leafleaf(Ξ(α−)) of TPσ extendingΞ(α−). Then we set
Ξ(α) = leaf(Ξ(α−)⌢⟨i,n⟩. Note that, for eachα = α−⌢⟨(τ,n)⟩ ∈ (V × 2)<N, we have
walk(Ξ(α)) = (α(|α| − 1))0 = τ, andtailcut(Ξ(α)) = prwalk(α)(α). Thus,Ξ witnesses
▼σ∈VPσ ≤1

1 ▼σ∈(V,E(V))Pσ. □
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Definition 72 (Hyperconcatenation). ForΠ0
1 setsP,Q ⊆ 2N, thehyperconcatenation

of P and Qis defined by

Q▼P = ▼σ∈TQPσ = {g ∈ 2N : (∀n) walk(g ↾ n) ∈ TQ & (∀n ≤ |walk(g)|) cut(g; n) ∈ TP},

whereTQ denotes the corresponding tree forQ, andPσ = P for anyσ ∈ TQ.

Remark. For everyg ∈ Q▼P, if walk(g) is total, thenwalk(g) ∈ Q, or otherwise
tailcut(g) ∈ P. Therefore, the hyperconcatenationQ▼P in the sense of Definition 72
can be seen as a consistent conservative version of the hyperconcatenation⟦Q∨ P⟧▼

Σ0
2

in the sense of Definition 45.

To see the learnability feature of hyperconcatenation, we introduce new learnability
notions.

Definition 73. LetΨ be a learner.

1. Ψ is confident(see also [37]) if limsΨ( f ↾ s) converges for everyf ∈ NN.
2. Ψ is eventually-Popperianif, for every f ∈ NN, ΦlimsΨ( f↾s)( f ) is total whenever

limsΨ( f ↾ s) converges.
3. Ψ is eventually-Lipschitzif there is a constantc ∈ N such that, for everyf ∈ NN,
|ΦlimsΨ( f↾s)( f ↾ l + c)| ≥ l for any l ∈ N, whenever limsΨ( f ↾ s) converges.

Proposition 74.

1. For any set X,Y ⊆ NN, if X ≤<ωtt,ω Y, then X≤<ωω Y via a team of eventually-
Popperian learners.

2. For anyΣ0
2 set S⊆ 2N and any set R⊆ NN, if R ≤1

ω S , then it can be witnessed by
an eventually-Popperian learner. Moreover, if S isΠ0

1, then it can be witnessed
by a confident eventually-Popperian learner.

3. For anyΠ0
1 set P⊆ 2N and any set Q⊆ NN, if P ≤<ω1 Q then P≤<ωω Q by a team

of confident learners.

Proof. (1) Straightforward from the definition.
(2) Fix a computable increasing sequence{Ti}i∈ω of infinite computable trees such

that S =
∪

i [Ti ]. By padding, there is a computable functionp : N2 → N such that
Φp(e,n) corresponds exactly toΦe, and p(e,n + 1) > p(e,n) for any indexe and n.
Assume thatR ≤1

ω S via a learnerΨ. We need to construct a eventually-Popperian
learner∆ witnessingR ≤1

ω S. At each stages, we define a value of∆(σ) for each
σ ∈ 2s. For a givenσ ∈ 2s, we computeq(σ) = min({i < s : (∀τ ∈ 2s) τ ⊇ σ →
τ ∈ Ti} ∪ {s}), and put∆(σ) = p(Ψ(σ),q(σ)). If f < S, then limn q( f ↾ n) diverges.
Therefore, limn∆( f ↾ n) diverges. On the other hand, iff ∈ S, then limn q( f ↾ n)
converges to someq. ThenΦlimn ∆( f↾n)( f ) = Φp(limnΨ( f↾n),q)( f ) = ΦlimnΨ( f↾n)( f ) ∈ R.
Consequently,∆ is eventually-Popperian, and witnessesR ≤1

ω S. If S is Π0
1, then we

modify ∆ by setting∆(σ) to be a fixed index of a total computable functiong 7→ 0ω,
wheneverσ extends a leaf ofTS. Then,∆ is also confident.

(3) If P ≤<ω1 Q via n many computable functions{Φi}i<n, then each learnerΨi for
eachi < n guesses an index ofΦi . Note thatΨi does not change his mind. In particular,
Ψi is confident. □
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Proposition 75. Let V be a computable subtree ofN<N, and{Pσ}σ∈V be a computable
collection ofΠ0

1 subsets ofNN. Then[(V,E)] ⊕
⊕

σ∈N<N Pσ ≤<ωω ▼σ∈VPσ by a team of
a confident learner and an eventually-Popperian learner.

Proof. We consider two learners: a learnerΨ0 who guesses an index ofα 7→ 0⌢walk(α),
and a learnerΨ1 who guesses an index ofα 7→ ⟨1, walk(α)⟩⌢tailcut(α). As f 7→
0⌢walk( f ) is partial computable,Ψ0 does not change his mind. In particular,Ψ0 is
confident. Onf ∈ NN, the learnerΨ1 changes his mind wheneverwalk( f ↾ n + 1)
properly extendswalk( f ↾ n). If lim n∈NΨ1( f ↾ n) converges, thenwalk( f ) must
be partial. Thus,tailcut( f ) must be total. Then,⟨1, walk( f )⟩⌢tailcut( f ) is total.
Therefore,Ψ1 is eventually-Popperian. □

Proposition 76. Let P0,P1,Q0,Q1 beΠ0
1 subsets of2N such that Q0 ≤1

ω Q1 via an
eventually Lipschitz learner and that P0 ≤1

1 P1. Then, Q0▼P0 ≤1
ω Q1▼P1.

Proof. For any partial computable functionΦ, without loss of generality, we may as-
sume|Φ(σ)| ≤ |Φ(σ−)| + 1 for any stringσ ∈ N<N. For given indicesi and j, we
effectively construct a computable functionΦhyp(i, j) as follows. PutΦhyp(i, j)(⟨⟩) = ⟨⟩,
and assume thatΦhyp(i, j)(σ−) has been already defined. Note that, either|walk(σ)| =
|walk(σ−)| + 1 or |tailcut(σ)| = |tailcut(σ−)| + 1 is satisfied. Here, the nota-
tion tailcut is used in referring to decomposingQ1▼P1. If the former is the case
(i.e., |walk(σ)| = |walk(σ−)| + 1), then we extendtailcut(Φhyp(i, j)(σ−)) to leaf ◦
tailcut(Φhyp(i, j)(σ−)), the least leaf ofTP0 extending it, and then, concatenate the bit
Φi(walk(σ); |walk(σ)| − c) to it. Formally, for a stringτ ∈ N<N with Φhyp(i, j)(σ−) =
τ⌢tailcut(Φhyp(i, j)(σ−)), we define

Φhyp(i, j)(σ) = τ⌢leaf ◦ tailcut(Φhyp(i, j)(σ−))⌢⟨Φi(walk(σ); |walk(σ)| − c)⟩.

Here, we fix some stringρ ∈ TQ0 of length c, and we setΦi(σ; k − c) = σ(k) for
eachk < c. If Φi(walk(σ); |walk(σ)| − c) is undefined, thenΦhyp(i, j)(τ) is undefined
for anyτ ⊇ σ. If the former is not the case (then,|tailcut(σ)| = |tailcut(σ−)| + 1),
then we concatenate the new values ofΦ j(tailcut(σ)) to Φhyp(i, j)(σ−) if it belongs to
TP0. Formally, if Φ j(tailcut(σ−)) ⊊ Φ j(tailcut(σ)) ∈ TP0, sayΦ j(tailcut(σ)) =
Φ j(tailcut(σ−))⌢ρ, then we defineΦhyp(i, j)(σ) = Φhyp(i, j)(σ−)⌢ρ. Otherwise, we set
Φhyp(i, j)(σ) = Φhyp(i, j)(σ−).

Now assume thatP0 ≤1
ω P1 via a computable functionΦe, andQ0 ≤ω Q1 via an

eventually Lipschitz learnerΨ with a constantc. We construct a learner∆ witnessing
Q0▼P0 ≤1

ω Q1▼P1. At first the learner∆ guesses the index∆(⟨⟩) = hyp(Ψ(⟨⟩),e).
Fix σ ∈ N<N, and assume that∆(σ−) has been already defined. IfΨ(walk(σ)) ,
Ψ(walk(σ−)), then∆ also changes his mind as∆(⟨)⟩ = hyp(Ψ(walk(σ)),e). Assume
not. In the case|walk(σ)| > |walk(σ−)|, if either |walk(σ)| < c or walk(σ) < Text

Q1

is witnessed, the learner∆ changes his mind (this situation occurs only finitely often).
Otherwise, the learner∆ keeps his previous guess, i.e.,∆(σ) = ∆(σ−). In this way, it is
not hard to see that we may construct a learner∆ witnessingQ0▼P0 ≤1

ω Q1▼P1. □

5.6. Nested Infinitary Disjunctions along ill-Founded Trees
In Part II, we employ finite iterations of the hyperconcatenation▼ to show that some

(local) degree structures are not Brouwerian. Beyond this, it is important to see that
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▼σ∈T0T1

σ
▼τ∈T1

σ
T2
σ,τ
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T0 T1
101

T2
101,1001
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101
1001

Figure 2: An example nested tape model whenG is a linear order of length 3:⟨012⟩ is written onΛ□; ⟨101⟩
is written onΛ0; ⟨1001⟩ is written onΛ1

101; thenΛ□, Λ0, Λ1
101, andΛ2

101,1001 are available.

one can iterate the hyperconcatenation▼ along any directed graph (V,E), though the
iteration of▼ does not represented by our previous dynamic proof model. Therefore,
we introduce a new model calledthe nested disjunction model.

The nested tape model: As an example, first we consider the nested disjunctionT∗ =
▼σ∈T0▼τ∈T1

σ
[T2

σ,τ] along the graphG = ({0,1,2}, {(0,1), (1,2)}) with the initial vertex
ε = 0, whereT = {T0}∪ {T1

σ}σ∈N<N ∪{T2
σ,τ}⟨σ,τ⟩∈(N<N)2 is a given collection of subtrees of

N<N. The nested tape model forT∗ consists of a collection{Λ□} ∪ {Λ0} ∪ {Λ1
σ}σ∈N<N ∪

{Λ2
σ,τ}⟨σ,τ⟩∈(N<N)2 of infinite tapes.
Generally, anested system(G,T,Λ) consists of a graphG = (V,E) with the initial

vertexε, a collectionT = {Tv
σ}v∈V,σ∈(N<N)<N of (ill-founded) trees, and a collectionΛ =

{Λ□} ∪ {Λv
σ}v∈V,σ∈(N<N)<N of infinite tapes. A verifierΨ is only allowed to write a letter

on tapes which areavailable. Assume that a wordpr[v, σ] is written onΛv
σ for each

v ∈ V andσ ∈ (N<N)<N. Then, the availability conditions are given as follows.

• Λ□ andΛε⟨⟩ are available at each stage.

• If a finite wordv = ⟨v[0], v[1], . . . , v[l]⟩ is written on the tapeΛ□, then the fol-
lowing tapes are available.

Λ
v[1]
pr[v[0],⟨⟩] ,Λ

v[2]
pr[v[1],pr[v[0],⟨⟩]] , . . . ,Λ

v[i]
pr[v[i−1],pr[v[i−2],...,pr[v[1],pr[v[0],⟨⟩]]]] .

Here, on the tapeΛ□, the verifierΨ is only allowed to write a path starting from the
initial vertexε within the graphG = (V,E).

Example 77. On the nested tape model forT∗, letα ∈ ((I ∪ {□}) × N)<N be the record
of a proof process ofΨ by some stage, i.e.,pr□(α) andpr(v,σ)(α), for each (v, σ) ∈ I<N,
represent the words written onΛ□ andΛv

σ, respectively. Here,I denotesV×(N<N)<N. If
the letter 1 representing the vertex 1∈ V has been written onΛ□ (i.e.,pr□(α) ⊇ ⟨01⟩),
then the three tapesΛ□, Λ0, andΛ1

p are available, wherep = pr0(α).
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The verifierΨ succeedsif he eventually writes a correct solution on some tape
from Λ (i.e., some solutionf ∈ [Tv

σ] is eventually written onΛv
σ for some (v, σ) ∈

V × (N<N)<N, or otherwise, some infinite path thoughG is written onΛ□). For each
u, v ∈ V and (v, σ) ∈ V × (N<N)<N, the tuple⟨Tv

σ,Λ
v
σ,T

u
σ,τ,Λ

u
σ,τ⟩τ∈Tv

σ
is called the

(σ, v,u)-component of(G,T,Λ). The (σ, v,u)-component of our nested system con-
sists of an infinite disjunction along an ill-founded tree,▼τ∈Tv

σ
[Tu

σ,τ]. In other words,
on the (σ, v,u)-component of the system (I ,Λ,T,G), the setΛv

σ plays the role of the
declaration□, andΛu

σ,τ plays the role of the working tape for eachτ ∈ Tv
σ, as in the

dynamic tape model.

Definition 78. Fix a directed graphG = (V,E), and we denotesV × (N<N)<N by I .
Assume that a collection{T(v,σ)}(v,σ)∈I of subtrees ofN<N are given. Forα ∈ ((I ∪{□})×
N)<N, we inductively definethe n-th available index alongα, p(α,n) ∈ I , for each
n ≤ |pr□(α)|, as follows.

p(α,0) = (ε, ⟨⟩), p(α, i + 1) = (pr□(α)(i), (p(α, i))1
⌢⟨prp(α,i)(α)⟩).

Then we define the set of all indices ofavailable tapes alongα by A(α) = {p(α,n) :
n ≤ |pr□(α)|}. The setS(α) of successors ofα is defined as follows:

S(α) = {(p,n) ∈ (I ∪ {□}) × N : p ∈ A(α) & prp(α)⌢n ∈ Tp}
∪ {(□, v) : (pr□(α)(|pr□(α)| − 1), v) ∈ E}.

Then the nested infinitary disjunctionWσ∈I [Tσ] ⊆ ((I ∪ {□}) × N)N of {Tv
σ}(v,σ)∈I is

defined by

Wσ∈I [Tσ] = { f ∈ ((I ∪ {□}) × N)N : (∀n ∈ N) f (n) ∈ S( f ↾ n)}.

We can also defineWσ∈I [Tσ] = { f ∈Wσ∈I [Tσ] : |pr□( f )| < ∞}.

Proposition 79. Assume that G= (V,E) is a computable directed graph, and{Tσ}σ∈I
is a computable collection of computable subtrees ofN<N, where I = V × (N<N)<N.
Then,Wσ∈I [Tσ] isΠ0

1. Moreover, if G and Tσ are subtrees of2<N for eachσ ∈ I, then
Wσ∈I [Tσ] is (1,1)-equivalent to aΠ0

1 subset of2N.

Proof. Note thatα 7→ A(α) is computable. Therefore,α 7→ S(α) is also computable.
Thus,Wσ∈I [Tσ] is Π0

1.
Assume thatG = (V,E(V)) andTσ are subtrees of 2<N for eachσ ∈ I . Fix new

symbols+,− which does not belong toN. To construct aΠ0
1 subset of ({+,−} ∪ 2)N

which is (1,1)-equivalent toWσ∈I [Tσ], we inductively define a computable function
head : ({+,−} ∪ 2)<N → Z. Fix α = α−⌢⟨w⟩ ∈ ({+,−} ∪ 2)<N. Put head(⟨⟩) = 0,
Put head(α) = head(α−) + 1 if w = +; put head(α) = head(α−) if w < {+.−}; and put
head(α) = head(α−) − 1 if w = −. If α = α−−⌢⟨+,+⟩ and head(α) = max{head(β) : β ⊊
α} + 2, or if head(α) = −1, then we say thatα is overflowing. If α has an overflowing
initial segmentβ ⊆ α, then we also say thatα is overflowing. Let Rule denote the set
of all non-overflowing stringsα ∈ ({+,−} ∪ 2)<N which has neither⟨+,−⟩ nor ⟨−,+⟩ as
substrings. Note that Rule is computable.

We now inductively definep̃r□, p̃, and p̃rσ for eachσ ∈ V. Put p̃r□(⟨⟩), and
p̃ = ⟨⟨⟩⟩. Fix α = α−⌢w ∈ Rule. Assume that̃pr□(α

−), and p̃(α−) have been already
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defined. Ifw ∈ {+,−}, thenp̃r□(α) = p̃r□(α
−) and p̃(α) = p̃(α−). Assumew < {+,−}.

Then, if head(α) > max{head(β) : β ⊊ α}, then we definep̃r□(α) = p̃r□(α
−)⌢w.

Otherwise, setp̃r□(α) = p̃r□(α
−). If p̃r□(α) , p̃r□(α−), then p̃(α) = p̃(α−)⌢⟨⟨⟩⟩.

Otherwise, define ˜p(α) ∈ (2<N)|V(α)| as follows.

(p̃(α))(n) =


(p̃(α−))(n), if n < head(α);

(p̃(α−))(n)⌢w, if n = head(α);

⟨⟩, if h(α) < n ≤ |p̃r□(α)|.

Then, for eachσ ∈ V, we definep̃rσ(α) = (p̃(β))(|σ|) for the greatestβ ⊆ α such
thatσ ⊆ p̃(β). Set Rule∀ = { f ∈ ({+,−} ∪ 2)N : (∀n ∈ N) f ↾ n ∈ Rule}. Note
that anyg ∈ Rule∀ has no infinite{+,−}-sequence; otherwiseg ↾ s for somes ∈ N is
overflowing or has a substring⟨+,−⟩ or ⟨−,+⟩, and henceg ↾ s must go against Rule.
ThenP is defined as follows.

P = { f ∈ Rule∀ : (∀n ∈ N) (p̃r□( f ↾ n) ∈ V & (∀σ ∈ I ) p̃rσ( f ↾ n) ∈ Tσ)}.

Clearly, P is computably bounded, andΠ0
1. It remains to show thatP ≡1

1 Wσ∈I [Tσ].
We first inductively define a computable functionΦ witnessingP ≥1

1 Wσ∈I [Tσ]. Set
Φ(⟨⟩) = ⟨⟩, fix α = α−⌢w ∈ Rule, and assume thatΦ(α−) has been already de-
fined. If w ∈ {+.−}, then setΦ(α) = Φ(α−). Assumew < {+,−}. If head(α) >
max{head(β) : β ⊊ α}, then we setΦ(α) = Φ(α−)⌢⟨(□,w)⟩. Otherwise, we set
Φ(α) = Φ(α−)⌢⟨((p̃r□(α), p̃(α) ↾ h(α)),w)⟩. It is not hard to checkP ≥1

1 Wσ∈I [Tσ]
viaΦ.

To proveP ≥1
1 Wσ∈I [Tσ], we first define a computable function head∗. Firstly put

head∗(⟨⟩) = 0. Fix α = α−⌢⟨(σ,w)⟩ ∈ ((I ∪ {□}) ∪ N)<N. If σ = □, then we set
head∗(α) = |pr□(α)|. If σ ∈ I , then we set head∗(α) = |(σ)1|. SetΦ(⟨⟩) = ⟨⟩, and
assume thatΦ(α−) has already been defined. Putd = head∗(α) − head∗(α−). If d ≥ 0,
thenΦ(α) = Φ(α−)⌢ +d ⌢w. If d < 0, thenΦ(α) = Φ(α−)⌢ −−d ⌢w. It is not hard to
checkP ≤1

1 Wσ∈I [Tσ] via Φ. □

If Tv
σ only depends onv ∈ V, i.e.,Tv

σ = Tv, then the nested system (I ,Λ,T,G) can
be viewed as the iteration of the hyperconcatenation▼ along the graphG. In this case,
we writeWv∈(V,E)Pv for this notion.

Proposition 80. Let (V,E) be a computable directed graph, and{Pv}v∈V be a com-
putable collection ofΠ0

1 subsets ofNN. Then,Wv∈(V,E)Pv ≤1
1 ▼v∈(V,E)Pv.

Proof. We inductively define a computable functionΦ which witnesses the condition
Wv∈(V,E)Pv ≤1

1 ▼v∈(V,E)Pv. SetΦ(⟨⟩) = ⟨⟩. Fix α = α−−⌢⟨(u, i), (v, j)⟩ ∈ (V × N)<N. As-
sume thatΦ(α−) has already been defined, andΦ(α−) is of the formΦ(α−) = β⌢⟨(σ, k)⟩
for someβ ∈ ((I ∪ {□}) × N)<N, σ ∈ I ∪ {□}, andk ∈ N. If v = u, then we setΦ(α) =
Φ(α−)⌢⟨(σ, j)⟩. If v , u, then we setΦ(α) = Φ(α−)⌢⟨(□, v), ((v, (σ)1

⌢pru(α)), j)⟩.
Fix g ∈ ▼v∈(V,E)Pv. By induction, we can showprv[n](g ↾ n + 1) = prσ[n](Φ(g ↾
n + 1)), whereg(n) = (v[n], j) andΦ(g ↾ n + 1) = β⌢⟨(σ[n], j)⟩. Then, (σ[n])1 =

(σ[n]−)1
⌢prσ[n]−(Φ(g ↾ n + 1)), by our definition ofΦ. Therefore,σ[n] is available

wheneverσ[n]− is available. By induction,σ[n] is available atg ↾ n, for anyn ∈ N.
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Moreover,prσ[n](Φ(g)) = prv[n](g) ∈ Tv[n] = Tσ[n] , andpr□(Φ(g)) = walk(g). Here
walk(g) is inductively defined as follows. Set walk(g ↾ 1) = (g(0))0. If (g(n + 1))0 =
(g(n))0, then walk(g ↾ n + 1) = walk(g ↾ n). If (g(n + 1))0 , (g(n))0, then walk(g ↾
n + 1) = walk(g ↾ n)⌢(g(n + 1))0. Note that⟨walk(g; n),walk(g; n+ 1)⟩ ∈ E for
eachn < |walk(g)| − 1. Thus,Φ(g; s) ∈ S(Φ(g) ↾ s) for any s ∈ N. Consequently,
Φ(g) ∈Wv∈(V,E)Pv. □

If G = (V,E) is linearly ordered, then we have no choice of the next vertex at each
stage. In this case, to simplify our argument, we assume that only{Λσ}⟨v,σ⟩∈I is given,
i.e., the (v, σ)-th tapeΛv

σ does not depend on the vertexv ∈ V, and. Moreover, if
Tσ = Tτ for anyσ, τ ∈ I , then we only require{Λ|σ|}⟨v,σ⟩∈I . We will use the simplest
depthn nested system. The system (G,T,Λ) is anN<n-nested systemif G = (n,S) and
Tσ = Tτ for anyσ, τ ∈ I . This system is equivalent to then-th iteration of▼. Let
P▼(0) = P, andP▼(n+1) = P▼P▼(n). We also write▼P for

∪
n∈N P▼(n).

Proposition 81. Let G = (n + 2,S), where n+ 2 = {m ∈ N : m < n + 2} and
S = {(m,m+ 1) : m ≤ n}, and{Pv

σ}⟨v,σ⟩∈I be a computable collection ofΠ0
1 subsets of

NN. Let Tv
σ denote the corresponding tree of Pv

σ for each⟨v, σ⟩ ∈ I. ThenW⟨v,σ⟩∈I Pv
σ

is (1,1)-equivalent to the following set:

Q = ▼σ(0)∈T0
⟨⟩

(
▼σ(1)∈T1

σ(0)

(
. . .
(
▼σ(n)∈Tn

σ(0),...,σ(n−1)
Pn+1
σ(0),...,σ(n)

)
. . .
))
.

In particular, Wv∈(n,S)P = P▼(n) for anyΠ0
1 subset ofNN.

Proof. Straightforward. □

Remark. We may introduce a transfinite iterationP▼(a) of hyperconcatenation as in
Definition 61, or equivalently, as a nested infinitary disjunctionWσ∈(Ta,E(Ta))P along
the well-founded treeTa. Recall from Corollary 48 that the hyperconcatenation▼
induces dec<ωd [Π0

2]decωp [Π0
1]. The induced piecewise computability concept becomes

thea-indexed version of dec<ωd [Π0
2]decωp [Π0

1].

Remark. We may introduce the “nested nested” model, the “nested nested nested”
model, and so on. LetQwP beWv∈(TQ,E(TQ))Pv, wherePv = P for eachv ∈ TQ. Then,
for example, the nested nested model can be introduced as the iteration ofw along any
directed graph (V,E). Therefore,inside the Muchnik degreeof anyΠ0

1 set P ⊆ 2N,
one may iterate this procedure as “nested nested nested. . . nested nested. . . ” Actually
one may iterate “nested nested nested. . . nested nested. . . ” along any directed graph,
for example, along the corresponding tree ofP. If we call it a “hypernested” model,
then, of course, we may introduce models which are “hypernested hypernested”, and
“hypernested hypernested hypernested”, and so on. By iterating this notion along the
corresponding tree ofP, we obtain a “hyperhypernested” model. Iterating this proce-
dure, of course, we have the iteration of “hyper” along the correspoding tree ofP.

In Part II, we show that the concatenationP 7→ P⌢P alwaysdecreases the Medvedev
degree, and the hyperconcatenationP 7→ P▼P alwaysdecreases the (1, ω)-degree on
nontrivialΠ0

1 subsets of 2N, while these operations preserve the Muchnik degree. This
observation reveals to us that there are a fine structure, a deep hierarchy, and a morass
inside each Muchnik degree (or equivalently, each Turing upward closure) of aΠ0

1
subset of 2N.
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6. Weihrauch Degrees and Wadge Games

6.1. Weihrauch Degrees and Constructive Principles
6.1.1. Basic Notation

We can also give a characterization of our nonuniformly computable functions in
the context of the Weihrauch degrees which is a generalization of the Medvedev de-
grees. Then, our results could be translated into the results on the Weihrauch degrees.
A partial functionP :⊆ NN → P(NN) is calleda multi-valued function. ThenP is also
written asP : NN ⇒ NN. One can think of each multi-valued functionP as a collection
{P(x)}x∈dom(P) of mass problemsP(x) ⊆ NN, or aΠ2-theorem(∀x ∈ dom(P))(∃y) y ∈
P(x).

Definition 82 ([11–14]). Let P :⊆ NN ⇒ NN andQ :⊆ NN ⇒ NN be multi-valued
partial functions.

1. A single-valued functionq :⊆ NN → NN is said to bea realizer of Qif q(x) ∈
Q(x) for anyx ∈ dom(Q).

2. We say thatP is Weihrauch reducible to Q(written P ≤W Q) if there are partial
computable functionsH,K such thatK(x, q ◦ H(x)) ∈ Q(x) for any x ∈ dom(P)
and any realizerq of Q.

Remark. If we think of the valuesP(x) andQ(x) asrelativized mass problems Px and
Qx, thenP ≤W Q can be represented as the existence of partial computable functions
Φ,∆ :⊆ NN → NN satisfyingΦx : Q∆(x) → Px for any x ∈ dom(Q), whereΦx is the
x-computable function mappingy ∈ NN toΦ(x⊕ y).

Indeed, Brattka-Gherardi [13] introduced the following embedding of the Medvedev
degrees into the Weihrauch degrees. For any subsetP of Baire spaceNN, we define
ι(P) : NN ⇒ NN by ι(P)(x) = P for any x ∈ NN. Then, the mapι provides an embed-
ding of the Medvedev degrees into the Weihrauch degrees, i.e.,P ≤1

1 Q if and only if
ι(P) ≤W ι(Q). See also Higuchi-Pauly [34].

Definition 83 ([11–14, 60, 82]). Let P,Q :⊆ NN ⇒ NN be partial multi-valued func-
tions.

1. (Pairing)⟨P,Q⟩(x) = P(x) × Q(x).
2. (Product) (P× Q)(⟨x, y⟩) = P(x) × Q(y).
3. (Coproduct) (P

⨿
Q)(0, x) = {0} × P(x); and (P

⨿
Q)(1, x) = {1} × Q(x).

4. (Composition) (P ◦ Q)(x) =
∪{P(y) : y ∈ Q(x)}, wherex ∈ dom(P ◦ Q) if

x ∈ dom(Q) andQ(x) ⊆ dom(P).
5. (Parallelization)̂P(⟨xi : i ∈ N⟩) =∏i∈N P(xi).

Note that (2), (3) and (5) in Definition 83 are operations on the Weihrauch degrees
[12, 13, 60], while neither (1) nor (4) is an operation on the Weihrauch degrees.

Thus, the degrees of difficulty ofΠ0
1 sets has also studied under the name ofclosed

choicein the context of Weihrauch degrees. LetX be a computable metric space (for
definition, see Weihrauch [82]). Then,A−(X) denotes the hyperspace of closed subsets
of X with the upper Fell representationψ− (see [11]). For example,P is a computable
point in the hyperspaceA−(NN) (resp.A−(2N)) if and only if P is aΠ0

1 subset of Baire
spaceNN (resp. of Cantor space 2N). The closed choice function represents a problem
to find an element of a given closed set (i.e., a setΠ0

1 relative to some oracleα).
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Definition 84 (Closed Choice [11–14]). Let X be a computable metric space. Then,
theclosed choiceoperation ofX is defined as the following partial function.

CX :⊆ A−(X)⇒ X, A 7→ A

Here, dom(CX) = {A ∈ A−(X) : A , ∅}.

The Medvedev reducibility can be interpreted as a computability of aconstant
multi-valued function.

Definition 85 (Reducibility Problem). Let P andQ be subsets ofNN. Then, there-
ducibility problem of P to Qis defined as the following constant multi-valued function.

P/Q :⊆ NN ⇒ NN, x 7→ P, dom(P/Q) = Q.

Clearly,P is Medvedev reducible toQ if and only if P/Q has a computable realizer,
that is,P/Q is Weihrauch reducible to the identity idNN : x 7→ x.

6.1.2. Principles of Omniscience
Definition 86. A formula istameif it is well-formed formula constructed from symbols
{⊤,⊥,∧,∨,¬,∀n,∃n}n∈N and one variable symbolV(n) with a number parametern ∈
N. For any tame formulaA andp ∈ NN, let A[V/p] denote the new formula obtained
from A by replacingV(n) with ⊤ if p(n) = 0 andV(n) with ⊥ if p(n) , 0. Then, let
TameForm denote the class of formulas of the formA −→ B for some tame formulas
A andB.

Example 87. The following formulas are contained in TameForm.

1. Σ0
1-LEM : ⊤ −→ ∃nV(n) ∨ ¬∃nV(n).

2. Σ0
2-LEM : ⊤ −→ ∃m∀nV(⟨m,n⟩) ∨ ¬∃m∀nV(⟨m,n⟩).

3. Σ0
2-DNE : ¬¬∃m∀nV(⟨m,n⟩) −→ ∃m∀nV(⟨m,n⟩).

4. Σ0
3-DNE : ¬¬∃k∀m∃nV(⟨k,m, n⟩) −→ ∃k∀m∃nV(⟨k,m,n⟩).

5. Σ0
1-LLPO : ¬(∃nV(⟨0,n⟩) ∧ ∃nV(⟨1,n⟩)) −→ ¬∃nV(⟨0,n⟩) ∨ ¬∃nV(⟨1,n⟩).

6. Σ0
2-LLPO : ¬(∃m∀nV(⟨0,m,n⟩) ∧ ∃m∀nV(⟨1,m,n⟩)) −→ ¬∃m∀nV(⟨0,m,n⟩) ∨
¬∃m∀nV(⟨1,m, n⟩).

Remark. The symbolsLEM, DNE, LLPO express thelaw of excluded middle, the
double negation elimination, and thelessor limited principle of omniscience(i.e., de
Morgan’s law), respectively.

Definition 88. Given anyA −→ B ∈ TameForm, we define a partial multivalued
functionFA−→B :⊆ NN ⇒ NN as follows:

dom(FA−→B) = {p⊕ q ∈ NN : q ∈ ⟦A[V/p]⟧},
FA−→B(p⊕ q) = ⟦B[V/p]⟧,

where⟦·⟧ : Form → P(NN) is a unique Medvedev interpretation in Definition 28 with
⟦⊤⟧ = NN.
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One can easily see that either⟦¬φ⟧ = NN or ⟦¬φ⟧ = ∅ holds for every arithmetical
sentenceφ in any Medvedev interpretation. Therefore, for every principleA −→ B in
Example 87, its domain is{p⊕ q ∈ NN : ⟦A[V/p]⟧ , ∅}, that is, we need not to use the
information onq. This observation immediately implies the following proposition.

Proposition 89. The induced functionFA−→B from a principle A−→ B in Example
87 is Weihrauch equivalent to the following associated partial multi-valued function
A −→ B on Baire space.

Σ0
1-LEM : NN → 2, Σ0

1-LEM(p) =

0, if (∃n ∈ N) p(n) = 0,

1, otherwise.

Σ0
2-LEM : NN ⇒ 2× N, Σ0

2-LEM(p) ∋
(0, s), if (∀m ∈ N)(∃n > m) p(n) = 0,

(1, s), if (∀n > s) p(n) , 0.

Σ0
2-DNE :⊆ NN ⇒ N, Σ0

2-DNE(p) = {m ∈ N : (∀n > m) p(n) , 0}.
Σ0

3-DNE :⊆ NN ⇒ N, Σ0
3-DNE(p) = {k : (∀m ∈ N)(∃n ≥ m) p(⟨k,n⟩) = 0}.

Σ0
1-LLPO :⊆ (NN)2⇒ 2, Σ0

1-LLPO(p0, p1) ∋
0, if (∀n ∈ N) p0(n) = 0,

1, if (∀n ∈ N) p1(n) = 0.

Σ0
2-LLPO :⊆ (NN)2⇒ 2, Σ0

2-LLPO(p0, p1) ∋
0, if (∀m)(∃n > m) p0(n) = 0,

1, if (∀m)(∃n > m) p1(n) = 0.

Here, their domains are given as follows.

dom(Σ0
2-DNE) = {p ∈ NN : (∃m ∈ N)(∀n > m) p(n) , 0}.

dom(Σ0
3-DNE) = {p ∈ NN : (∃k ∈ N)(∀m ∈ N)(∃n ≥ m) p(⟨k,n⟩) = 0}.

dom(Σ0
1-LLPO) = {(p0, p1) ∈ (NN)2 : (∃i < 2)(∀n ∈ N) pi(n) = 0}.

dom(Σ0
2-LLPO) = {(p0, p1) ∈ (NN)2 : (∃i < 2)(∀m)(∃n > m) pi(n) = 0}.

Remark. 1. The single-valued functionΣ0
1-LEM is usually calledthe limited prin-

ciple of omniscience(LPO). Brattka-de Brecht-Pauly [11] showed that a single-
valued partial functionf :⊆ NN → NN is (1, ω)-computable if and only iff is
Weihrauch reducible to the closed choiceCN for the discrete spaceN. Here, in
their term, the (1, ω)-computability is calledthe computability with finitely many
mind changes.

2. Σ0
2-LLPO is Weihrauch equivalent to thejump LLPO′ of LLPO in the sense of

Brattka-Gherardi-Marcone [14]. They also showed thatLLPO′ is Weihrauch
equivalent to the Borzano-Weierstrass TheoremBWT2 for the discrete space
{0, 1}. Brattka-Gherardi-Marcone [14] also pointed out that then-th jump of
LLPO andLPO correspond toΣ0

n+1-LLPO (that is, the lessor limited principle of
omniscience forΣ0

n+1-formulas) andΣ0
n+1-LEM (the law of excluded middle for

Σ0
n+1-formulas), respectively.

3. The study of arithmetical hierarchy of semiclassical principles such asΣ0
n-LEM,

Σ0
n-LLPO, andΣ0

n-DNE was initiated by Akama-Berardi-Hayashi-Kohlenbach
[1]. In particular, on the study of the second level of arithmetical hierarchy for
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semiclassical principles, see also Berardi [4] and Toftdal [79]. The relationship
between the learnability andΣ0

2-DNE has been also studied by Nakata-Hayashi
[57] in the context of a realizability interpretation of limit computable mathe-
matics.

Definition 90 (Unique variant [14]). Let P : X⇒ Y be a multi-valued function. Then
UniqueP : X ⇒ Y is defined as the restriction ofP up to dom(UniqueP) = {x ∈
dom(P) : #P(x) = 1}.

Definition 91. We define the partial multi-valued function∆0
2-LEM as follows.

∆0
2-LEM :⊆ N2 × NN → 2, ∆0

2-LEM(i, j, p) =

0, if p ∈ Toti ,

1, otherwise.

Here, dom(∆0
2-LEM) = {(i, j, p) ∈ N2 × NN : Toti = NN \ Tot j}, where Tote denotes the

set of all oraclesα ∈ NN such thatΦe(α; n) converges for all inputsn ∈ N.

Proposition 92. ∆0
2-LEM is Weihrauch reducible toUniqueΣ0

2-LLPO.

Proof. To see∆0
2-LEM ≤W UniqueΣ0

2-LLPO, given (e0,e1, p) ∈ N2 × NN, define
H(e0, e1, p) to be a pair (x0, x1), where xi(s) = 0 if and only if the computation
Φei ,s+1(p) at stages+1 properly extendsΦei ,s(p) at the previous stage. Thenxi contains
infinitely many 0’s if and only ifp is contained in Totei . Note that, whenever (e0,e1, p)
is contained in the domain of∆0

2-LEM, H(e0,e1, p) is also contained in the domain of
UniqueΣ0

2-LLPO, since Tote0 = N
N \Tote1. Therefore,UniqueΣ0

2-LLPO◦H(e0,e1, p) =
∆0

2-LEM(e0,e1, p). □

Theorem 93. Let f :⊆ NN → NN be a single-valued partial function.

1. f is (1,2)-computable if and only if f≤W Σ
0
1-LEM.

2. f is (1, ω|2)-computable if and only if f≤W ∆
0
2-LEM.

3. f is (1, ω)-computable if and only if f≤W Σ
0
2-DNE.

Proof. (1) Let f be a (1,2)-computable function. By Theorem 26 (1), we havef ∈
dec2d[Π0

1]. Then, there is aΣ0
1 setS ⊆ NN such thatf0 = f ↾ S and f1 = f ↾ NN \ S is

computable. PutU = {p ∈ NN : (∃n) p(n) = 0}. Note thatΣ0
1-LEM is the characteristic

function1U of U. By Σ0
1 completeness ofU, we can find a Wadge reduction (indeed, a

computable function)H such that1S = 1U ◦ H. PutK(x, i) = fi(x) for everyi < 2 and
x ∈ NN. Then, for everyx ∈ dom(f ),

K(x,1U ◦ H(x)) = K(x,1S(x)) =

K(x,0) = f0(x) if x ∈ S,

K(x,1) = f1(x) if x < S.

Conversely, we haveΣ0
1-LEM = 1U ∈ dec2d[Π0

1] sinceU is Σ0
1. This implies that

H ◦ ⟨id, 1U ◦ H⟩ ∈ dec2d[Π0
1] for every partial computable functionsH andK.

(2) Let f be a (1, ω|2)-computable function. By Theorem 26 (2), we havef ∈
dec2d[∆0

2]. Then, there areΠ0
2 setsP0,P1 ⊆ NN with P0 = N

N \ P1 such thatf ↾ P0

and f ↾ P1 are computable. Then, we can find indicesi, j such thatP0 = Toti and
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P1 = Tot j . Let H be the function sendingp ∈ NN to (i, j, p). Put K(x, i) = fi(x) for
everyi < 2 andx ∈ NN. It is not hard to see thatK(x,∆0

2-LEM ◦H(x)) = f (x) for every
x ∈ dom(f ).

We show the converse implication. By Proposition 92, we havef ≤W ∆
0
2-LEM ≤W

UniqueΣ0
2-LLPO. Assume thatf ≤W UniqueΣ0

2-LLPO via partial computable func-
tions K :⊆ NN × 2 → NN andH :⊆ NN → (NN)2. Let ei be an index ofλx.K(x, i)
for eachi < 2. We first computeh(σ, i) = #{n < |Hi(σ)| : Hi(σ; n) = 0}, where
H(σ) = ⟨Hi(σ)⟩i<2. Then letc(σ) be the leasti < 2 such thath(σ, k) ≤ h(σ, i) for any
k < 2. Let us consider a learnerΨ : N<N → {ei}i<m defined byΨ(σ) = ec(σ). For any
x ∈ dom(f ), we haveH(x) ∈ dom(UniqueΣ0

2-LLPO), and then limn h(x ↾ n, i) = ∞
for just onei < 2. Then, limn c(x ↾ n) also converges to suchi < 2. Moreover, for
any x ∈ dom(f ), UniqueΣ0

2-LLPO(H(x)) = {i} if and only if limn h(x ↾ n, i) = ∞.
We fix a realizerU of UniqueΣ0

2-LLPO, i.e., U(x) ∈ UniqueΣ0
2-LLPO(x) for any

x ∈ dom(UniqueΣ0
2-LLPO). Then, limn c(x ↾ n) = U ◦H(x) for anyx ∈ dom(f ) There-

fore, the limit limnΨ(x ↾ n) converges toeU◦H(x), and #indxΨ(x) ≤ #{ei : i < 2} ≤ 2.
Thus,ΦlimnΨ(x↾n)(x) = ΦeU◦H(x) (x) = K(x,U ◦ H(x)) = f (x) for anyx ∈ dom(f ). Hence,
f is (1, ω|2)-computable.

(3) Clearly,Σ0
2-DNE is Weihrauch equivalent to the closed choiceCN for discrete

spaceN. Therefore, the desired condition follows from Brattka-Brecht-Pauly [11].□

In particular, for instance,P ≤1
<ω Q if and only if P/Q ≤W f0 ◦ · · · ◦ fn for some

f0, . . . , fn ≤W Σ
0
1-LEM. One can apply this idea to any non-constructive principle.

Definition 94. LetΘ :⊆ NN ⇒ NN be a partial multi-valued function. A partialmulti-
valued functionF :⊆ NN ⇒ NN isΘ-computableif F is Weihrauch reducible toΘ. By
CΘ, we denote the least class containing allmulti-valuedΘ-computable functions and
closed under composition (in the sense of Definition 83 (4)). Then, for subsetsP,Q of
NN, we writeP ≤Θ Q if P/Q ≤W F for someF ∈ CΘ.

Theorem 95. Let P be aΠ0
2 subset ofNN, and Q be any subset ofNN.

1. P ≤<ω1 Q if and only if P≤Σ0
2-LLPO Q.

2. P ≤ω1 Q if and only if P≤Σ0
3-DNE Q.

Proof. (1) If P ≤<ω1 Q via two algorithms, we have a functionf : Q → P with
f ∈ dec2d[Π0

2] by Proposition 27 (3). Then,f0 = f ↾ Q0 and f1 = f ↾ NN \ Q0

are computable for someΠ0
2 set Q0 ⊆ NN. Since f1 is computable, we can extend

the domain off0 to aΠ0
2 setQ+ includingNN \ Q0. ThenQ1 = Q+ ∩ f −1

1 [P] is Π0
2

sinceP is Π0
2 and f1 is computable. It is easy to see thatQ0 ∪ Q1 includesQ. Since

Q0 and Q1 areΠ0
2, they are (computably) Wadge reducible to theΠ0

2 complete set
U = {x ∈ NN : (∃∞n) x(n) = 0}. That is, for everyi < 2, there is a computable
functionsHi such that1Qi = 1U ◦ Hi . Let H be a computable function sendingx ∈ NN
to the pair (H0(x),H1(x)), and putK(x, i) = fi(x). We can easily see that

x ∈ Qi ↔ 1Qi (x) = 1 ↔ 1U(Hi(x)) = 1 ↔ i ∈ Σ0
2-LLPO(H(x)).

Thus, for every realizerG :⊆ NN → 2 of Σ0
2-LLPO, we haveK(x,G ◦ H(x)) =

fG◦H(x)(x) ∈ P.
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Assume that the reducibility problemP/Q is Weihrauch reducible toΣ0
2-LLPO.

Then, there are computable functionsH : NN → (NN)2 andK : NN × 2 → NN such
thatK(x,G ◦ H(x)) ∈ P for any realizerG of Σ0

2-LLPO and any elementx ∈ Q. Then
K(x, i) ∈ P for somei < 2, sinceG ◦ H(x) < 2. SetΦe(i)(x) = K(x, i) for eachi < 2.
ThenP ≤<ω1 Q via {Φe(i)}i<2.

(2) Assume thatP ≤ω1 Q. It suffices to show thatP/Q ≤W Σ
0
3-DNE. Note that the

conditionΦe(x) is total and belongs toP isΠ0
2, uniformly in e ∈ N andx ∈ NN. Thus,

there is a computable functionH : NN → NN satisfying thatH(x; e,n) = 0 for infinitely
manyn ∈ N if and only if Φe(x) is total and belongs toP. By our assumption, there
is e ∈ N such thatH(x; e,n) = 0 for infinitely manyn ∈ N, for anyx ∈ Q. Therefore,
H(x) ∈ dom(Σ0

3-DNE) for any x ∈ Q, and, for any realizerG of Σ0
3-DNE, G ◦ H(x)

choosese< b such thatΦe(x) ∈ P. Then, for a computable functionK : NN ×N→ NN
mapping (x,e) toΦe(x), we haveK(x,G ◦ H(x)) = Φe(x) ∈ P.

If P/Q ≤W Σ
0
3-DNE, then there are computable functionsH : NN → NN and

K : NN × N → NN such thatK(x,G ◦ H(x)) ∈ P for any realizerG of Σ0
3-DNE and

any elementx ∈ Q. Then K(x, i) ∈ P for somei ∈ N, sinceG ◦ H(x) < m. Set
Φe(i)(x) = K(x, i) for eachi ∈ N. ThenP ≤ω1 Q via {Φe(i)}i∈N. □

Theorem 96. Let P and Q beΠ0
1 subsets ofNN. Then, P≤<ωtt,1 Q if and only if

P ≤Σ0
1-LLPO Q.

Proof. We assume thatP ≤<ωtt,1 Q via two truth-table functionalsf0 and f1. Note that
f −1(P) isΠ0

1 wheneverf is total computable, andP isΠ0
1. Then, forQi = Q∩Θ−1

i (P),
the domainQ is covered byQ0 ∪ Q1. By Π0

1 completeness ofU = {x : (∀n) x(n) , 0},
for everyi < 2, we have a computable functionHi such that1Qi = 1U ◦ Hi . As in the
proof of Theorem 95 (2), we setH : x 7→ (H0(x),H1(x)) andK : (x, i) 7→ fi(x). Then,
it is not hard to see that the conditionP ≤Σ0

1-LLPO Q is witnessed byH andK

If P/Q ≤W Σ
0
1-LLPO, then there are computable functionsH : NN → (NN)2 and

K : NN × 2 → NN such thatK(x,G ◦ H(x)) ∈ P for any realizerG of Σ0
1-LLPO and

any elementx ∈ Q. Then K(x, i) ∈ P for somei < 2, sinceG ◦ H(x) < 2. For
U = {x : (∀n) x(n) , 0}, defineDi = H−1

i [U], whereH(x) = (H0(x),H1(x)). The
computability ofHi implies thatDi is Π0

1. Define fi : Di → NN by fi(x) = K(x, i) on
Di . SinceDi is Π0

1, fi has a total computable extensionΦe(i). Therefore,P ≤<ωtt,1 Q via
{Φe(i)}i<2. □

Recall from Remark after Theorem 40 that≤Σ0
2

is the reducibility relation induced
by the disjunction operation⟦· ∨ ·⟧Σ0

2
.

Theorem 97. Let P and Q be any subsets ofNN. Then, P≤Σ0
2

Q if and only if P≤Σ0
2-LEM

Q.

Proof. Assume that there are two computable functionsH : NN → NN andK : NN ×
2×N→ NN such thatK(x,G◦H(x)) ∈ P for anyx ∈ Q and any realizerG : NN → 2×N
of Σ0

2-LEM. Then theΣ0
2 sentence (∃v)θ(v, x) is given by (∃v)(∀n > v)H(x; n) , 0. We

also define∆(x) = K(x, ⟨0,0⟩), andΓv(x) = K(x, ⟨1, v⟩), for anyx ∈ NN. Fix x ∈ Q. If
θ(v, x) is true, then there is a realizerG of Σ0

2-LEM mappingH(x) to (1, v). Therefore,

59



Σ0
3-DNE

Σ0
2-LEM

Σ0
2-LLPO Σ0

2-DNE

∆0
2-LEM

Σ0
1-LEM

[CT ]ω1

[CT ]2
ω

[CT ]2
1 [CT ]1

ω

[CT ]1
ω|2

[CT ]1
2

Figure 3: Constructive principles, and nonuniform computability.

Γv(x) = K(x, ⟨1, v⟩) = K(x,G◦H(x)) ∈ P. If (∀v)¬θ(v, x) is true, then there is a realizer
G of Σ0

2-LEM mappingH(x) to (0,0). Therefore,∆(x) = K(x, ⟨0,0⟩) = K(x,G◦H(x)) ∈
P. Hence, by Theorem 46, we obtain⟦P∨ P⟧Σ0

2
≤1

1 Q.

Conversely, we assume that⟦P∨P⟧Σ0
2
≤1

1 Q. Then, there are computable collection

∆, {Γv}v∈ of computable functions, and aΣ0
2 sentence∃vθ(v, x), as in Theorem 46.

By analyzing the proof of Theorem 46, we may assume that thisΣ0
2 sentence has an

additional property that, ifθ(v, x) is true andv ≤ u, thenθ(u, x) is also true. For any
x ∈ NN, put K(x, ⟨0,n⟩) = ∆(x) for eachn ∈ N, andK(x, ⟨1, v⟩) = Γv(x). From the
Σ0

2 sentence∃vθ(v, x), we can easily construct a computable functionH : NN → NN
satisfying thatθ(v, x) is true if and only ifH(x; n) , 0 for anyn > v. Fix x ∈ Q. If
∃vθ(v, x) is true, then any realizerG of Σ0

2-LEM mapsH(x) to some (1, v) witnessing
θ(v, x). Then,K(x,G ◦ H(x)) = Γv(x) ∈ P. If ∀v¬θ(v, x) is true, then any realizerG of
Σ0

2-LEM mapsH(x) to (0, s) for somes ∈ N. Then,K(x,G ◦ H(x)) = ∆(x) ∈ P. □

Corollary 98. Let P and Q be subsets ofNN, where P isΠ0
2. Then, P≤<ωω Q if and

only if P≤Σ0
2-LEM Q.

Proof. By Proposition 27 (2) and Theorem 97. □

6.2. Duality between Dynamic Operations and Nonconstructive Principles

We now interpret our results in Section 4 in context of the Weihrauch degrees.

Definition 99 ([14, 48]). Let F,G :⊆ NN ⇒ NN be any multi-valued functions. Then,
F ⋆G = max≤W{F∗ ◦G∗ : F∗ ≤W F & G∗ ≤W G}. □

If multi-valued functionsC,D :⊆ NN ⇒ NN satisfy the condition

D ◦ E ≤W F ⇐⇒ E ≤W C ⋆ F

for any multi-valued functionsE, F :⊆ NN ⇒ NN, then we may think ofD as the
inverseof C. One could think of our disjunction operators as inverse operators of
various constructive principles.
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Definition 100. Fix x ∈ NN.

1. ▽(x) = {y ∈ (N ∪ {♯})N : #{n ∈ N : y(n) = ♯} ≤ 1 & tail(y) = x}.
2. ▽ω(x) = {y ∈ (2× N)N : (∃i < 2) pri(y) = x & mc(y) < ∞}.
3. ▽∞(x) = {y ∈ (2× N)N : (∃i < 2) pri(y) = x}.
4. d̂egT(x) = {y ∈ NN : x ≤T y}.

Then-th iteration of▽ (▽ω and▽∞) is denoted by▽(n) (▽(n)
ω and▽(n)

∞ ). Here, recall
from Remark below Definition 34 that the symbol♯ is supposed to be updated each
time. For instance,▽(2) refers to two special symbols♯0 and♯1, and then▽(n)(x) can be
identified with the set of all sequencesy such thaty contains at mostn many♯’s and
tail(y) = x. More precisely, given a partial multi-valued functionE, every element
of ▽(n) ◦ E(x) is of the formσ1♯σ2♯ . . . ♯σn♯y with y ∈ E(x). Thus,▽(n) ◦ Σ0

1-LEMn(x)
has a computable realizer, and indeed,▽(n) ◦ E has a computable realizer for every
E ≤W Σ

0
1-LEMn(x). We will see more general results in Proposition 101.

A multi-valued functionP :⊆ NN ⇒ NN is Popperianif there is a computable
functionr :⊆ NN×NN → NN satisfyingΣ0

1-LEM◦r(x, y) = 1P(x)(y), for anyx ∈ dom(P)
andy ∈ NN, where1P(x) denotes the characteristic function ofP(x). In other words,P
is Popperian if and only if the conditiony ∈ P(x) is Π0

1, uniformly in x ∈ dom(P) and
y ∈ NN. Every Popperian multi-valued function is clearly Weihrauch reducible to the
closed choiceCNN of Baire spaceNN.

Proposition 101. Let E, F : NN ⇒ NN be any multi-valued functions.

1. ▽(n) ◦ E ≤W F if and only if E≤W Σ
0
1-LEMn ⋆ F.

2. ▽(n)
ω ◦ E ≤W F if and only if E≤W UniqueΣ0

2-LLPOn ⋆ F.
3. ▽ ◦ E ≤W F if and only if E≤W Σ

0
2-DNE ⋆ F, where▽ =

∪
n∈N ▽

(n).

Moreover, if E is Popperian, then we also have the following conditions.

4. ▽(n)
∞ ◦ E ≤W F if and only if E≤W Σ

0
2-LLPOn ⋆ F.

5. ▽(n)
∞ ◦ ▽ ◦ E ≤W F if and only if E≤W (Σ0

2)2-LLPOn ⋆ F.

6. d̂egT ◦ E ≤W F if and only if E≤W Σ
0
3-DNE ⋆ F.

Proof. (1) Assume that there are partial computable functionsH :⊆ NN → NN and
K :⊆ NN × NN → NN such thatK(x, f ◦ H(x)) ∈ ▽(n) ◦ E(x) for anyx ∈ dom(▽(n) ◦ E)
and any realizerf of F. Then, for any realizerf of F, we have the following condition
for anyx ∈ dom(E).

K ◦ (id × f ) ◦ ⟨id,H⟩(x) = K(x, f ◦ H(x)) ∈ ▽(n) ◦ E(x) =
`1

nE(x).

Note thatH∗ = ⟨id,H⟩ : NN → NN × NN is computable, andF∗ = K ◦ (id ×
F) : NN × NN ⇒ NN is Weihrauch reducible toF. As in the proof of Theorem 26,
we can construct an (1,n)-computable functionγ :

`1
n E(x) → E(x), uniformly in

x ∈ dom(E). Therefore, by Theorem 93, we have a functionγ ≤W Σ
0
1-LCMn satisfying

γ ◦ f ∗ ◦ H∗(x) ∈ E(x) for any x ∈ dom(E) and any realizerf ∗ of F∗. Consequently,
E ≤W Σ

0
1-LEMn ⋆ F.

Conversely, we assume thatE ≤W S∗ ◦F∗ for someS∗ ≤W Σ
0
1-LEMn andF∗ ≤W F.

Then there are computable functionsH∗,K∗ such thatK∗(x,H∗ ◦ f (x)) ∈ F∗(x) for any
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realizer f of F. From any single valued functionf : NN → NN, we can effectively
obtain f ∗(x) = K∗(x,H∗ ◦ f (x)). Assume thatS∗ ≤W Σ

0
1-LEMn via H̃ and K̃, and

E ≤W S∗ ◦ F∗ via H and K. We considerH f (x) = H̃ ◦ f ∗ ◦ H(x) and K f (x, i) =
K(x, K̃( f ∗ ◦ H(x), i)). Then, we have the following condition for anyx ∈ dom(E).

K f (x,Σ
0
1-LCMn ◦ H f (x)) ∈ E(x).

By calculatingH f (x) = H̃◦ f ∗◦H(x), we can approximatei( f ; x) = Σ0
1-LEMn◦H f (x)

uniformly in f . Therefore, we can constructF+f to show▽(n)◦E ≤W F by the following

way. SetF+f (⟨⟩) = ⟨⟩, fix σ ∈ N<N, and assume thatF+f (σ−) has been already defined. If
i( f ;σ) , i( f ;σ−), we putF+f (σ) = F+f (σ−)⌢♯⌢K f (σ, i( f ;σ)). Otherwise,F+f continues

the approximation ofK f (σ, i( f ;σ)). It is not hard to see thatF+f (x) ∈ ▽(n) ◦ E(x) for
anyx ∈ dom(E) and any realizerf of F. Then,F+f is Weihrauch reducible to⟨K f ,H f ⟩,
and⟨K f ,H f ⟩ is Weihrauch reducible tof . Moreover, these reductions do not depend
on f . Hence,▽(n) ◦ E ≤W F.

(2,3) By the same argument as in the proof of the item (1).
(4) Assume thatE :⊆ NN ⇒ NN is Popperian, and there are partial computable

functionsH :⊆ NN → NN andK :⊆ NN×NN → NN such thatK(x, f ◦H(x)) ∈ ▽(n)
∞ ◦E(x)

for any x ∈ dom(▽(n)
∞ ◦ E) and any realizerf of F. Then, for any realizerf of F, we

have the following condition for anyx ∈ dom(E).

K ◦ (id × f ) ◦ ⟨id,H⟩(x) = K(x, f ◦ H(x)) ∈ ▽(n)
∞ ◦ E(x) =

[`
∞
]1
nE(x).

As in the proof of Theorem 26, we can construct an (n,1)-computable function
γ :
[`]1

n E(x) → E(x), uniformly in x ∈ dom(E). Here, note thatE(x) is aΠ0
1(x)

subset of Baire space, uniformly inx. Therefore, by relativizing Theorem 95, we have
a functionγ ≤W Σ

0
2-LLPOn satisfyingγ◦(id× f )◦⟨id,H⟩(x) ∈ E(x) for anyx ∈ dom(E)

and any realizerf of F. Consequently,E ≤W Σ
0
1-LLPOn ⋆ F.

(5,6) By the same argument as in the proof of the item (4). □

6.3. Borel Measurability, and Backtrack Games

Berardi-Coquand-Hayashi [5] showed that a 1-backtrack Tarski gameprovides a
semantics of positive arithmetical fragment of Limit Computable Mathematics (i.e.,
∆0

2-mathematics, in the sense of Kleene realizability). A positive arithmetical formula
A is true in the Limit Realizability Interpretation if and only if the∃-player has a
computable winning strategy in the 1-backtracking gamebck(G(A)) associated with
the Tarski game forA (for notations, see [5]).

Meanwhile, Van Wesep [80] introducedbacktrack gameto study the Wadge de-
grees, and Andretta [3] used this game to characterize the∆0

2-measurable functions
(also called the first level Borel functions) on Baire spaceNN. Motto Ros [52] and
Semmes [65] studied more general games to study the Baire hierarchy of Borel mea-
surable functions. The hierarchy of Borel measurable functions are deeply studied in
descriptive set theory [45]. We consider the following notions for a functionf on Baire
spaceNN and a countable ordinalξ < ω1.

1. f is aBorel function at levelξ (or aΣ0
ξ+1,ξ+1 function; see [41, 42, 53, 65]) if the

preimagef −1(A) isΣ0
ξ+1 for everyΣ0

ξ+1 setA ⊆ NN.
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2. f isΣ0
ξ+1-measurable(or equivalently, ofBaire classξ; see for instance, Kechris

[45]) if the preimagef −1(A) isΣ0
ξ+1 for every open setA ⊆ NN.

Clearly, every levelξ Borel function on Baire spaceNN is Σ0
ξ+1-measurable. The

effective hierarchy of Borel measurable functions is studied by Brattka [10] and de-
veloped by many researchers (see [23, 46]). Every effectiveΣ0

ξ+1 measurable function

maps each pointx to a point computable in theξ-th Turing jumpx(ξ) uniformly. There-
fore, the class of (effectively)Σ0

ξ-measurable functions does not closed under composi-
tion, whereas the class of the levelξ Borel functions must be closed under composition.
Our results (Theorem 26) suggest that our notions of piecewise computability behave
more like effective versions of the levelξ Borel functions rather than effectivelyΣ0

ξ-
measurable functions.

Recall from Definition 25 that decωp [Γ]F denotes the class ofΓ-piecewiseF func-
tions. IfF is the class of all partial continuous functions on Baire space, we abbreviate
it asdecωp [Γ]. Jayne-Rogers [43] proved thatdecωp [Π0

1] is exactly the class of the first
level Borel functions, and Semmes [65] showed thatf is decωp [Π0

2] is exactly the class
of the second level Borel functions.

As shown in Theorem 26 and Proposition 27, decω
p [Π0

1] is exactly the class of the
learnable functions, and the degree structureP/decωp [Π0

2] is exactly the degree structure
Pω1 induced from nonuniform computability. Actually, our dynamic models directly fit
into the backtrack and multitape game characterization of subclasses of Borel mea-
surable functions. We now introduce various games based onthe Wadge game, the
backtrack game, andthe multitape game,

Definition 102 (see also Motto Ros [52] and Semmes [65]). Fix a partial functionf
onNN, and a setX which has no intersection withN. The setX may containpass,
back♯, (move, i) for eachi ∈ N. Then, we introduce various two-players games onf
as follows. At every roundn ∈ N, Player I chooses an elementxn ∈ N, and Player II
chooses an elementyn ∈ N ∪ X.

I: x0 x1 x2 . . .
II: y0 y1 y2 . . .

A pair of infinite sequences⟨x, y⟩ ∈ NN × (N ∪ X)N is calleda play. Fix a play
⟨x, y⟩, wherex = ⟨xn⟩n∈N andy = ⟨yn⟩n∈N. Player I constructs an inputx ∈ dom(f ) step
by step, and Player II try to write a collect outputf (x) on some tape, where there may
be infinitely many tapes{Λi}i∈N. Here, Player II can select a special symbol contained
in X at each step.

• (move, i) indicates the instruction to move the head on thei-th tapeΛi .

• pass indicates that Player II writes no letter at this step.

• back♯ indicates the instruction to delete all words on the tape under the head.

Formally, we define the following notions. For eachi ∈ N, the i-th contentof the
playy of Player II is a functioncontenti : (N∪X)N → NN which is inductively defined
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as follows. Setcontenti(⟨⟩) = ⟨⟩ andtape(⟨⟩) = 0. Assume thatcontenti(y ↾ n) and
tape(y ↾ n) have been already defined for eachi ∈ N.

contenti(y ↾ n+ 1) =


contenti(y ↾ n)⌢⟨yn⟩ if yn ∈ N & i = tape(y ↾ n),

⟨⟩ if yn = back♯ & i = tape(y ↾ n),

contenti(y ↾ n) otherwise.

tape(y ↾ n+ 1) =

i if yn = (move, i),

tape(y ↾ n) otherwise.

Then, for eachi ∈ N, we definecontenti(y) = limn∈N contenti(y ↾ n) for any y ∈
(N ∪ X)N. We consider the following specialrulesfor this game.

• Player Iviolates the basic ruleif x < dom(f ).

• Player IIviolates the basic ruleif eitheryn ∈ {pass, (move, i) : i ∈ N} for almost
all n ∈ N, or yn = back♯ for infinitely manyn ∈ N.

• Player IIviolates the rule mif y contains at leastm manyback♯’s.

• Player IIviolate the rule∗ if yn ∈ {(move, i) : i ∈ N} for infinitely manyn ∈ N.

We say that Player IIwins(resp.is winnable) on the play⟨x, y⟩ ∈ NN × (N∪ X)N of the
gameG( f ,X) if either Player II does not violate the basic rule, andf (x) = contenti(y)
for the leasti ∈ N with contenti(y) being total (resp. for somei ∈ N), or Player I
violates the basic rule. We also say that Player IIwins (resp.is winnable) on the play
⟨x, y⟩ of the gameGm( f ,X) if Player II wins (resp. is winnable) the gameG( f ,X) and
does not violate the rulem, and that Player IIwins(resp.is winnable) the gameG∗( f ,X)
if Player II wins (resp. is winnable) the gameG( f ,X) and does not violate the rule∗.

A strategyof Player II is a functionψ : N<N → (N∪X)<N such that|ψ(σ)| = |σ| for
eachσ ∈ ω<ω, andψ(σ) ⊆ ψ(τ) wheneverσ ⊆ τ. A strategyψ of Player II iswinning
(resp.winnable) in the gameG if Player II wins (resp. is winnable) the gameG on the
play ⟨x,∪n∈N ψ(x ↾ n)⟩ for anyx ∈ NN.

We writeP, B, andMα for {pass}, {back♯}, and{(move, i) : i < α}, respectively, for
eachα ≤ ω. Then, forS,T,U ∈ {P,B,Mα}α≤ω, the unionS∪T∪U is denoted bySTU.

Remark. The gamesG( f ,P), G( f ,PB), andG( f ,PMω) are essentially same asthe
Wadge game, the backtrack game, andthe multitape game, respectively. See also Motto
Ros [52] and Semmes [65].

Let f be a partial function on Baire spaceNN.

1. (Wadge [81]) f is continuous if and only if Player II has a winning strategy in
the gameG( f ,P).

2. (Andretta [3]) f is ∆0
2 if and only if Player II has a winning strategy in the game

G( f ,PB).
3. (Andretta, Semmes [64])f is Π0

2-piecewise continuous if and only if Player II
has a winning strategy in the gameG( f ,PMω).
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Theorem 103(Game representation). Let f be a partial function on Baire spaceNN.

1. f is (1,1)-computable if and only if Player II has a computable winning strategy
in the game G( f ,P).

2. f is (1,m)-computable if and only if Player II has a computable winning strategy
in the game Gm( f ,PB).

3. f is (1, ω|m)-computable if and only if Player II has a computable winning strat-
egy in the game G∗( f ,PMm).

4. f is (1, ω)-computable if and only if Player II has a computable winning strategy
in the game G( f ,PB).

5. f is (m, 1)-computable if and only if Player II has a computable winnable strat-
egy in the game G( f ,PMm).

6. f is (m, ω)-computable if and only if Player II has a computable winnable strat-
egy in the game G( f ,PBMm).

7. f is (ω,1)-computable if and only if Player II has a computable winnable strat-
egy in the game G( f ,PMω).

Proof. (2,4) We need to construct a winning strategyψ : N<N → (N∪{pass, back♯})<N
from a given partial (1, ω)-computable functionf :⊆ NN → NN. Assume thatf is
(1, ω)-computable via a learnerΨ. We inductively define a strategyψ : N<N → (N ∪
{pass, back♯})<N and an auxiliary parameterbacklog : N<N → (N ∪ {back♯})<N. Set
ψ(⟨⟩) = backlog(⟨⟩) = ⟨⟩, and assume thatψ(σ−) andbacklog(σ−) have been already
defined. Then, defineψ(σ) andbacklog(σ) as follows:

ψ(σ) =

ψ(σ−)⌢pass if backlog(σ−) = ⟨⟩,
ψ(σ−)⌢(backlog(σ−)(0)) if backlog(σ−) , ⟨⟩,

backlog(σ) =

backlog(σ−)↼1⌢newΦΨ(σ)(σ) if Ψ(σ) = Ψ(σ−),

backlog(σ−)↼1⌢back♯⌢ΦΨ(σ)(σ) if Ψ(σ) , Ψ(σ−).

Here, recall the notationnewΦΨ(σ)(σ) defined before Theorem 40. Note that{n ∈
N : (
∪

k ψ(x ↾ k))(n) = back♯} = mclΨ(x) for any x ∈ dom(f ). It is easy to see thatψ
is a computable winning strategy in the gameG( f ,PB).

Assume that a computable winning strategyψ∗ in the gameG( f ,PB) is given. We
consider the computable functionψ(σ) = content0(ψ∗(σ)). Then{n ∈ N : ψ(x ↾
n+ 1) ⊉ ψ(x ↾ n)} is finite, for anyx ∈ dom(f ), since

∪
n∈N ψ(x ↾ n) contains finitely

manyback♯’s. Moreover, f (x) = limnψ(x ↾ n). Thus, by Proposition 3,f is (1, ω)-
computable.

(3) Assume thatf is (1, ω| < ω)-computable via a learnerΨ. We inductively define
a strategyψ : N<N → (N ∪ {pass, back♯})<N and an auxiliary parameterbacklog :
N<N → (N ∪ {back♯})<N. Setψ(⟨⟩) = backlog(⟨⟩) = ⟨⟩, and assume thatψ(σ−)
andbacklog(σ−) have been already defined. Then, defineψ(σ) andbacklog(σ) as
follows:

ψ(σ) =

ψ(σ−)⌢pass if backlog(σ−) = ⟨⟩,
ψ(σ−)⌢(backlog(σ−)(0)) if backlog(σ−) , ⟨⟩,

backlog(σ) = backlog(σ−)↼1⌢(move,Ψ(σ))⌢new∗ΦΨ(σ)(σ)
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Here, recall the notationnew∗ΦΨ(σ)(σ) defined in the proof of Theorem 40 (2).
Note that{n ∈ N : (

∪
k ψ(x ↾ k))(n) = back♯} = {n ∈ N : Ψ(x ↾ n+ 1) , Ψ(x ↾ n)} for

any x ∈ dom(f ). It is easy to see thatψ is a computable winning strategy in the game
G( f ,PMm). Moreover, since #indxΨ(x) is finite,ψ(x) =

∪
nψ(x ↾ n) contains (move, i)

for only finitely many differenti’s. Therefore,ψ does not violate the rule∗. Hence,ψ
is a winning strategy in the gameG∗( f ,PMm).

Assume that a computable winning strategyψ∗ in the gameG∗( f ,PMm) is given.
Let e(i) be an index of a partial computable functionx 7→ contenti ◦ ψ∗(x) for each
i < m. Sinceψ∗ does not violate the rule∗, there is a uniquei < m such thatΦe(i) =

contenti ◦ ψ∗(x) is total, for anyx ∈ dom(f ). We inductively define a learnerΨ. The
learnerΨ first guessesΨ(⟨⟩) = e(0). SetΨ(σ) = Ψ(σ−) when there is noi < m such
that |Φe(i)(σ)| > |Φe(i)(σ−)|. Otherwise, for the least suchi < m, the learner guesses
Ψ(σ) = e(i). Clearly, #{Ψ(x ↾ n) : n ∈ N} < m for any x ∈ NN. It is easy to
check that, for anyx ∈ dom(f ), limnΨ(x ↾ n) converges toe(i) for the uniquei < m
ensuring the totality ofcontenti ◦ψ∗(x), and, for suchi < m, we haveΦlimnΨ(x↾n)(x) =
contenti ◦ ψ∗(x) = f (x). Consequently,f is (1, ω|m)-computable.

(5,7) For a given collection{Φi}i∈I of partial computable functions, we can easily
construct a strategyψ : N<N → (N ∪ {pass, (move, i) : i ∈ I }) ensuringcontenti ◦
ψ(x) = Φi(x) for any x ∈ NN. Therefore,f is nonuniformly computable via{Φi}i∈I ,
thenψ is winnable inG( f ,PMI ). Conversely, if a winnable strategyψ : N<N → (N ∪
{pass, (move, i) : i ∈ I }) of the gameG( f ,PMI ) is given. Then we consider the partial
computable functionΓi computingΓi(x) = contenti ◦ ψ(x) for any x ∈ NN. It is easy
to see thatf is nonuniformly computable via{Γi}i∈I .

(6) By combining the proofs of the items (3) and (4), it is not hard to see the
equivalence of the (m, ω)-computability of f and the computable winnability in the
gameG( f ,PBMm). □

Remark. We may introduce more general multitape games based on our dynamic tape
models, and nested (nested nested, nested nested nested, etc.) tape models.
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