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Abstract

Every computable function has to be continuous. To develop computability theory of
discontinuous functions, we study low levels of the arithmetical hierarchy of nonuni-
formly computable functions on Baire space. First, we classify nonuniformly com-
putable functions on Baire space from the viewpoint of learning theory and piecewise
computability. For instance, we show that mind-change-bounded-learnability is equiv-
alentto finite H?)z-piecewise computability (wherﬂe)z denotes the dlierence of two

Hg sets), error-bounded-learnability is equivalent to fimigepiecewise computability,

and learnability is equivalent to countallE-piecewise computability (equivalently,
countablég-piecewise computability). Second, we introduce disjunction-like opera-
tions such as the coproduct based on BHK-like interpretations, and then, we see that
these operations induce Galois connections between the Medvedev degree structure
and associated Medved®uchnik-like degree structures. Finally, we interpret these
results in the context of the Weihrauch degrees and Wadge-like games.

Keywords: computable analysis, limit computable mathematics, identification in the
limit, Medvedev degree, Weihrauch degree
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1. Summary

1.1. Introduction

Imagine the floor function, a real function that takes the integer part of an input. Al-
though it seems easy to draw a rough graph of the floor functionnitisomputable
with respect to the standard real number representation [82], because computability
automatically induces topological continuity. One way to study the floor function in
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computability theory is to ¢omputabiliz&it by changing the representatittopology

of the real space (see, for instance, [84]). However, it is also important to enhance our
knowledge of the noncomputabilfgiscontinuity level of such seemingly computable
functions without changing representatitmpology. Our main objective is to study low
levels of the arithmetic#Baire hierarchy of functions on Baire space from the view-
point of approximate computabilityontinuity and piecewise computabilitpntinuity.

We postulate that aearly computabléunction shall be, at the very leastpnuni-
formly computablewhere a functionf is said to be nonuniformly computable if for
every inputx, there exists an algorithi¥, that computed (x) usingx as an oracle,
where we do not require the map— ¥, to be computable. The notion of nonuni-
form computability naturally arises in Computable Analysis [12, 88]. However, of
course, most nonuniformly computable discontinuous functions are far from being
computable. Then, what type of discontinuous functions are recognized as being nearly
computable? A nearly computafgentinuous function has to be approximated using
computablgcontinuous functions. For instance, a Baire function appears dyfem-
ically approximatedy a sequence of continuous functions and a piecewise continuous
(o-continuous) function appears to Simtically approximatedy countably many con-
tinuous functions.

There have been many challenges [15, 83—88] in developing computability theory
of (nonuniformly computable) discontinuous functions using the notidearhabil-
ity (dynamical-approximation) anpliecewise computabilitystatical-approximation).
Indeed, one can show the equivalencefé@ive learnability andII‘l)—piecewise com-
putability: the class of functions that are computable with finitely many mind changes
is exactly the class of functions that are decomposable into countably many computable
functions WithHg domains. In this paper, we introduce various concepts of dynamic-
approximability, and then, we characterize these concepts as static-approximability.

Now, we focus our attention on the concepts lying between (uniform) computability
and nonuniform computability. In 1950-60th, Medvedev [51] and Muchnik [54] intro-
duced the degree structure induced by uniform and nonuniform computability to for-
mulate semantics for the intuitionistic propositional calculus based on Kolmogorov’s
idea of interpreting each proposition as a problem. The degree structure induced by the
Medvedev (Muchnik) reduction forms a Brouwer algebra (the dual of a Heyting alge-
bra), where the (intuitionistic) disjunction is interpreted as the coproduct of subsets of
Baire space.

Our objective is to reveal the hidden relationship between the hierarchy of nonuni-
formly computable functions and the hierarchy of disjunction operations. When a cer-
tain suitable disjunction-like operation such as the coproduct is introduced, we will
see that one can recover the associated degree structure from the disjunction opera-
tion. As a consequence, we may understand the noncomputability feature of functions
by observing the degree-theoretic behavior of associated disjunction operations. This
phenomenon can be explained by using the terminology of Galois connections or ad-
joint functors. For instance, one can introduce a disjunction operation on Baire space
using the limit-BHK interpretation oLimit Computable Mathematid81] (abbrevi-
ated ad.CM), a type of constructive mathematics based on Learning Theory, whose
positive arithmetical fragment is characterized as Heyting arithmetic with the recursive
w-rule and thez? law of excluded middle [6, 78]. Then, the “limit-BHK disjunction”



includes all the information about the reducibility notion induced by learnable func-
tions on Baire space.

Furthermore, in this paper, we introduce more complicated disjunction-like opera-
tions using BHK-like interpretations represented as “dynamic proof models” or “nested
models”. For instance, a dynamic disjunction along a well-founded tree realizes the
concept of learnability with ordinal-bounded mind changes, and a dynamic disjunction
along an ill-founded tree realizes the concept of decomposability into countably many
computable functions alongzg formula.

We also interpret these results in the context of the Weihrauch degrees and Wadge-
like games. We introduce a partial interpretation of nonconstructive principles includ-
ing LLPO andLPO in the Weihrauch degrees and characterize the noncomputabil-
ity/discontinuity level of nearly computable functions using these principles.

1.2. Results

In section 2, we introduce the notion af,B|y)-computability for partial functions
onN¥, for each ordinak, 8,y < w. Then, the notion ofd, 8|y)-computability induces
just seven classes closed under composition.

[Q’T]i denotes the set of all partial computable functiond®n

[€r]%, denotes the set of all partial functions B’ learnable with bounded
mind changes.

[€7];,.,, denotes the set of all partial functions b learnable with bounded
errors.

[€1]} denotes the set of all partial learnable functiong®n

[€7];“ denotes the set of all partigiwise computable functions ai’ for some
keN.

[€r]5» denotes the set of all partial functions B learnable by a team.

[€r]¢ denotes the set of all partial nonuniformly computable functiond®tn
(i.e., all functionsf satisfyingf(x) <t x for anyx € dom(f)).
We will see that the following inclusions hold.
¢ &Y o
[€r]f < [er]t, < [Er]? [Cr]5° < [€r]¢

wl<w
I (02 PR

These notions are characterized as the following piecewise computability notions, re-
spectively.

. de(%[—] also denotes the set of all partial computable functionson

. de(‘;‘”[Hg] denotes the set of all partial functions db#' that are decomposable
into finitely many partial computable functions witﬁ[%)z domains, where a
(119), set is the dference of twd1? sets.



. deqj‘“[Ag] denotes the set of all partial functions ' that are decomposable
into finitely many partial computable functions wiﬂg domains.

. decg[l'[g] denotes the set of all partial functions d#' that are decomposable
into countably many partial computable functions vﬁtﬁldomains.

e deg“[-] denotes the set of all partial functions oA’ that are decomposable
into finitely many partial computable functions.

. decg‘“dqu[ng] denotes the set of all partial functions b that are decompos-
able into finitely many partiallg-piecewise computable functions.

e deg[-] denotes the set of all partial functions BH that are decomposable into
countably many partial computable functions.

¢ deg’[-] <
ded[-] c deg®[I%] c deg[AJ] decs“deq; 9] ¢ de¢;[-]
C  degny <

In Section 3, we formalize the disjunction operations. Medvedeyv interpreted the
intuitionistic disjunction as the coproduct (direct sug) P(NV) x P(NV) — P(NM),
We will introduce the following disjunction operatiofisv -]* : P(NY) x P(NY) —
PINY):

o[-V -]]ECM[n] is the disjunction operation o(N'') induced by the backtrack

BHK-interpretation with mind-changesn.

o[-V -]]ECM is the disjunction operation oR(N") induced by the two-tape BHK-

interpretation with finitely many mind-changes.

e [- v 13, is the disjunction operation gR(N"") induced by the backtrack BHK-

interpretation with finitely many mind-changes.

o[-V ']](21 is the disjunction operation oR(N") induced by the two-tape BHK-
interpretation permitting unbounded mind-changes.

Then, the direct sura is characterized as theCM disjunction without mind-changes
[v -]]f’CM e In section 5, we also introduce more complicated disjunction operations,
which will play key roles in Part Il.

In section 4, we study the interaction between the disjunction operations and the
learnablgpiecewise computable functions. We will construct new operations by iterat-

ing the disjunction operations introduced in Section 3 in the following way:
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Every such operation induces a functor from the associated Med¥#delmik-
like degree structure to the Medvedev degree structure. The main result is that every



such functor is left adjoint to the canonical map from the Medvedev degree structure
onto the associated degree structure.

In section 6, we will see that how our classes of nonuniformly computable functions
relate to the arithmetical hierarchy of non-intuitionistic principles sucthadaw of
excluded middldLEM), the lessor limited principle of omniscienoe de Morgan’s
law (LLPO), andthe double negation eliminatigioNE). The arithmetical hierarchy of
non-intuitionistic principles is illustrated as follows:

- ZNLLPO
HA — Z20LEM — AJ-LEM I0-LEM — X3-DNE
~ X-DNE ~

Here,I'-LEM represents the sentenge —¢ for I'-sentenceg; I'-LLPO represents
the sentence(p A y) — =@ V =y for I'-sentences, y; andl'-DNE represents the sen-
tence-—¢ — ¢ for I'-sentenceg. We interpret these principles as partial multi-valued
functions o\, and then we characterize our notions of nonuniform computability by
using these principles in the context of the Weihrauch degrees. We also characterize
our notions by Wadge-like games.

1.3. Notations and Conventions

For any setX andY, we say thaf is a function from X to Ywritten f : X — Y) if
the domain domf) of f includesX, and the range rangg(of f is included inY. We
also use the notatioh:C X — Y to denote thaf is a partial function fronXto Y, i.e.,
the domain domi) of f is included inX, and the range rngj of f is also included in
Y.

For basic terminology in Computability Theory, see Soare [73].FarN<¥, we
let || denote the length af. Foro € N<¥ and f € N u N¥, we say thaw is an
initial segmentof f (denoted by c f) if o(n) = f(n) for eachn < |o7|. Moreover,
f | ndenotes the unique initial segmentfobf lengthn. Let o~ denote an immediate
predecessor node of i.e.oc™ = o | (lo] - 1). We also defined] = {f e NV : f > o}.
A treeis a subset oN<" closed under taking initial segments. For any ffeg N<V,
we also letT] be the set of all infinite paths df, i.e., f belongstoT]if f | nbelongs
to T for eachn € N. A nodeo < T is extendiblef [T] N [o] # 0. Let T®denote the
set of all extendible nodes @f. We say that- € T is a leafor a dead endf there is no
TeTwitht2o.

For any sek, the treeX< of finite words onX forms a monoid under concatenation
~. Herethe concatenation af andr is defined by ¢~ 7)(n) = o(n) for n < |o| and
(o~7)(lo] + n) = 7(n) for n < |7]. We use symbols and[] for the operation on this
monoid, wherd .., o denotessp” 01~ ... "oy To avoid confusion, the symbots
and[] are only used for a product of sets. We often consider the following three left
monoid actions ofX<"': The first one is the sex™ of infinite words onX with an
operation” : X< x X* — X¥; (¢~ f)(n) = o(n) for n < |o] and ¢~ f)(Jo| + n) = f(n)
for n € N. The second one is the SE{(X) of subtreesT < X< with an operation
S XN xT(X) = T(X); o~ T = {o"1 : T € T}. The third one is the power s@(X")
of X* with an operatiort : X< x P(X*) - P(XN), P ={c"f : f € P}.

We say that a sé® ¢ N is Hg if there is a computable relatiddsuch thaP = {f €
N : (Yn)R(n, f)} holds. EquivalentlyP = [Tp] for some computable treEp ¢ N<,



Let{®e}ecn be an éective enumeration of all Turing functionals (all partial computable
functiond) on N*. Then thee-th ITY subset of 2 is defined byP, = {f € 2 :
®(f;0) 7). Note that{Pe}ecyy is an dfective enumeration of aIllg subsets of Cantor
space 2. If (an indexe of) all? setPe C 2" is given, therle = {0 € 2" : ®g(c; 0) 1}

is calledthe corresponding tree for P Here®(o; n) for o € N<¥ andn € N denotes
the computation ofb with an oracles, an inputn, and stedo|. Whenever a'l‘l’ set

P is given, we assume that an indexof P is also given. IfP ¢ 2" is I19, then
the corresponding tre€> ¢ 2<V of P is computable, andTp] = P. Moreover, the
setLp of all leaves of the computable trde is also computable. We also say that
a sequence ofP;}ic; of Hg’ subsets of a spac¢ is computableor uniformif the set
{(,f) e Il x X : f e P} is again ai‘[‘l) subset of the product spatex X. A setP ¢ NV

is specialif P is nonempty andP has no computable member. Fog e N¥, f @ g is
defined by € @g)(2n) = f(n) and (f @g)(2n+1) = g(n) for eachn € N. ForP, Q ¢ N,
putPe Q= (0)y"P)U ()" QandP®Q={feg: feP&geQ}.
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2. Nonuniformly Computable Discontinuous Functions

2.1. Piecewise Computable Functions

Our main objective in the paper is to study the intermediate notiorfaraform)
computabilityandnonuniform computabilityThe concept of nonuniform computabil-
ity can be rephrased @suntable computabilityi.e., partial functions that are decom-
posable into countably many computable functions. One can expect that the class of
nonuniformly computable functions is classified on the basis of the least cardinality
and least complexity of the decomposition (see also Pauly [60]). For instance, if a
partial functionl :c N — NY is decomposable intk many computable functions,
we say that it isk-wise computabler (k, 1)-computable and if I is decomposable
into countably many (finitely many, resp.) computable functions with uniforily
definable domains, we say that itdsuntable (finite, resp.\-piecewise computahle
whereA is a lightface pointclass.

An important subclass of the piecewise computable functions consists of partial
functions that are identifiable in the limit ([29]). The relationship between the com-
putability with trial-and-error (limit computability or dfective learnability) and the
subhierarchy of the Ieveﬁlg has been common knowledge among recursion theorists
since the last fifty years or so (see also Shoenfield [67], Gold [29], Putnam [62], and
Ershov [27]). A basic observation (see Theorem 26) regarding the concept of type-
two learnability (see also de Brecht-Yamamoto [24, 25]) is that a partial function on
NV is H(l’—piecewise computable if and only if it is identifiable in the limit or learnable
in the following sense: a partial functidn :c N — N will be called learnable
or (1, w)-computableif there is a computable functio :c N<¥ — N such that
Dlim,,_.. w(e ) (f) = T'(f) for every f € dom(), where recall thaf{®e}eay is a fixed
enumeration of all partial computable functions. Suchia called aearner.

We say that partial functio :c N<"' — N dominatest :c N*"' — N as a learner
if limsW®(f I s) converges to limP(f ' s) whenever limW¥(f ' s) converges. We
say that{Pe}eey €numerates all learners if every partial functin.c NV — N is
dominated by som®, as a learner. To get a nice enumeration of all learners, we first
check the following proposition.



Proposition 1. There is an gective enumeratiofi¥e}en Of all learners that consists
of total functionsPe : N<¥ — N,

Proof. For thee-th partial computable functiope :C N<*' — N and an index, we
effectively define a total computable functitiy, : N<¥ - N that dominateg. as a
learner. We defin® by ®(()) = kand®(o) = (o) for all nonempty strings-. Given
o € N puto* = maxr C o : ®(r) | by stagdo|}. Then definel gy (o) = ®(c*)
for everyo € N If lim@¢(f | S) converges then clearly lig¥ e (f | S) also
converges to the same value. Her#g,, dominatespe. o

The sefW}eay in Proposition 1 is referred dke gfective enumeration of all learn-
ers andW¥, is calledthe e-th learner

Remark. We urge the reader not to confuse the notititis’) and®(o) for a learner
¥ and a computable functioh (onNY). In the former case¥(o) simply denotes the
output (the inference) of the learn®rbased on the current input In the latter case,
however, we use as an initial segment of some oracle information, and so r@gts)
denotes a stringd(o; 0), ©(o; 1), @(0; 2), .. .).

Notation. Let¥ : N*¥ — N be a learner. For any string € N<¥, the set ofmind-
change locations of the learn#f on the informant- (denoted byncly (o)) is defined
by
mcly(o) ={n<|ol:¥(o 'n+1)#¥(o I N

We also definancly(f) = Upewmcly(f | n) for any f € N¥. Then, #hcly(f) de-
notes thenumber of times that the learn&t changes hehis mind on the informant.f
Moreover, the set dhdices predicted by the learn&f on the informant- (denoted by
indxy(0)) is defined by

indxy(o) = {(¥(o [ n):n <ol
We also defindndxy(f) = Upey indxy(f 1 n) for any f € N,

We now introduce various subclasses of nonuniformly computable functids¥ on
based on Learning Theory.

Definition 2. Let D be a subset of Baire spag®’, ande, 8,y < w be ordinals. A
functionI” : D — N¥ is (a, Bly)-computablef there is a set C N of cardinalitye such
that, for anyg € D, there is an inder € | satisfying the following three conditions.

1. (Learnability) lim, We(g I n) converges, an®iim, w.(gm)(9) = I'(9).

2. (Mind-Change Condition)micly () = #{ne N : ¥(g I n+ 1) # (g I N)} <
B.

3. (Error Condition) #ndxy_(g) = #H{We(g I N) N e N} <.

If y = w, then we simply say thdt is (e, 8)-computablefor (e, Bly)-computable
functionT'. Let [GT]g (resp. [ET]ZW) denote the set of allaf, 8)-computable (resp.
(a, Bly)-computable) functions. Hereafter, the symkoly will be used in referring
to “some natural number’. For instance[ is said to be € w, 2| < w)-computable if
there area, c € N such that it is §, 2|c)-computable.



Table 1: Seven Classes of Nonuniformly Computable Functions

(€7 (Uniformly) computable
[€r]t, Learnable with bounded mind changes
[@T]i)kw Learnable with bounded errors
[er1} Learnable
[Cr]5¢ k-wise computable for somee w
[Crlse Learnable by a team
[Cr]Y Nonuniformly computable

¢ & =[&3, ¢
€7 < &L, < (&), €157 < [&]7 =[S0
< [Cr15 ¢

Table 2: Seven monoids of nonuniformly computable functions

Remark. Some of &, Bly)-computability notions are related to learnability notions:
Every (1 < w)-computable function idearnable with bounded mind-changesv-

ery (L w| < w)-computable function i¢earnable with bounded errorevery (1 w)-
computable function itearnable every k w, 1)-computable function ik-wise com-
putable and every £ w, w)-computable function iseam-learnable The concept of
learnability in the context of real number computation has been studied by several re-
searchers including Chadzelek-Hotz [21], Ziegler [85, 86], and de Brecht-Yamamoto
[24, 25]. The notion of mind-change is also related to the level of discontinuity studied
by several researchers, for instance, Hertling [33], and Hemmerling [32]. See also Sec-
tion 5.3 for more information on the relationship between the notion of mind-changes
and the level of discontinuity. The notion lofwise computability has been also studied

by, for example, Pauly [60] and Ziegler [88].

We first mention the topological interpretation of the learnability. For a sequence
{Tnhnen € (NY of strings, limy o, is defined by (limon)(M) = limp(on(m)). If
limhon : N = N is total, say limo, = h € N¥, then we say that lifr,, € NV
converges to h

Proposition 3. Fix an ordinala < w. A partial functionI" :c N — N¥ is (1, a)-
computable if and only if there is a total computable functjon N<¥ — N<¥ such
thatlim,¥(g I n) converges ta'(g), and#ne N :y(g In+1) 2 y(g | n)} < a, for
any ge dom().

Proof. Assume that is (1, @)-computable via a learn&¥. We puty(c) = Py (o)

for eacho € N<¥. Then the conditionzicly(g) < o implies#ne N :y(g ' n+ 1) 2

w(g | n)} < a, foranyg € dom(’). Because if¥(g | n+ 1) = ¥(g I n), then
Y(@ I'n) = Oygmy(g [ N) € Pygmy(g [ N+1) =y¢(g [ n+1). Thus, clearly,
limy (g [ n) converges t@jim, wgm)(9) = I'(9).



Assume thal’(g) = limpy¥(g I n) for anyg € dom(’) for somey satisfying the
condition in Proposition 3. We define a computable funcigg, : N — N* for each
o € N, Foranyg € N, put®e(g; n) = ¢(g I s)(n) for eachn € N, wheres > |0 is
the least number such thiafg I s)(n) is defined. Clearlyby is partial computable,
and indeed, we can compute an inadgx) of ) uniformly in o € N<I*. Then, we
define a learne¥ inductively. PutP(()) = &()). Fix o e N, and assume th&t(c")
has already been defined.yto) 2 y(o7), then set¥(o) = ¥(o). If (o) 2 ¥(o7),
then set¥(o) = ¢(o). Clearly, the conditionthe N: y(g [n+1) 2 ¢(Q I N)} < @
implies #icly(g) < a, for anyg € dom(). In particular, limy¥¥(g ' n) converges
to some indexe(o) for anyg € dom(’). Hence,®jim, wgm)(9) = Unsim (@ I N) =
limnen (g I N) =T°(9), since{y(g [ N)}nsie IS @n increasing sequence of strings. o

Corollary 4 (de Brecht-Yamamoto [24])A partial functionl” :c N — N¥ is (1, w)-
computable if and only if there is a computable sequéhgkay Of partial computable
functions which converges pointwiselt@n dom(") with respect to the discrete topol-
ogy onN¥,

Proof. By Proposition 3. ]

2.2. Seven Classes of Nonuniformly Computable Functions
We first check several basic properties of £y)-computability to show the fol-

lowing theorem stating that the classes obtained from Definition 2 closed under com-
position are exactly the classes listed in Table 1.

Theorem 5. {[GT]ZW : a8,y € NU {< w,w}} contains just seven monoic{@;T]i,
[Cr1i, (6L, [Cr]7, [€r]2, [Cr]5®, and[Er]y.

wl<w’
Proposition 6. LetI” be a partial function on Baire spadé".

1. If T is (ao,Bolyo)-computable,ag < a1, Bo < B1, andyy < 1, thenT is
(a1, B1ly1)-computable.

. Tis (@, 1)-computable if and only if is (a, 8|1)-computable.

. Tis (o, B)-computable if and only if is (a, B|8)-computable.

. T'is (1, 1)-computable if and only if' is computable.

. T'is (w, 1)-computable if and only iF is (w, w)-computable if and only if is
nonuniformly computable, i.d(g) <t g for any ge dom(’), where recall that
<t denotes the Turing reducibility.

ab~rowbN

Proof. The items (1) and (2) easily follow from the definitions. The item (3) follows
from #indxy(g) — 1 < #mcly(Q).

(4) If T is computable viabe, thenT is (1, 1)-computable via the singletdi(e)},
whereWjg (o) = efor anyc € N'. Assume thaf is (1, 1)-computable via a sin-
gleton{e}. ThenWe(o) = We(()) for any o extendible to an element of dof)( since
#mcly,(g) = O for anyg € dom(). Therefore[ is computable viaby,).

(5) If T is nonuniformly computable, theh is (w, 1)-computable vigi(€)}eay,
where¥g(c) = efor anyo € N, Assume thaf is (w,w)-computable vial.
For anyg € dom(l), there ise € | such that lim We(g [ Nn) converges to some value
p e N, and®,(g) =I'(g). Thus,I'(g) <t gvia dp. |
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Proposition 7. For each mn € N, every(m, w|n)-computable function igm- n, 1)-
computable.

Proof. Assume thal" : D — NY is (m, w|n)-computable withm-learners¥®}e., with
n-errors. Now, we define an algorith@f, for anye < mandk < n, and we ensure the
following property:

(¥g € D)(Fe < m)(k < n) ®i(g) = I'(g).

The algorithm®p proceeds as follows fay. Recall thatindxye(g) represents the set
of all indices occurring in hypothesis of the leartiét. We have an @ective enumer-
ationdg(g), dj(g), ... of all indices contained inndxye(g) uniformly in g. Then, we
set®(g) = Dy (9) if d(g) is defined. For anyg € D, there ise < m such that
limsWe(g ' s) converges to some correct computataof I'(g), i.e., ®4(g) = I'(g).
Since #ndxye(g) < n, we havedi(g) = d for somek < n. Thus, for anyg € D,
there aree < mandk < n such thatdg(g) = I'(g). Therefore, ifif is an index of
®p for eache < mandk < n, thenI" is (m- n, 1)-computable via an upper bound
maxiy :e<mé& k<nj. O

Corollary 8. T is (< w, w| < w)-computable if and only if' is (< w, 1)-computable.

Proof. Every (< w,w| < w)-computable functiol” is (m, w|n)-computable for some
m,n < w. Therefore, by Proposition T, is (m- n, 1)-computable. In particulaF; is
(< w, 1)-computable, sincem- n < w. O

Proposition 9. For each i< 2, letT; be a partial (o, Bilyi)-computable function on
Baire spac@W, whereq;, 8i, yi < w are ordinals. The'; oy is (ag*a1, Bo*Bilyo*y1)-
computable, where is the multiplication as the cardinals, or equivalentkyy A =
min{« - A, w} for ordinalsk, 1 < w.

Proof. Foreach < 2, since is («i, Bilyi)-computable, there is a collection of learners,
{‘P'j},-q,, and a Cover{U}}km of dom(;) such thatT(f) = (D,imnq,ij(fm)(f I n) and
#mclq,.j(f) < Bi and #ﬁndxq,.j(f) < v, foranyj < ¢j andf € U}. Fix | < ag and

k < a;. Then‘I”j‘,k(o-) is defined as follows. Lef(o) be the longest interval o)
satisfying‘I’?(a Mr) = ‘I’?(o-), and defineJ*(c) = J(o) \ {r}. If #(mcly: N J*(0)) <

B1 and #(mdxq,& N J(o)) < 71, then put‘Pﬂj"k(a-) = ‘I’&(CD\I,?(U)(U)). Otherwise, put
\I’]f’k(o-) = ‘I’T,k("'_)- For giveno, we compute an inde¥ (o), where®y () (f) =
Dy: (@) ((Dq,?((,)(f)) foranyf.

Note thatf € dom(; o I'p) if and only if f € dom(p) andIo(f) € dom(y).
Therefore, for suct, there argj < ag andk < a7 such thatf € U? andIo(f) € U&.
Assume thatf € dom((y o To) N U andlo(f) € Ug. Itis easy to see tha¥], is
computable, #1C\pik(f) < fBo * B and #ﬁ.ndxlpT_k(f) < yo * y1. Moreover, there exist
sandep such that?)(f I t) = ¥)(f I 9) = & foranyt > s. Fix suchs. Since
Dg () = To(f) € Ul}, for anyt > s, #(mcl\{,ﬁ NnJ*(f I't) < By and #@ndx\y& N
J(f 1 1) < y1, sinced(f [ t) = J(f I s) and by our choice of¢;. Therefore,
Iimn‘I‘]."k(f I n) converges to Iim‘l‘&(l"o(f I n)). However, there exiat > sande;
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such thatVL(To(f 1 v)) = Pi(To(f I U)) = e for anyv > u, since{To(f | U)}us is
an increasing sequence of strings &(if) € dom(1). Here®g, (I'o(f)) = ['1(To(f)).
Thus,

Diim iy (£ 1) (F) = P w1 rn)(q)nmnw?(f i) (F)) = @i, w1y (To(F)) = T (To(F)).
Consequentlyl’y o Ty is (ao * @1, 80 * Bilyo * y1)-computable, Vid¥ i} j<eok<a,- O
Corollary 10. [(ST]gly forms a monoid under composition, for amys,y € {1, < w, w}.

Proof. Straightforward from Proposition 9. |

Proposition 11. [€r]%,, is the smallest monoid includirigr]3; [€r]},_,, is the small-

est monoid incIudin@@T]}ulz. [€r];¢ is the smallest monoid includir{@T]i; [Crlsvis
the smallest monoid includirigr]2.

Proof. The first result is known, and indeed, it has also been proved in Mylatz's PhD
thesis [56], but we also give a proof here for the sake of completeness. We first show
that every (1n+ 1)-computable functiolf can be represented Bs= I'; o I’y for some

(1, n)-computable functioiiy and (1 2)-computable functioir;. Let'¥ be a learner for

I'. We define a learne¥, for I’y and a learneW; for I'y. For a given stringr € N<I,

let o C o be the longest initial segment of satisfying #icly(c™*) < n. Then, ono,

the learnei¥y guesses an index of the partial computable funogiea g ® Py (),
i.e.,To(g) = Pyy)(9) = g Py (g) for anyg € N, Note that #hcly,(g) < n for
anyg € N¥. Therefore[, is (1, n)-computable. For @ T € NV, if o* = o then the
learner¥; guesses an index of the partial computable funagignh — h. If o* # o,
then¥, guesses an index of the partial computable functji@h — ®y(9), i.e.,

Dy, (rer) (9 @ h) = Dy((9). Sincel is (1, n + 1)-computable, and by the definition of
o*, it is easy to see thdt is (1, 2)-computable. Fog € NV, if #mcly(g) < n, then

I'1(T'o(9)) = I'(g@ I'(9)) = I(9).

If #mclg(g) = n, then

I'1(TCo(9)) = I'1(g® Py(g)(9)) = I'(9).

Consequenthy” = I'y o I'g as desired.

We next show that every (b|n + 1)-computable functiol can be represented as
I' = T'; oIy for some (1w|n)-computable functioly and (1 w|2)-computable function
I';. Assume tha¥ is a learner fol', and we enumerateifidxy (o) as{if}mes- Here,
if m < nthen¥ guesse§, before¥ guesseg, on some initial segment of. Note that,
if o € 7 andi?, is defined, then? = it. Ono € N, if ¥(0) # i7, then¥, guesses
an index of the partial computable functign—- g ® ®y((g). Otherwise ¥, guesses
an index of the partial computable functign- g & ®;;(g). Then, the partial function
I'p identified by the learne¥, is (1, win)-computable. Omr & r € NV if ¥(o) # i,
then¥; guesses an index of the partial computable funagierh — h. Otherwise ¥
guesses an index of partial computable functi@h — Dy(,)(9).
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We show that everyn(+ 1, 1)-computable functioff can be represented Bs=T'; o
I'p for some 6, 1)-computable functioiy and (2 1)-computable functiolr;. Assume
thatI' is (n + 1, 1)-computable via a collectiofd\; }i<, of partial computable functions.
Forg € N¥, if I'(g) = A;(g) for somei < n, thenI'g(g) = g ® Ai(g). Otherwise, we
setl'o(g) = g@ Ap(g). Then, clearlylg is (n, 1)-computable vigig.g ® Ai(g)}i<n. For
geh e NV, if I'(g) = Ai(g) for somei < n, thenT1(g® h) = h. Otherwise, we
setlI'i(g® h) = Ay(g). Clearly,I'; is (2 1)-computable. Note that, § € dom(),
thenI'(g) = Ai(g) for somei < n. If I'(g) = Ai(g) for somei < n, thenT'1(To(Q)) =
I1(g @ Ai(9)) = Ai(9)- If T(9) = An(9), thenT'1(I'o(9)) = T1(g ® Ao(9)) = An(9).
ThereforeI'(g) = I'y o I'p(g) for anyg € dom(). By the similar way, it is easy to see
that every 0 + 1, w)-computable functiof can be represented Bs= I'; o I'g for some
(n, w)-computable functiol’y and (2 w)-computable functiof;. |
Proof of Theorem 5By Proposition 6, we haveéel ]y, = [Cr]3,, = [Er]], = [Cr]L,, =
[Cr]h0 [&]L,., = [&7]1,; and Bqlg, = [&q]5 forany B,y € (L< w0}
Moreover, by Proposition 6 and Proposition Wﬂf{f = [G:T];‘“; wheneverg, vy #
(w, w). Therefore, by Proposition 9 and 11, we have just seven mongigl, [€1]2,,,
(€11 [€115%, [Er]5, [€1]5¢, and [Er]7. m

2.3. Degree Structures and Brouwer Algebras

We will see some intuitionistic feature of our classes of nonuniformly computable
functions.

Definition 12. Let # be a monoid consisting of partial functiofis:c NY¥ — N¥

under composition. TheR(N") is preordered by the relatidd <+ Q indicating the
existence of a functiolr € F from Q into P, that is,P <# Q if and only if there is
a partial functionl’ :c N¥ — NY such tha™ € ¥ andI(g) € P for everyg € Q.

Let D/F andP/F denote the quotient sSeBN")/ =5 andII(2")/ =#, respectively.
Here,119(2") denotes the set of all nonempiif subsets of 2. For P € P(N"), the
equivalence clas® c NV : Q =# P} € D/F is calledthe F-degreeof P.

Recall from Corollary 10 that = [@T]gw forms a monoid for every, 8,y € {1, <
w, w}.

Notation. If F = [C*:T]g| for somea, B,y € {1, < w,w}, we writesgly, Dgly, andPgly
instead of<;, D/F andP/F .

Remark. By Proposition 6 (4) and (5), the preorderingsand<¢ are equivalent to
the Medvedev reducibility [51] and the Muchnik reducibility [54], respectively.

We also introduce the truth-table versions of Definition 2.

Definition 13. Let D be a subset of Baire spat®’, ande, 8,y < w be ordinals. A
functionT : D — N¥ is (@, 8ly)-truth-tableif there are a set c N of cardinalitya,
and a collectior{p(e, k) : e € | & k < min{B,y}} of indices oftruth-table functionals
(i.e., dom(pex) = N'') such that

1. (Popperian Condition) for ang € | ando € N<¥, there isk < z such that
Ye(o) = p(e k).
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2. Tis (a, Bly)-computable via the family¥e}ec .

Here, we do not assume the uniform computability of the collectjue, k) : e €
I & k < min{B, y}}. If y = w, then we simply say thdtis (a, 8)-truth-tablefor (o, Sly)-
truth-table functiorT’. Let [Cy]; (resp. Euly ) denote the set of allof §)-truth-table
(resp. &, Bly)-truth-table) functions.

Remark. Itis easily checked that the truth-table versions of Proposition 6, Proposition
9, Corollary 10 and Proposition 11 hold.

Notation. If ¥ = [(in]g for somea, B,y € {1,< w,w}, we write<? , , D¢, and

3 Sty ~ttsly?
Pgﬁly instead of<#, D/F andP/F.

Proposition‘ 14. Ko = #[C,]} = #[C]%,, = #[C, im = #G]L < #E 5 = #[C ] =
#EG]Y = 22 for each re {tt, T}.

Proof. Every learnei¥ determines just one learnable functibre [€1]1. Therefore,
[€1]% is countable. For non-uniform computability, we first see#f < 22° since
#NY)Y' = 22° py cardinal arithmetic. On the other hand, every funclionN™ —
{0Y, 1} is (< w, 1)-truth-table via two constant truth-table functiong¢f) = 0" and
I'1(f) = 1" for any f € N"'. Therefore, #];* > 22, O

Proposition 15. For eache, 8,y € {1, < w, w}, the order structure®? , DL P

. . By’ Tty 7 By’
and®y Sy form lattices with top and bottom elements.

Proof. Itis easy to see that the prodwand the sun® form supremum and infimum
operations in these structures. Moreover, every degree structure has top and bottom
elements since it is coarser tha}, that has top and bottom elements. m

If a lattice (L, <, Vv, A) has the top element 1, the bottom element 0, and{eax
C A a < b} (denoted bya —| b) exists foranya,b e L, thenL = (L, <, Vv, A, —,0,1)
is called aHeyting algebra An algebral = (L, <, Vv, A, —, L, T) is aBrouwer algebra
if its dual £L°P = (L, >, A, V, «, T, 1) is a Heyting algebra. Recall that the Medvedev
IatticeZ)i and the Muchnik latticeD{” form Brouwer algebras [51, 54].

Proposition 16. The degree structure®’, and D} , are Brouwerian.

Proof. We just give a proof fotDl, although it is straightforward to modify the proof
for the truth-table version.

SetB(P,Q) = {Rc N : P <! Q® R}. We need to a construct a functign:
PINY) x P(NY) — PN such thaiB(P, Q) = minB(P, Q) for anyP,Q ¢ NV, Let
Ae denote theeth (1, w)-computable function, i.eAe(Q) = Dim,wygn)(9) for any
g € dom(A¢). Definep as follows.

BP.Q)={egeN": (Vf € Q) Aef®g) € P}.

It is easy to see tha@(P,Q) € B(P,Q) for anyP,Q c N". If R € B(P, Q), say
Ae : Q® R— P, then clearlye~g € B(P, Q) for anyg € R. Thus,8(P, Q) s} R. O
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In contrast, we will show in Part Il thateither DL, nor DY, _ , nor D, nor
D form Brouwer algebras. In the meantime, the following modification®éf,
Z)iw, D3¢, andDg* look more natural than our original definitions, from the view-

point of constructive mathematics. Indeed, in Proposition 20, we will see that these
modifications form Brouwer algebras.

Definition 17. Let D be a subset of Baire spad®’, anda,,y < w be ordinals, or
eff. We generalize they Bly)-computability as follows. Ifx = eff, then we revise
the term “for anyg € D, there ise € |” to the term “there is a partial computable
function By :c N — N such that, for ang € D, there ise < By(g)”. If 8 = eff,
then we revise the mind change condition asl_(g) < B1(g), whereB; is a partial
computable function frorW™ to N. If y = eff, then we revise the error condition as
#indxy, (g) < By(g), whereB; is a partial computable function fromd' to N. For new

notions,sg‘y, D}ﬁw andSDgW are also defined as the usual way.

Proposition 18. Suppose that, if = eff, then letr* mean the symbot w, and
otherwise, set* = 7. Then, everye, 8y)-computable function with a compact domain
is (a*, B*ly*)-computable.

Proof. By continuity of By, B1, andB; in Definition 17,{Bi‘1({e})}e€N for eachi < 3is
an open cover ob. Hence, by compactness bf we have the desired condition. o

Corollary 19. Py, = PL,; Plee = Poycys Pi = P15 and P = P5°. O

wl<w’

That is to say, foﬂg subsets of Cantor spacl,ho new reducibility notion is con-
structed from Definition 17. However, from the perspective of intuitionistic caluculus,
our new notions in Definition 17 have nice features.

Proposition 20. D, D} ..., D5, and DE* are Brouwerian.

Proof. Fix @, 8,y € {1, < w,eff,w}, and setB(P,Q) = (RC N" : P <5, QORI
We need to construct a functigh: P(NV) x P(NY) — PNY) such thaip(P, Q) =
min B(P, Q) for anyP, Q c NV, Let A, denote the-th (1, w)-computable function, and
©e be thee-th partial computable function froid'' to N. Put changgg) = #{n e N :
Ae(@ T n+1) # Ae(g I n)}, and errog(g) = #H{Ae(g [ N) : ne€ N}. Then,

{(e,d)y"g: (Vf e Q) Ae(f ®Q) € P & #mcl, (f & g) < Oqg(f & g)},

if (a,8,7) = (1, eff, w),
{(ed)"g: (Vf € Q) Ae(f @ g) € P & #indx, (f ® 9) < Ou(f @ g)},

if (a,8,7) = (1, w, eff),
{dg: (Vf e Q)(Te< BO(f &) P(f ®Qg) € P},

if (a,B,7) = (eff, 1, w),
{dg: (vfeQ)(Te<0O(f ®Qg)) Ac(f ® Q) € P},

if (a,B,7) = (eff, w, w),
It is easy to see tha#(P,Q) € B(P,Q) for any P,Q c N¥. For the minimality, if

R € B(P, Q), we have suitabld ande such thatd, €)~g € B(P, Q) for anyg € R. Thus,
B(P.Q <IR O

B(P.Q) =
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Remark. Unfortunately, neithe®... nor %, .. nor P5 nor P form Brouwer
algebra (see Part Il).

2.4. Falsifiable Problems and Total Functions

In Part Il, we will mainly pay attention to the behavior of nonuniform computability
on Hg subsets of Cantor spac®’. Such a restriction has an interesting feature by
thinking of Hg sets adalsifiable mass problemsConsider a learne¥ identifies a
(1, w)-computable functior : Q — P. On an observatioor € N<¥ with [c] N Q % 0,

a learner¥ conjectures tha¢ is a correct algorithm computing a solution Bffrom

o, that is, Dy (f) = ®e(f) € P for any future observatiofi € Q N [o]. If QisTI?,
Proposition 21 (3) suggests that we may assumeetisadn index of a total computable
function. Then, the learné¥ can find mistakes of his hypothesis BrwheneverP is
also al‘Ig subset of the Baire spad®'. Therefore, restricting tﬁlg subsets is expected
to be an analogy dPopperian learning In this context, the usual Popperian learning
on total computable functions could be regarded as a learning procE{ssorgletons.
We first see that, if we restrict our attentionlt§ sets, then some reducibility notions
collapse.

Proposition 21. Let P be al1? subset of"', and X be any subset bf".

1. X <, Pifand only if X<} P.

2. X <t ., Pifand only if X<% P.

3. X <k, Pifand only if X<! P.
4. P <t _, Xifandonly if P<z® X,

—ttwl<w

5. P <g, Xifand only if P<3® X.

=tt,w

Proof. (1) See Simpson [68].

(2,3) Assume thaX <! P via a learnel?. From'¥, we construct a Popperian
learner®* : NV — N, i.e.,®(o) is an index of truth-table functional for eache N<,
We may assume thdt(o) is defined, by Proposition 1. L& be the corresponding
computable tree foP. If o ¢ Tp, thenW* (o) returns an index of the constant function
f = 0Y. If o € Tp, then let¥*(c) be an index of the following computation procedure.
Givenf ¢ NV, at stages € N, if o ¢ f, thenreturns®. If f | s e Tp extendso,
and¥(f | t) = o forany|o| <t < s, then simulate the computation ®fy)(f | 9).
Otherwise, for the least such stageeturns®y(f I s—1)"0". Clearly, ®y-((f)
defines an element af", for any f € N*. Moreover,¥* agrees with¥ on P, i.e.,
iy, v (1) (F) = D, w(i 1y (f) for any f e P.

(4,5) Assume thaP sg,‘;l@ X via n Popperian learner$¥;}i.n. Giveng € X, on
the first challenge, our leandrguesses tha¥by(g | 0) is a correct algorithm. As each
¥ is Popperian, an@ is 19, the predicat®y,qg10)(g) € P isI12. Therefore, whenever
Dy, g10)(0) € Pisincorrect, the learnex is able to understand that his guess is refuted.
If it happens, the learner goes to the next challenge. Onrike {)-th challenge A
guesses tha?i(g I s) is correct. By continuing this procedure, eventuallyearns a
collect algorithm to solve the probleP Note that, if an i, b, c)-computable function
exists fromX to P, then the learning procedure dfis stabilized before then€)-th
challenge starts, i.eA determines a (hc)-truth-table computable function. O
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Corollary 22. P, = PL; Pii ., = Py =pre =P andPh, = Pro = PL.

tt,w|<w ttwl<w

Hence,{ngly,@gﬁIy s, B,y € {1, < w,w}} consists of at most nine Iattice?.}, Pfﬁ,
1 1 1
P P P Poy P’ P g andPy. O

One can interpretegt} (<%, resp.) as computable reducibility with no (finitely

many, resp.) mind-changes. We see howbehaves like a dynamical-approximation
procedure.

Proposition 23. For anyI19 set PC N and any set @ N, P <¢ Q if and only if
ALYV T € Q) Diimint, w(tmy(f) € P.
Here ¥ ranges over all learners (i.e., computable functions figf to N).

Proof. The “only if” part is obvious. For the “if” part, we will inductively definé(c")
andl(c, €) for eacho € N<' ande € N. Let Tp denote the corresponding tree fer
First, put?({)) = 0 andI({), €) = O for eache. Now assume that, for anye N< with
Ir] < |o|, we have already define#i(r), andl(z, €) for eache € N. Then, we define
Y¥(o) andl(o, €) for eache as follows:

ue <ol [@e(o) T (I(c™,€) +1) e Tp] if sucheexists,
lo| otherwise

P(o) = {

(g [l 91 iTe=¥(0)
AR TR otherwise.

By our assumptio? < Q, liminf,¥(f I n) exists for allf € P. Thus, the desired
Conditiond)”minfn\p(f m)(f) € Q holds. O

Remark. Recall that a subset of'ds H‘i if and only if it is the set of all infinite paths
through a computable subtree 6f2 Thus, in our model of inductive inference, each
learner tries to learn a program for an infinite branci dfom a given infinite branch

of another tred *. Another model obranch learninghas been studied by Kummer-

Ott [47], and Ott-Stephan [59] in which each learner tries to learn a program for an
infinite computablebranch of T from the global information about. They pointed

out that the concept of branch learning is equivalent to learning winning strategies for
closed computable Gale-Stewart games, since the clfﬁs%sﬁbsets of 2 correspond
exactly to the class of winning strategies for such games (see also Cenzer-Remmel
[20]). Case-Ott-Sharma-Stephan [17] explains the concept of branch learning by using
a temperature controller. In their model, each learner tries to learn a program for an
infinite computable branch df from the global information abo(t with an additional
information about one infinite branch of, Te., the learner may watch a humaaster

A k-wise variation for branch learning callegeak k-search problefmas been studied

by Kaufmann-Kummer [44].

2.5. Learnability versus Piecewise Computability

Now we characterize our classes of nonuniformly computable functions using the
concept of piecewise computability.

17



Definition 24. For a classA of subsets of Baire spad€’, we say that a collection
{Qi}ier is uniformly A if the set{(i, f) € | x N : f € Q;} belongs taA. A partition or
a cover{Q;}ie of Qis (uniformly) A if there is a (uniform)A collection{Q/}ic; such
thatQ; = QN Q for anyi € I. We say thatQ}i¢ is a (uniform)A layer of Qif there
is a uniformA collection{Q;}ic; such thatQ; c Q;,, for eachi € I, {Q[}ici coversQ,
andQ; = QN Q. We also say thaQ;}ici is a (uniform) A d-layer of Qif there is a
(uniform) A layer{Q;}ic; of Q such thaQ; = Q \ Q" ; for anyi € I, whereQ*, = 0.

Remark. The terminology layer’ comes from the concept ¢dyerwise computability
in algorithmic randomness theory (see Hoyrup-Rojas [36]).

Definition 25. Let ¥ be a class of partial functions a&". ForX € w U {< w, w)}
andx e {p,c,d}, a partial functiong” :c N — N is of class def[A]¥ if there is a
uniform A partition (if x = p), uniform cover (ifx = c) or uniformd-layer (if x = d),
{Qi}ier, of dom() such thal” | Q; is contained inF uniformly ini € |, wherel = X if

X ewU{w}andl € wif X =< w. If ¥ is the class of all partial computable functions,
we simply write de¢[A] instead of def[A]7. Moreover, ifA is the class of all subsets
of Baire space, then we write dffe] and de¢'# instead of def[A] and de¢[A]F,
respectively. If we does not assume uniformity in the definition, we saylthsiof
d_edf[A]?—' .

If A e {20,113, Ad}newr, for everyX € {< w,w}, we have def{A] C deg[A] C
degj[A] c ded[(A)z]. Here a setisA), if it is the difference of twoA sets. Note
that de(;,'[l‘[ﬁ] = deQ’[Eﬂ+1] holds for everyn € N. Our seven concepts of nonuniform
computability listed in Table 1 can be characterized as classes of piecewise computable
functions.

Theorem 26. Let k be any finite number.
1. [Cr]} = deg§[II].
- (&1L, = deg[AJ] = deg[=]] for any xe {p, c,d}.
- [€r]} = deg[I19] = de¢[AY] = de[=9] for any xe {p,c,d}.
. [€&7]% = de¢[-] for any xe {p,c,d}.

. [€r]K = decde¢[IT9] = degded;[AS] = degdec[L9] for any Xy € {p, c. d}.
. [€1]7 = de¢/[-] for any xe {p,c, d}.

ga b~ W DN

(9]

Proof. (1) Let¥ : N — N be a learner witnessirig e [@T]&. Then for eachm < k,
letmcy (< m) denote the set of atj € N such that #icly(g) < m. The setsicy(< m)
andmcy(= m) are also defined by the same manner. Then, it is easy to check that
mcy (< m) andmey(< m) arell9. For eachm < k, consider the following computable
proceduredgm: giveng € mcy(= m), look for the leash € N such that§ | n] is
included in the open setcy(> m), and then returmygn)(g). It is not hard to see
thatI” is decomposable inomany computable functior{®em) }mk With H‘l’ d-layered
domainsimcy (= mM)}mek.

Conversely, assume thEte detﬁ[l‘[ﬁ] is given. Then[ is decomposed into com-
putable functiong®e(m Imk With d-layered domain$Qm \ Qm-1}m<k, Where{Qm}m
computable increasing sequen€®n}m«k of Hg sets withQ_; = 0. For eachr € N<V,
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we compute the leasfo) such thatr € Tq,,, i.e.,0 € Tg, \ Tg,,. Then, ono €
N<¥| the learne® guesse¥(o) = €(i(o)). By our assumption, for ang € dom(),
we haveg € Q; for somei € N. Then, lim,¥(g | n) converges to the leasf{i) such
thatg € Q;. Again, by our assumption, we ha®gm, w(grm)(9) = Pei)(9) = I'(g) for any
g € dom() N (Qi \ Qi-1). Therefore, we havE € [Cr];.

(2) Let? : NN — N be a learner witnessirig e [(ST]i)Ik' We definereindexy :
N<¥ — N reindexing®(c) in order of occurrence. Puteindexy({)) = 0. Fixo €
N<¥, and assume thatindexy(7) has been already defined for eachi o. If ¥(0) =
Y(r) for somer ¢ o, then we seteindexy(o) = reindexy(r) for suchr. If there is
no suchr, then we seteindexy(o) = maXreindexy(r) : T € o}+1. Our assumption
I'e [Q’T]}ulk implies that for evernyg € dom(’), reindexy(g) = lim, reindexy(g | Nn)
converges to a value less thianHence Ry, = {g € NV : lim,, reindexy(g | n) = m}
is A9 in dom(") uniformly inm < k. For eachm < k, consider the following computable
procedurebynm): giveng € Ry, look for the leash € N such thaireindexy(g [ n) = m,
and then returmy g (g). It is not hard to see thdt is decomposable intk many
computable function8be(m)m<k With Ag domains{Ry}mek-

Conversely, assume thBte de(*c‘[zg] is given. Then[ is decomposed into com-
putable functiong®em)}mek With Zg domains{Qm}m<k- Then, there is a computable
relationR € N x N<¥ such thatQ,, = {g € dom(’) : (3s)(Vt > s) R(m,g | t)} for
everyme N. We set¥(o) = emin(im: R(m, o)} U {k — 1})). Since dom) is covered
by {Qm}m«k, for anyg € dom(), lim, ¥(g | n) converges to some valwgm), where
g € Qm. Moreover, the definition o¥ ensures thatf@ (o) : o € N} < k. Therefore,
we havel € [€r]},.

(3) Itis straightforward to show th&f]: = deq’[Hg] by the similar argument used
in proof of (1). Here, we note that d@[(ﬂ(l’] = deQ’[Eg] as mentioned above.

(4) It is obvious from the definition.
(5) Combine (3) and (4).
(6) It is obvious from the definition. O

Remark. It is not hard to see that d?t[l‘[fl’] is exactly the class of all partial com-

putable functions, because, given a fiﬂﬂ%partition{Qi}kk andg € dom(), we can
effectively find the unique piece containigg

Proposition 27. Let P and Q be subsets Bf', where P id1 for n > 2. Let k be any
finite number.

1. ThereisI' : Q —» P withT € [ST]'i if and only if there isI" : Q — P with
I € deg[119].

2. ThereisT' : Q —» P withT" € [Cr]5¢ if and only if there is" : Q — P with
Ie de@“[Hﬂ]decg'[H({].

3. ThereisI' : Q — P withI" € [€]] if and only if there is' : Q — P with
I e de¢[119].
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Table 3: Seven Classes of Nonuniformly Computable Functions

[er]t, deqf”[l‘[g] finite (H%)Z-piecewise computable

[GTHA@ deqf“’[Az] finite A5-piecewise computable
(G} dec;[119] I9-piecewise computable

[Cr]5@ deg“[-] finite piecewise computable
[Cr]5©  deg“deq;[I9] finite piecewisdl)-piecewise computable
[Cr]¢ deq[-] countably computable

Hence P = P/deg“[I1)], P = P/deg[IT5]de[I19], and Py = P/deq[I1J].
Here, recall from Definition 12 thaP/# denotes th& -degree structure of nonempty
Hg subsets of Cantor space.

Proof. We can show the assertions (1) and (3) by the same argument. To see the asser-
tion (3), we assume th& <{’ Q. Every partial computable functiah, can be assumed
to have d1 domainDe. Then,Qe = Ug<e(Da NP3 [P]) is I13, and{Qe}ecis forms all
layer. Moreover, it is not hard to see thiat maps every element @, \ Qe_; into P.
For (2), we assume th&t <5* Q is withessed by two functioris e de(gdeq,”[H‘j]
by Theorem 26. Then there is a collection of partial computable functldnﬁz,neN
and a partition(E;}i of Q and collectiongQj}nar 0f pairwise disjointllY sets that
coversk; andI” agrees with"‘n on the domairk; N Q‘n for everyi < 2 andn € N. Then,
E; = Unen(Q3 N LN\ P]) is £§ and included irE;. Thus,{Ej, E;} forms all®
d-layer, whereg; = NIy E;. Itis not hard to see thatagrees Wiﬂfin on the domain
QN E N Q,foreveryi <2 andn e N. O

3. Strange Set Constructions

3.1. Medvedev’s Semantics for Intuitionism

To introduce useful set constructions, let us return back to Medvedev’s original
idea. To formulate semantics for the intuitionistic propositional calcuRg)( Kol-
mogorov tried to interpret each proposition as a problem. Medvedev [51] formalized
his idea by interpreting each propositipras a mass probleffp] < N". Under the
interpretation:

1. A proof z is a dynamical process represented by an infinite sequence of natural
numbers, i.eq € NV,

2. [pl is the set of all proofs of a propositiqn i.e., [ p] < NV,

3. A propositionp is provableif p has a computable proof, i.g.p] < NY contains
a computable element.

To prove the disjunctiorpg Vv p1, we need to algorithmically decide which part is
valid, i.e., we first declare one part to be valid and then construct a witness for this
part. Consequentlyyo Vv p1 is provable under that interpretation if and only if we can
algorithmically construct an element o v p1] = [pol®lp] = i) " f:i<2& f €
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[pil}. Generally, letForm denote the all propositional formulas. Medvedev's idea is
defining a mass-problem-interpretationlB€ by a function[-] : Form — P(NV) as
in Definition 28.

Definition 28. We say that a functiofi-] : Form — P(NY) is a Medvedev interpreta-
tion if it satisfies the following six conditions.

[T] contains a computable element.

[L] =0.

le Ayl =lel@lyl={feg:felel&gelyl

[e vyl =lgl®lyl =0y f:felellu{l)g:gelyl}

[e = ¥l =lel =yl ={e gl Pe(ge =) : [¢l = [y}

[—¢ll = ¢ — L1

Here,®(g @ ) denotes the partial functionf.®(g® f) :c N*' — N, and recall that
@, is thee-th partial computable function d¥'. Arithmetical quantifications can also
be interpreted as follows.

7. [3ne(M)] = Dl

8. [Yne(n)] = eyl (M.

As mentioned in Section 2.3, Medvedev [51] showed that the quotient algb}bra
called the Medvedev lattice is Brouwerian under Medvedev’s interpretation (Defini-
tion 28). Following him, Muchnik [54] showed thdd{" called the Muchnik lattice is
Brouwerian. Usually, the Medvedev reducibility is writtensg or < rather thans%,
and the Muchnik reducibility is written by, rather than?’.

o0 AwWNE

Remark.

1. Both of the Medvedev Iattic@} and the Muchnik latticeD{ provide sound and
complete semantics fdlankov’s LogidKC = IPC + =p Vv —=p, the intuitionistic
propositional logic withthe weak law of excluded middiehich is also called
De Morgan logic The Medvedev lattice and the Muchnik lattice are extensively
studied from the aspect of Intermediate Logic. See Sorbi-Terwijn [76] and Hin-
man [35].

2. Forty years after the pioneering work by Muchnik, the Muchnik reducibility be-
come useful in the context of Reverse Mathematics (see Simpson [71]). The
reason is that the Muchnik reducibility;’ is strongly associated with the prov-
ability relation inRCA, the recursive comprehension axiofrhen, the Muchnik
degrees oH(l’ subsets of 2 might be seen as instances/KL, the weak Konig's
lemma For example, by using a result of Binns and Simpson [8] for the Much-
nik degrees oﬂg subsets of 2, Mummert [55] obtains an embedding theorem
about the Lindenbaum algebra betwéa®A, andWKL.

3. For more basic results about the Medvedev and Muchnik degrdé%sﬂbsets
of 2V, see Simpson [68-70, 72]. There are lots of research on the algebraic
structure of the Medvedev degreesl‘[ﬁfsubsets of 2, such as density [19], em-
beddability of distributive lattices [8], join-reducibility [7], meet-irreducibility
[2], noncuppability [18], decidability [22], and undecidability [66]. The struc-
ture of Weihrauch degrees, an extension of the Medvedev degrees, has also been
widely studied as a computable-analysistic approach to (Constructive) Reverse
Mathematics (see [11-13]).
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3.2. Disjunction Operations Based on Learning Theory

Hayashi [30, 31] introducedimit Computable Mathematiqd.CM), an extended
constructive mathematics basedlararning Theory Like the BHK-interpretation for
intuitionistic logic, there is dimit-BHK interpratation for Limit Computable Math-
ematics. We introduce three mass-problem-interpreta([q]‘ﬁ v - Form — PN
of LCM based on the limit-BHK interpretation. To formulate a mass-problem-style
interpretation oL.CM, imagine the followingdynamicproof models.

The one-tape modelis defined as follows: When a verifidf tries to prove that P
or P,", atapeA is given. At each stagd declares 0 or 1, and writes one letter on the
tapeA.

e Intuitionism : ¥ does not change his declaration, $ay{0, 1}, and the infinite
word written on the tap@ witnesses the validity d®;.

e LCM :the sequence of declarations¥tonverges, saye {0, 1}, and the infinite
word written on the tap& witnesses the validity oP;.

e Classical any declaration o¥ is nonsense, and the infinite word written on the
tapeA witnesses the validity dPy or P;.

The two-tape modelis follows: When a verifiel’ tries to prove Py or P;”, two tapes
Ap andA; are given. At each stag®,declares 0 or 1, sayand he writes one letter on
the tapeA;.

e Intuitionism : For eitheri < 2, the word written o\ 1_; is empty, and the infinite
word written onA; witnesses the validity d®;.

e LCM: For eitheri < 2, the word written om\1_; is finite, and the infinite word
written onA; witnesses the validity o®;.

e Classical For either < 2, the infinite word written or\; withesses the validity
of P;.

The backtrack-tape modelis follows: When a verifie®’ tries to prove that Py or
P,”, a cellg, and two infinite taped, A are given. The celt is calledthe declaration
A is calledthe working tapgandA is calledthe record tapeAt each stage, the verifier
¥ works as follows.

1. If no letter is written on the declaration, then¥ declares 0 or 1 and this is
written on the declaration and the record tapé&.
2. When some letter is written on the declaratimrthe verifierd chooses one letter
k from N U {#}, and his choicé is written on the record taps.
(a) Inthe casek # 4, it expresses tha¥ writes the lettek on the working tape

A.
(b) In the casek = 4, it expresses tha¥ erases all letters from the declaration

O and the working tapé.

e Intuitionism : ¥ does not choosk hence he does not change his declaration,
sayi, and the infinite word written on the tapewitnesses the validity d?;.
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e LCM: ¥ chooseg at most finitely often, hence the sequence of declarations of
¥ converges, saj, and the infinite word written on the tape witnesses the
validity of P;.

e Classical No classical counterpart.

To give formal definitions of these dynamic proof models, we introduce some aux-
iliary definitions.

Definition 29 (Notations for Onflwo-Tape Models) Let | € N be a set of indices

of working tapes. A pairXp, x1) € | x N indicates the instruction to write the let-
ter x; € N on the xp-th tape. Then every string = (i(t), n(t))cs € (I x N)<¥

can be think of as thescord of the process that obeys the sequence of instructions
(i(0), n(0)), (i(1), n(1)), ..., (i(s— 1), n(s— 1)). Fixo € (I x N)*', andi € I. Thenthe

i-th projection ofo- is inductively defined as follows.

_ _pri(e) N, if o= o ((i,n)),
pri(() = 0, pri(0) = {pri (o). otherwise.
The stringpr; (o) represents the word written on theh tape reconstructed from the
recordo. Moreoverthe number of times of mind-changes of (the process reconstructed
from a record)o € (I x N)<V is given by

mc(o) = #Hn < o] = 1 : (c(N))o # (o(n+ 1))o}.

Here, forx = (Xo, X1) € | x N, the first (second, resp.) coordinatg (x1, resp.) is
denoted by X)o ((X)1, resp.). Furthermore, fof € (I x N)¥, we definepr;(f) =
Unen pri(f T n) for eachi € I, andmc(f) = lim,mc(f [ n), where if the limit does not
exist, we writemc(f) = .

Definition 30 (Notations for Backtrack-Tape Modelslror any setX and stringo €
X<, the n-th shifi-—™" is defined as—"(m) = o(n + m) for eachm < |o| — n. Thetail
of o is defined by

tail(c) = ™", forn = minfme N : (k) # { for all k > m}.

Intuitively, the symbolf indicates the instruction to erase all letters written on the
working tape. Hence, the strinqpil(o) extracts the remaining data from the record
o after the latest erasing. Furthermore, foe X', we definef =" = UJyun(f T m)~",
andtail(f) = limptail(f 1 m)if the limit exists. Here, note that ligntail(f | m)
exists if and only iff contains only finitely many's.

Example 31. We consider two functions € (2 x N)<" andr e (N U {#})<".
1. If o0 =((1,3),(1,1),(0,4),(0,15),(1,9), (0, 26), (0, 5)), then the projections ef
arepry(o) = (4,15, 26,5), andpr, (o) = (3,1,9). Moreovermc(o) = 3.
2. If T =(0,2,7,18 28 4,1,8,2,8,45,9,4,0,4,52 35,3, 6), then the tail ofr is
tail(r) = 7712 =(0,4,52 35,3, 6).
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Definition 32 (One-Tape Disjunctions)Let Py andP; be subsets of Baire spabtg'.

1. [Po Vv Pl = Uia(fi™} @ PY).
2. [PoV Pilloy = Ui((f € 272 (von) f(n) =i} @ P)).
3. [PoV Pilg, = Uia(2' @ P)).

Here,i"' denotes the infinite sequence consistingsfi.e., it = (i, i,i,...,i,i,i,...).
Definition 33 (Two-Tape Disjunctions)Let Py andP; be subsets of Baire spate'.
1. [PoV P]2, = {f € @xN)": ((Ti < 2) pri(f) € P}) & mc(f) = 0}.

Int

2. [PoV P1l?,, = {f € @xN)" : ((Ji < 2) pri(f) € P) & mc(f) < o).
3. [PoVv P2 ={f € @xN)": (Ji <2)pri(f) € P}

Definition 34 (Backtrack Disjunctions)Let Py andP; be subsets of Baire spabg'.

1. [PoVv Pill}, = {f € (U {#)" : tail(f)~* € Peasi(ri0) & (Yn) F(n) # #}.

2. [PgV P]_]]Igm {fe(NuU {ﬁ})N : tail(f)‘l € Ptail(f;o) & (Y*n) f(n) # ﬁ}

LCM

In Definition 34, for example, the string= (#§)(i)~ o represents the record that a
verifier ¥ erased all letters from tapes (this action is indicated)bgleclared thaP; is
valid, and wrote the word- on the working tape. That is to sayail(r;0) =i is the
current declaration of the verifier anéil(r)~! = o is the current word written on
the working tape.

Remark. Note that we always have to choose a new synibehich has not been
already used, since we may need to distinguish thefffesm other symbols and other

#'s used in other disjunctions. Formally, we can assume that all objects in our paper
are elements oRY, subsets ofN", or (partial) functions o™ by setting 0 = 4,
(n+1)" =n,andf*(n) = f(n") for everyn € N. For instance[Po v P1]3,, is always
interpreted as the s¢Py v Pl]]E‘CM of all f € NY such thatf® € [Py Vv Pl]]ECM, and
then[Q v [Po v P1]3,,13.,, is interpreted a§Q v [Py v P1]%, 13, of all f € N
such thatf® € [Pg v Pl]]ECM. Then, note that outdlfs are automatically distinguished
from innerf’s contained inf € [Q Vv [Po v P1]%,,I3%,,. Hereafter[Po v P1]3,, is

L:ZM]]LZZM'
identified with[Po v P1]3,,,.
Notation. Hereafter, we frequently use the notatenite(i, o) for anyi € N and
o e N,

write(i,o) = i@ o = ((i,o7(0)), (i, (1)), (i, 7 (2)), . . .., (i, o(jor| = 1))).

This string indicates thimstruction to write the string- on the i-th tapén the ongtwo-
tape model. We also use the notatiani te(i, f) = Ungywrite(i, f 1 n) = i" o f for
any f e N¥,

Proposition 35. Let P and Q be subsets of Baire spaté.
1. [PV P]i =1 P for each Xe {Int, LCM, CL}.

2. [PVQI, <iIPVQl, <t IPVQI,foreachic (1,2, 3} (except forCL if
i = 3).
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3. [PV QI <} [PV QI for each j<iand X {Int, LCM, CL}.
4. P& Q=1 [PV QI foreachic {1,2,3}.

5. PuQ=;[PVQIg.

Proof. (1) The reductionf & g — g withnessesP s} [P v P]])l(, and the reduction
f — write(0, f) witnesseg[P v P <] P, for eachX € {Int,LCM, CL}. Intuitively,
write(O, f) indicates the instruction, in the one-tape model, to declBgds' correct”
at each stage and to write the infinite wdrdn the tape\.

(2) Clearly,[P Vv QIL, 2 [PV Qll, 2 [PVQIl,, for eachi € {1, 2,3} (except for
CLif i =3).

(3) Fix X € {Int,LCM,CL}. We inductively construct a computable functign
witnessing[P v Q% <1 [P v QI. First set=(¢)) = (), and assume th&(c & 1)
has been already defined for every strimg®nd r of lengths. Then we now de-
fine E(o- @ 1) for each stringsr andr of lengths + 1. We inductively assume that
pri(E(c- @ 17)) c v for eachi < 2 (recall thatr~ denotes the immediate predecessor
of o). Forp = [pryg(E(c™ ©77))|, we put=(oc & 7) = Z(c~ & 77 ) write(o(s), 7P).
Intuitively, this indicates the instruction to add some tjp), 7(p + 1),..., 7(s) to the
word7(0), 7(1), ..., 7(p— 1) written on ther(s)-tape. Then, we can inductively ensure
the following condition.

Pry(E(c®1) =prygEl o7 ) ()= IprP=r

Finally, we seE(f ® @) = Unen Z((f 1 N)® (g I n)), for any f, g € N*'. Therefore,
forany f @ g € [P v QI and each < 2, if f(n) = i for infinitely manyn € N, then
pr;(E(f @ g)) is total, andor;(E(f @ g)) = g. By definition,pr;(E(f & g)) = g € P; for
somei < 2. HenceZ(f @ g) € [P v Q3.

Fix X € {Int, LCM}. We inductively construct a computable functi@mwitnessing
[PV QI <} [PV QI%. First set=(((i,n))) = (i,n) for each {,n) € 2 x N. Fix
o = o {(i,m),(j,n)) € (2x N)N, and assume th&(c ") has been already defined.
Then, let us defin&(o) as follows:

Z(o™)(n) if j=1i;
E(c7) (4 )Y prj(o) otherwise.

E(c (@, m), (j.n) = {

Finally setZ(f) = U, Z(f | n), forany f € (2x N). Itis easy to see thatail(f)
is defined for anyf € [PV Q]]f(, since #k € N : Z(f;k) = #} = mc(f). Therefore,
tail“}(E(f)) € Prai1z(ry0)- If X = Int, then nof occurs in=(f).

(4) By definition, [P v Q3. = P® Q. (5) The reductionf & g — g witnesses
PuUQ <} [PV QI and the reductiorf — write(0, f) = 0" @ f witnesseq[P v

QI <1 PUQ. O

Definition 36. For each proof model, there are variationd 6M disjunctions, for any
bound of mind changed_et Py, P; be any subsets of Baire spaks€, andn be any
natural number.

1. The one-tap&CM disjunction of B and P, with mind-changes-boundis de-
fined as follows.

[PoV P1liicyiy = [PoVPilllcyN{f € 27 1 #ne N : f(n+1) # f(N)} < nj@2".
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2. The two-tapd.CM disjunction of B and P, with mind-changes-boundia de-
fined as follows.

[Po v P1lcypy = [Po V Palfcy N {f € (2x W)™ - me(f) < n}.

3. The backtrack-tap&CM disjunction of B and P, with mind-changes-bound n
is defined as follows.

[Po Vv Pl]]f’CM[n] =[PoV Pl N{f e WU )" : #keN: f(K) =} <n.

Proposition 37. Let P Q be subsets of Baire spatg'.

1. PeQ={[PV Q]]:.CM[l] for each ie {1,2,3}.

2. [[Pv P]]LCM[2 =1 1pv P]]LC,V1 o+ Indeed ] Vi, Pi ]]LCM o =1 lpv P]]LCM ) where
= P for each i< n. Here, for each coIIectlotP.}.<k of subsets of Baire space,
[[\/,<k P; ]]LCM[n is defined as follows.

{f e (kxN): ((3i < K) pri(f) € P) & me(f) < n).

Proof. (1) CIearIy|[P Y Q]]LCM[l =[PV Q]]}nt for eachi € {1, 2, 3}. By Proposition 35
(4), we haveP ® Q =1 [PV Q]| ..

(2) The reductiorE : h — h* in the proof of Proposition 35 (3) also withesses
Pv P]]LCM <1 Vi Py ]]ECM[n] We inductively define a computable functi@n
Wltnessmg[[\/I<n P]]LCM[n] LpPv P]]LCM[n PUutz*(()) = (), and fixo- = 07(k) €
(N U {#)<N. Assume thaE* (o- ) has been already defined. Thé&i(o) is defined as
follows.

count(o) = #m< |o] : o(m) = 4},

P _JE"(07) {(count(0),k)) if k# f,
= (o) _{ (o) otherwise.

1] [1

For anyg € [PV P]]LCM[n we havecount(g ' s) < nfor anys € N, and hence
mc(Z*(9)) < n, sinceg contains at most many#f's. Moreover,priim, count(grs) (£°(9)) =
tail(g)~teP. O

Proposition 38. Let Py, Py, Qp, and Q be subsets of Baire spab®’, and fix i€ {2, 3}
and X € {Int, LCM CL}U{LCM[n] : n € N}. If Pp <] Qo and P <} Qq, then
[Po Vv Pill <} [Qo Vv Qully. Hence, the operatodl, : D! x D — Dl introduced
by D! (deg(P), deg(Q)) = deg}([[P v QL) is well-defined. Hera;lej(P) denotes the
equivalent clasgR c N'' : R=1 P}.

Proof. We first consider the two-tape model. Assume @k} Qo andP; <} Q; via
computable functionEy andI';, respectively. We construct a computable function
witnessing[Po v P11% <1 [Qo vV Qu1%. SetA(() = (). Fix o € (2x N)" and assume
thatA(o~) has been already defined. For eaeh2, we definenewI’;(pr;(c)) € N< by

26



PUQ PoQ
i i

[PvQlg <(=) [PVQley <) [PVQllyy <) [PVl

VI VI VI 1]
(PvQlZ, < [PVQIEm < [PVQlyy <  [PVQI;,
Vi Vi (i) i
[PVQI, < [PVQE,y < [PVQE,

Table 4: Degrees of fliculty of disjunctions, wherg and= denote the Medvedev reducibility and equiva-
lence, and£) denotes the Medvedev equivalence wifea Q

the unique string such that(pr;(c)) = Ti(pri(c)) newl;(pr;(c)). Then we define
A(0o) as follows.

A(o) = A(o7) write(0, newl'o(pro(c))) write(l, newl1(prq(0))).

Note thatnewlj(pr;(0)) = () for somei < 2, sincepr;(o) = pri(c~) for either
i < 2. Thereforemc(A(g)) = mc(g) for anyg € N*. Furthermore, for ang € N¥,
we havepr;(A(g)) = Ti(pr;(g)) for eachi < 2. Thus,A(g) € [Py v Pl]]f< for any
gelQoV Qi

Next we consider the backtrack-tape model. AssumeFthai} Qo andPy s} Q
via computable functiongy andI'y, respectively. We construct a computable function
© witnessing[Po v P113 <7 [Qo v Qul5. Set®(()) = (). Fixo € (N U {#})~" and
assume thabd(r) has been already defined for eacti o. If o = o=~ ~(m, n) for some
mn € N, then we havd,i1(-0)(tail(c) ™) = Traitemo)(tail(o) 1) n for some
n € N, and we defin®(c) = O(c") . If o = o~ (#,i) for somei < 2, i.e.,
tail(c; 0) = i, then defined(o) = O(c~)"(#,i). Otherwise, we se®(o) = O(c").
Note that #n € N : ©(g; n) = #} = #{n € N : g(n) = #} for anyg € N". Furthermore,
tail(®(g); 0) = tail(g;0), andtail(®(g)) ! = Traigo)(tail(g)~?t) for anyg €
[Qo v Qu13. Hence®(g) € [Po v P11 for anyg € [Qo v Qu13. u!

Remark. Though the original limit-BHK interpretation of the disjunctive notion seems

to be a one-tape notion, we will observe that the two-tape notions and the backtrack
notions exhibit amazing and fascinating behaviors as operations on the subsets of Baire
space. While the one-tape models are almost static, the two-tape models can be under-
stood as learning proof models wittounded-errorsand the backtrack tape models

can be understood as learning proof models with no predetermined bound for errors.
In Part 11, we adopt the two-tape notions except for the classical one-tape disjunction
U, since the two-tape notions (the bounded-errors learning models) are useful to clarify
differences among the classes T, [Cr]L,, [€r]}, . [€7]7* of bounded-errors func-

tions. In Part I, we also adopt dynamic generalizations of the backtrack tape models
since such models turn out to be a strong tool to establish many theorems.
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4. Galois Connection

4.1. Decomposing Disjunction by Piecewise Computable Functions

The main theorem in this section (Theorem 40) states that our degree structures
D2 (Definition 12) are completely characterized by the disjunction operations (Defi-
nitions 32, 33, and 34).

Proposition 39 (Untangling) Let P Q be subsets of Baire spate'.

1. There is &1, n|2)-truth-table functior : [P v Q]]iCM[n] - PaO.
. There is &1, n|2)-computable functiol : [P Vv Q]]ECM[H] - PaQ.
. There is a1, n)-computable functiolr : [P v Q]ﬁCM[n] - PoQ.

. There is &1, w|2)-truth-table functior : [P v Q]!.,, —» P& Q.

. There is &1, w|2)-computable functiol : [P v QJ-,, —» P® Q.

. There is &1, w)-computable functiof : [P v Q[3.,, —» P& Q.

. There is a2, 1)-truth-table functioT : [P v QJ%, —» P& Q.

. There is &2, 1)-computable functiolr : [P v Q]]gL - P& Q.

Proof. For the items (1), (4), and (7), we consider the truth-table functiongls
fog— 0gandA; : feg - 1°g. By the definition of[P v Q] , obviously
Ao(f®g) e PoQorAy(feg) e PeQforanyfege [PV QlY, . Letey ande; be
indices ofAq andA4, respectively. Omr & 7 € (2 x N), we setP(o & 1) = €,(o-1)-
Note that the partial functiolr identified by the learne¥ is (1, n|2)-truth-table on
Pv Q]]ECM[n], and (1w|2)-truth-table or[P v QJ}.,, Moreover, clearlyr(f & g) =
(lims f(s))"ge Pe Qforeveryf @ge [PV Ql'y,,

For the items (2), (5), and (8), we consider the partial computable funcigns
f > O pro(f) andA; : f — 17pry(f). By the definition of[P v Q]]gL, obviously
A(f) e PeQorAy(f) e PeQforanyf e [PV Q]](Z:L. Let ey ande; be indices of
Ao andAy, respectively. Omr € (2 x N)*, we set¥(c) = €y (o-1)- Note that the
partial functionl” identified by the learne¥ is (1, n|2)-computable offP v Q]]fCM[n],
and (1 w|2)-computable of{P v Q]]ECM. Moreover, clearh'(f) € P @ Q for every
f e [PV QI

For the items (3) and (6), an € (N U {#})<V, ¥(o) guesses an index of the partial
computable functiom — g~ wheret(c) = maxn : o-(n) = #} + 1 if suchn exists;
otherwise,t(c) = 0. Note that the partial functioh identified by the learne¥ is

(1, n)-computable off P v Q]]ECM[n], and (1 w)-computable off P v Q]]‘ECM. Moreover,

clearlyT'(f) e Po Qfor everyf € [P v Q3 O

LCM*

o~NOUhAh WDN

Notation. One can iterate two-tape disjunction operations] g$" Pl = P, and
V™Y P12 = [P v [V® PI212. Then, for instance[\/™ P]2,, can be identified
with the following subset of Baire space.

{(f e (MxN) : (@i < n) pr;(f) € P) & me(f) < o).

As in the proof of Proposition 38, we use the notatimwI (o) for any function
I': NV - N¥ ando € N<¥ in the proof of the next theorem. HemgewI'(0) is the
unique string that satisfies the following condition.

I'(0) =T'(07) newl (o).
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Theorem 40. Let P and Q be any subsets of Baire spate
1. P<t Qifandonlyif[P Vv P]]LCM <1 Q for some nE N.

2. P<t_ Qifand only if /™ P]]LCM <} Q for some e N.
P <l Q if and only if[P v P3,, <I Q.
P <5 Qifand only iff \/™ P2, <} Q for some ne N.
P <z» Qifand only if[\V™[P v P13, 12, <} Q.
6. P <2 Qifand only if Umenl[ V™ P12, <} Q.

.U"PS*-"

Proof. The “if” parts of all items follow from Proposition 39. We show the “only if”
part for every item.

(1) Assume thaP <!  Q via a learne®’ with mind- change bound. We need to
construct a computable functiahwitnessing[P v P]]LCM[n] _1 Q. For anyg € Q,
by uniformly computable procedure, we can enumerate all elementslgf(g) as
mg.m:,....m) ,, wherek < n. Then, we definé\(g) as follows.

A(Q) = 0" Dy(g | M) 470" |_| DQy(grme+1)(9 P ) #0 “Qygpng,+1)(9)-

j<k-1

Itis easy to see thatis computable. Note thatii1(A(g)) = d)w(gmf_lJrl)(g) € P, since
P <!, Qvia?, and lim;'¥(g I ) converges t&¥(g | mfj 1 +1). Furthermoref occurs
ktlmes inA(g), andk < nbecause of mind-change-boumdThus,A(g) € [PV P]]LCM[n]

for anyg € Q, as desired.

(2) Assume thaP <l ., QVia aleanet?, where #indxy(g) < nfor anyg € Q.
We need to construct a computable functiowitnessing[\/ ™ P]]LCM <1 Q. We again
use the functiomreindexy : N — N defined in the proof of Theorem 26 (2). Fix
o € N<_ Pick the greatest substringc o such that¥(r) = ¥(o). Then, define
new*®y(,)(0) by the uniquey such thatdy (o) = Py () 5. Here, if there is no
suchr, then we defin@ew* @y (o) = Py (0). Assume that\(o~) has been already
defined. Then, we defing(c) as follows.

A(o) = A(c7) write(reindexy (o), new Oy (0)).

Fix g € Q. Note thatreindexy(g [ S) < n for eachs € N, since #ndxy(g) <
n. Thus, we haveA(g) € (n x N)Y'. Moreover,mc(A(g)) < o, since¥ is a learner
converging onQ. Thus, limy®(g ' s) and hence ligreindexy(g | 9) converge.
Thereforeprllmsremdexw(grs)(A(g)) = Qjim ‘P(grs)(g) € P. Hence |[\/(n) P]]LCM =1 Q

(3) By similar argument used in proof of (1).

(4) Assume thaP < Q via a finite collection{®e}e-, Of partial computable
functions. We need to construct a computable funciamitnessing[\/® PJ2, <1 Q.
Assume that\(o") is already defined. Defin&(c) as follows.

A0) = A(e™)" [ |write(e newde(0)).

e<n
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Note thatpr(A(g)) € P if ®¢(g) € P. Thus, for anyg € Q, we havepr<(A(g)) € P
for somee < n. In other words[\/™ PJ2_ <} QviaA.

(5) Assume thaP <3“ via a team{'¥,}i«, of learners. We construct a computable
function A. We first setA(()) = (). Fix o € N<¥, and assume that(c-) has been
already defined. We defing N<¥ for eachi < n as follows. Fixi < n. If ¥j(c) =
¥i(o7), putnew* @y, ) (07) = newdy, (). If ¥i(0) # ¥i(o™), putnew** Oy, (o) =
§~ Dy, (o). Then, we definé (o) as follows.

Ae) = A(e™)" [ |write(i, new” Oy,p(0)).

i<n
Pickg € Q. Then, by our assumptio®jim, w,gm)(g) € P for somei < b. Then
tail(pr;(A(g))) converges, antail(pri(A(g))) ™ = Pim,wgm)(Q) € P. Thus,A(g) €
IV™IP v PR I2,
(6) Assume thaP <7’ Q. We need to construct a computable functiowitnessing

Umenll V™ PIZ, <} Q. Assume that\(o~) has been already defined. Defingr) as
follows.

A) = A(o7)” |_| write(e new®deq(0)) |~ (write(lo], @ (0))).

e<|o]|

Note thatpr.(A(g)) = ®e(g). Thus, for anyg € Q, we havepr(A(g)) € P for some
e € N. In other words| Jue[\V™ PI2, <! QviaA. O

Remark. Given an operatio® : P(NV) x P(N') — P(NV), one can introduce the
reducibility notion<o by definingP <o Q asO™(P) <} Q for somen € N, where
o) = P andO™I(P) = O(P,0M(P)). Then, Theorem 40 indicates that our
reducibility notions induced by seven monoids in Theorem 5 are also induced from
corresponding disjunction operations.

4.2. Galois Connection between Degree Structures

Remark. For degree structure®, and D, on P(N'), each operatod : P(N"') —
PIY) induces the new operat@,, : D, — D, defined byo,,(deg,(P)) = deg(O(P))
for any P ¢ N". We identify O with O, wheneverQ,, is well-defined. Recall that
every partially ordered set can be viewed as a category. Sorbi [75] showedethat
DY — Djis left-adjoint to id :D} — DY, and ido Deg : DY — DY is identity, where
ISEg(P) denotes the Turing upward closureRt NV,

Definition 41.

1. Viff(P) = @meNlIP v P]]ECM[m]'
2. Vi;leff(l:)) = @meN[[v(m) P]]ECM'

3. VL(P) =[PV PI3,,
4. V$HE(P) = B, V™ PIZ, .
5. VeE£(P) = B, [V ™IP v PI3,,, 12, -
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6. VY(P) = Umenl V™ PIZ, .
Corollary 42.

1. Vi : DL — Diis left-adjoint toidpgey : D} — DL ., andidpqey o VI, is
the identity onD? .
2. V8 ge t Dhge — Diis left-adjoint toidpgey : D — DY (. andidpqay o

wleff wleff?
V3¢ IS the identity orD? ..

3. V‘g'effﬂg, - 11)} is left-adjoint toidpgey : DI — DL, andidpgay o VL is the

* gjlyf::?@ﬂ's left-adjoint toidpqy : D} > D5, andidpqe o V5 is

5. X}Séffi d:ezn)tji,% :@éf}f{s left-adjoint toidpgey : D} — DL, andidpgey o Ve is

6. _\g‘f L DY i Dﬁs 'Ieft-adjoint toidpgery : D7 — DY, andidpgey o VY is the
identity onD?’.

Proof. By Theorem 26. O

4.3. =9 Decompositions

In computability theory, we sometimes encounter conditional branching given by a
28 formulaS = InS(n). That s, ifS is true, one chooses a procedyre and ifS is
false, one chooses another procedoreThus, one may definde computability with
azg conditional branchingas the class dé[i‘[g]. However, even if we know thed is
true, we have no algorithm to find a witness$inceS(n) is IT°, while we sometimes
require a witness 08. This observation motivates us to study a missing interesting
subclass of the nonuniformly computable functions.

Proposition 43. deg“[I13]deg;[119] is the smallest monoid includingec[113] and
dec;[119].

Proof. It suffices to show that evelly € de@[l‘[g]deq;[l'[g] is the composition of some
Iy € deg[3] andT; € deg[M9]. For everyl' € ded[I3]dec[I17], there exist a
119 d-layer {Do, D1} and 11} partitions{{P3}nay. {Phlnew} such thatly, = T' 1 Di n P,
is computable uniformly in < 2 andn € N, where{P, }nay is a partition ofD; for
everyi € {0,1}. LetTy : Do U D; — Dg @ D; be the union of two computable
homeomorphismBy ~ 0"Dg andD; ~ 1~D;. For instance, pUiys(g) = i"gforg € D;.
ThenT, € deg@[ITY] since (Do, Dy} is all) d-layer. Definel'y(i"g) = T',(g) for any

i <2andgei P, ThenTI; € deq‘,’[H‘l)], since{I}, li<znen is uniformly computable,
and{P} }i<zna is uniformly I19. Clearly we havd, | Djn P}, =Ty o T | D; n P}, for
anyi <2 andn e N. Hencel' =I'; o I'o. O

The following concept ohyperconcatenatiofDefinition 45) plays a key role in
many proofs in Part Il. In the next section, we will see that the hyperconcatenation
can be defined asfinitary disjunction along an ill-founded treer iterated concate-
nation along an ill-founded treeBefore defining the notion of hyperconcatenation, we
introduce some auxiliary notations.
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Definition 44. For any stringsr € (N U {pass})<" andt € (N U {#, pass})<V, the
content of, content(o) € N<V, and thewalk of 7, walk(r) € (N U {pass})<V, are
inductively defined as follows.

content(c”) o (o] - 1) ifo(lo]—1) # pass,

content(()) = (), content(c) = {content(o-—) otherwise

1k(r)" if —2)= _1)=
walk(r | 1)= (), walk(r)={"" (T,) v if 7(l ' )=H#& (7l - 1) = v+,
walk(r™) otherwise.
Then, thecontentof f € (N U {pass})"' and thewalk of g € (N U {#}, pass})' are
defined bycontent(f) = (Jpay content(f ' n) andwalk(g) = Uneywalk(g | n),
respectively.

The walk produces a sequence by extracting only the immediate successors

N U {pass} of #'s, but it may contain the symbglass. Then, the content removes
all symbolspass from this sequence. For instance, tet (N U {#, pass})<"' be the
following sequence.

7=(1,6,4,1,8,0,4,4,4,3,3,9,,pass, 8,4,8, 4,4, pass, 7,...)

Then,walk(r) = (1, 3,pass, 8, pass,...), and its content isontent o walk(r) =
(1,3,8,...). Now we introduce the concept of the hyperconcatenation.

Definition 45 (Hyperconcatenation)Let P and Q be any subsets of Baire spad€”.
ThehyperconcatenatiofiQv P]]);o and thenon-Lipschitz hyperconcatenatif@v Plso
of Q andP are defined as follows.

Qv F>]];g ={ge (NU {#))" : walk(g) € Qor tail(g)~t e P},
[QV Pl = {g € (N U {#, pass}))" : content o walk(g) € Qor tail(g)* € P}.

Theorem 46(As the Law of Excluded Middle) The implications (b) — (a) — (a7)
« (b7) hold for any PQ,R ¢ N™:
(@) [QV PIY, <i R.
2
(@) [QV Pl <R
(b*) There is azg sentence = Ivo(v) with a uniform sequencf}ian, A of partial
computable functions di' such that

e if g € R satisfie®(v), thenI',(g; u) | for any ue N, andI'\(g) € P.

e if g € R satisfies-6(v), thenA(g;u) | for any u< v, and[A(g) I v+ 1]
intersects with Q.

e if g € R satisfies-3ve(v), thenA(g; u) | for any ue N, andA(g) € Q.

(b™) There is ax? sentence = Ave(v) with a uniform sequenc’}iaw, A of partial
2
computable functions d§'' such that

e if g € R satisfie®(v), thenl',(g; u) | for any ue N, andTl',(g) € P.
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e if g € R satisfies-avo(v), thenA(g; u) | for any ue N, andA(g) € Q.

Proof. (b*)—(a): Assume tha®; = {g € NV : ©(g; i) T} for some computable function
®, and thaP <! Rn S; viaT; andQ <} R\ Uiy Si via A. For a stringr € N, define
d(o) andt(o; i) as follows:

d(o) =maxd e N : (Vi < d) O(c;i) |}
t(o;1) =min{t e N : O(o | t;1) |}, foranyi < d(o).

Then let us definé\ (o) = [Ti<q(y) (Ti(o 1 t(o; 1))~ # A(0; 1)) "Ly ().

(@)—(b7): Assume thafQ v Pl <} Rvia a computable functiod. SetS, =
{ge NY : (¥n > V) ®(g; n) # #}. For a stringr € N<I¥, we first computes the following
count (o) andmcly(o, n) for eachn € N:

count (o) = #{m< |o| : D(o; m) = 4},
mcly(o, n) = minim < o] : count(o | m) > n}, if suchmexists.

Then seffy(0) = ®(o) elilocomte)+L: and setA (o) = An.®(o, mcly (o, n)). Note
that if g € RN Sy for somek € N, thenI'y(g) € P; otherwise, A(g) € Q. Therefore,
P<}RNSyvialyandQ <} R\ SviaA.

(b7)—(a’): For eachr € N<¥, let v(o) be the least such thaR(u, v, o) holds for
all u < |, whereg(g) = (Av)(YU)R(u,v,g | u). We inductively define a computable
function @ as follows. We first se®({)) = (). Assume thatb(c~) has been already
defined.

O(e) 7. it V(o) = V(o™) & Tyr(0) = tail " (®()) .
(o) ={0(c7) (H#,6(0)), if V(o) # V(o) & A(0) = content o walk(®(o))"4,
®(c7) (f,pass), if V(o) # V(c™) & A(o) = content o walk(®(o7)).

For anyg € NV, if ¢(g) = (Av)(YUR(u, v, g | u), then for the least suche N, we have
tail*(®(g)) = I'/(g). Otherwise, we haveontent o walk(®(g)) = A(g). Hence,
Dd(g) e [QV P]]zg, foranyge R |

Definition 47. Let {Sp}new be an increasing sequence of subsets™df We say that
a partial functionl’ :C N — N is computable alongSp}nen if T' I dom() \ U, Sn
andI' | dom() N S, \ Sp-1 is computable uniformly im € N, whereS_; = 0.
Moreover, we also say that a partial functibnc N — N is computable strictly along
{Sn}nen If there is a uniform sequence of computable functiing,.n andA such that
I 1 dom)\ UySnh = A I dom() \ UnSp andI’ [ dom({) N Sy \ Spy = I |
dom({’) N Sy \ Sho1 andA(g) I nis defined for anyg € dom() \ Sy.

Remark. Theorem 46 implies that there is a functibn [Q Vv P]]zg - PoQ(I:
[QvV P]];O — P& Q) such thal is computable (strictly) along sequencesﬂﬁfsets.
2

Corollary 48. de(‘g“’[Hg]de(g[H(l’] is the smallest monoid containing all functions
computable (strictly) along sequencesl‘tffsets.
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Proof. Let S be the class of all functions computable (strictly) along sequencﬁg of
sets. Then, clearly, we have ¢fad] UT; € deg[I1%] c S ¢ deg[M5]dec; [I1].
Thus, the desired condition follows from Proposition 43. ]

Remark. Itis easy to see that the hyperconcatenation operations are non-commutative
as follows. For instance, if andg are Turing incomparable, thdiig} v {f} ;2 f_}

[KRi }v{g}]];g. Otherwise, we have a witheE®f the reduction, and the,nalkor(f) <g

for any f with walk(f) < f. This is because for any, § = (f 1 n)tig € [{f} v (g},

for a suitable, and it is Turing equivalent tg. Hence,I'(§) cannot havef as a taizl,
sincef £r g Thereforewalk o I'(g) = g.

Thus, giverv, with walk(o)"i < f, concatenate a fiiciently long initial segment
7, of flig to forcewalk o I'(0n"7n) = g | n. Now, consider the closed subspace
Ct ={he WU {#)" : walk(h) < f} that is f-computably homeomorphic td". If we
can extendr," 7, to some string extendible inC; that forcesb,(o; k) # g(k) for some
k € w, then go to the next step. If not, there exiktsuch that®,(h; k) is undefined
for anyh € C; extendingo," 7y, Since otherwise, givek, one canf-computably find
pk = on"Tn in Ct such thatd,(ok; K) converges, but then it must be equabt&), and
this contradicts our assumptigngr f.

Consequently, one can extend 7, to some stringr,.1 Which forces not to com-
pute g via the n-th Turing functional, that is®,(h) # g for everyh € C; extend-
ing on1. Finally, putf = |J,on. By our construction, we havg £t f, and
g = walk o I'(f) <1 f, a contradiction.

5. Going Deeper and Deeper

5.1. Falsifiable Mass Problems

We are mostly interested in local degree structures such as Turing degrees of c.e. sub-
sets ofty and Medvedev degrees B subsets of 2. In such cases, the straightforward
two-tape (backtrack) notions in Definitions 33 and 34 are hard to use, since, for in-
stance][P v Q]]ECMQ] may not belong td1? even if P andQ arel1%. This observation
prompts us to defineonsistentwo-tape disjunctions.

Let {Ti}ic be a sequence of treds ¢ N<V, Then,the consistency s&on(T)ic

for {T;}ic is defined as follows.
Con(Mie = {f e (I xN)" : (Vi e 1)(VYne N) pri(f | n) e T;}.

The notion of consistency sets has a relationship with consistent learning (see also
Remark below Proposition 54). The consistency sets are useful to reduce the complex-
ity of our disjunctions to b&l9. We now introduce the following consistent modifica-
tions of our disjunctive notions.

Definition 49. Let Py andP; denotell? subsets of".
Pov,P1 = [Po V P1l2cy N Con(Te,, Tp,).
PovnaP1 = [[Po V Pl]]ECM[n] N Con(Tp,, Tp,).
PoveP1 = [Po v P13, N Con(Te,, Tp,).
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Here Tp, and Tp, are corresponding (computable) trees Rgrand P, respectively
(where recall from Section 1.3 that such a tree is assumed to be uniquely determined
when an index oP; is given).

Remark. Obviously, Definition 49 depends on our choice of indices (hence, corre-
sponding trees) of giveﬁg sets, that is, the operations in Definition 49 is defined on
subtrees ofN<Y rather than subsets df'. However, Proposition 50 indicates that it
does not really matter what we chose, if we only focus on the degree-theoretic behav-
ior. We will frequently use index-dependent definitions (e.g., Definitions 49 and 52) in
order to simplify our notations, but in each case, one can easily ensure that it cause no
problems at all (e.g., Propositions 50 and 54).

Proposition 50. Let P and Q bd1? subsets oR'.
1. Pvp,Q=l [PV Q]]ECM[n] for each ne N.

2. Pv,Q=1[PV Q.
3. Pv.Q=l[PVQIZ.

Proof. For each item, clearlyPv.Q >1 [P v QJ2. Thus, it siffices to construct a
computable functionad witnessingPv.Q si [PV Q]2 Let Ty andT; denote the
corresponding computable trees rand Q respectively. Se®(()) = (). Fix o €
(2 x N)<¥, Assume tha®(c") has already been defined, and= o~ ((i, k)) for some

i <2andk € N. Then,

o(o) < | P@IHEK)  ifpri() €T,
)= (o) if pri(o) ¢ Ti,

Clearly,® is a computable function, sindg is computable for each< 2. For any
g € (2xN)Y, clearlymc(®(g)) < mc(g). Fixg € [PvQ]?, wherex € {LCM, LCM[n], CL}.
Thenpr;(g) € P; for somei < 2, whereP, = P andP; = Q. Therefore®(g) is total,
andpr;(®(g)) € P; for suchi < 2. |

Proposition 51. Let P and Q bd1? subsets oR™.

1. Pv,QisIIY, for any ne N.
2. Pv,Qisx).

<110
3. Pv,QisIIj.

Proof. Let To andT; denote corresponding computable treesH@andQ respectively.
We consider the following computable tree:

Tpon = {0 € @xN)™' 1 (Vi < 2) pri(0) € Ti & mc(o) < n}.

Note thatTpgq is uniformly computable im, sincepr;(c-) andmc(c) are computable
uniformly in o € N<". Clearly, Pv,Q € [Tpqn]. Moreover, for anyg € [Tpanl,
pr;(g) is total for somé < 2. Thenpr;(g) € [Ti] for suchi, andmc(g) < n, since the
relationmc(f) < nis equivalent tok) mc(f I k) < n. Thus,g € Pv,Q. Consequently,
PvnQ = [Tegn] is I9. Hence,Pv,Q = Un[Tranl is £9. The items (3) also follows
from the similar argument. ]
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Definition 52. Theconcatenatiorof treesTy, T1 € N<V is defined as
TOAT]_ = {0'A<ﬁ>AT YOS To & TE€E Tl}

One can introduce the concatenatiorﬂ?fsetsPo, P; € NY by the setTp, Tp,] for
corresponding computable tregg andTp, of Py andP;. Here, this definition is also
index-dependent (recall Remark below Definition 49).

However, we adopt the followingonservativerersion as our definition of the con-
catenation, which is easier to handle in many proofs.Upsedenote the set of all leaves
of the corresponding computable tree for a nonerfifftgetP. Thenthe (conservative)
concatenation of P and @ defined as follows.

PQ=PU UpAQ.

pELp

The commutative (conservative) concatenation of P aigdd@fined byPvQ = (P~ Q)&

(Q°P).

Remark. On the study of Wadge degrees of finite level of Borel hierarchy, Duparc
[26] introduced various operators suchfas’Q = PU ey« o~ (#)~ Q. The following
proposition indicates that our non-commutative concatenation is essentially same as
Duparc’s operatio®P— Q.

Proposition 53. Let BQ beH‘f subsets of Baire spad&’. Then, the concatenation
P~Qis(1,1)-equivalent to the setPQ := [Tp"Tq].

Proof. To seeP”Q s} P~Q, we inductively define a total computable functiont :
NN — NN, First setcut(()) = (), and fixc = o~ ~(n) € N<N, We assume thatut (o)
has been already defined.df= o~ "(n) € Lp, then we setut(c) = cut(c™)(n, #).
Otherwise, we setut (o) = cut(o~)"(n). Then,cut is computable, sinck is Hg and
thenTp is computable. Moreover, we can see the following.

cut(f) = f if feP,
S\ TR R if(3keN) f ke Lp.
Clearly,P~Q si P~Q via the computable functioout.

Conversely, we consider the computable functieaf : NV — N<¥ which
mapso to the least leaf olp extendingo. Then, we inductively define a com-
putable functionl” witnessingP~Q <} P~Q as follows. First sef'(()) = (), and
fix o = o7~ (ny € WU {#H)N. We assume thdt(c~) has been already defined. If
n # §, then we sef' (o) = T(c™)~(ny. If n = 4, then we sef'(o) = leaf(I'(c7)). Itis
easy to see th&® Q <} P~QviaTl. O

Remark. Inspired by our method used in Part I, Cenzer-Kihara-Weber-Wu [18] ex-
plicitly employed the concept of the (non-commutative) concatenation to show that
CPA~CPA has a greatest Medvedev degreé‘[@fsubsets of 2 with no tree-immune.
Here, all{ setP c 2" is tree-immunéf the T19 tree{o- € 27" : P [o] # 0} includes

no infinite computable subtree, aG®A is the set of alcomplete consistent extensions

of Peano ArithmeticNote thatCPA is aMedvedev completé? subset of 2.
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Proposition 54. Let BQ beH? subsets oY,

1. PvP=l P P.

2. PvQ =1 [PV Q% 2
Proof. (1) PvP = (P~ P)a(P"P) z% P~P. (2) By Proposition 50 (1), we hawv,Q zi
[PV Q]]ECM[Z]. Then,Pv,Q <! PvQis witnessed by the following reductian

ACT) = write(f(0), f-1), if 11 € [Ty,
" |write(f(0), f=1 } Ky write(1 - £(0), f=*+1), if (FkeN) f1 [ ke L.

Here, To and T, are the corresponding computable treesFPoand Q respectively,
andL; is the set of all leaves of; for eachi < 2. Clearly, A is computable. Fix
(iy"g € PvQ. Obviously,mc({i)~g) < 2. If g € [Ti] thenpr;(A(i)"Q)) = g € [Ti], and
if g = oc~hfor someo € L; andh € [Ty_i] thenpr;(A({i)~c"h)) = h € [T1i]. Hence,
A(Ci)~g) € Pv2Q.

To seePvQ s} Pv.Q, it suffices to construct a computable functiohalitnessing
(P7Q) ® (QP) <! Pv,Q by Proposition 53. Sdt(()) = (), andT'({(i,n))) = i,n)
for anyi < 2 andn € N. Fix o = o ((i,m),(j,n)) € (2x N)<N, and assume
thatI'(o™) is already defined. If # j, then sef(c) = T'(c™)"(#, n). Otherwise, set
I'(c) = T'(c7)(ny. ClearlyT is computable. Fipg € Pv,Q. If mc(g) = O, then
I'(g) = ()7pri(g) € PeQ ¢ (P7Q) & (Q”P), wherei = (g(0))o. If me(g) = 1,
thenpr;(g) is a finite string, wheré = (g(0))o. In this case, we can easily sEf) =
() pri(@) () prii(g) € (P"Q @ (QP). o

In the case oPvP, we use the non-commutative concatenatior® to simplify
our proof without mentioning.

Remark. These disjunctions have some connection wihsistent conservative Pop-
perian learning(see [37]).

e The term ‘tonsisteritmeans: the scientist should modify his hypothesis when-
ever it was found to be refuted.

e The term ‘tonservativemeans: the scientist changes his hypothesis only when
it was found to be refuted.

e The term ‘Popperiari means: the scientist can test whether his hypothesis is
currently consistent or refuted.

The notion ofPopperian learnings introduced by Case and Ngo-Manguelle [16] based
on Gold’s theory of “identification in the limit” [29]. A learner (a scientist) is a com-
putable function? : N — N, and a natural phenomenon is a computable function
f : N - N. Then the formulaP(f | n) = e means the following situation: the sci-
entist¥ predicts that a rule generating the phenomehaan be explained by a word
(a formula, or an algorithmg (i.e., f = ®¢) when he observe§(0),... f(n - 1). We
say that¥ learns fif ®jm,wmy = f. The learnet¥ is Popperianif ®y(,) is total for
eacho € N, The learnel is consistenato € N if Oy, I || = . The learner

37



Table 5: Hierarchy of Consistent Disjunctions

PeQ [Pv QI Intuitionistic disujunction £ Pv1Q)
PUQ [PV Q]](1:L Classical one-tape disjunction

PvQ [PvV Q]]ECM[Z] Commutative concatenatioa P~ Q if P = Q)
PveaQ [PV Q]]ECM[n] LCM disjunction with mind-changes-boumd
Pv,Q [PV QI LCM disjunction

Pv.Q [PV Qlz, Classical disjunction

¥ is conservativef, for any o € N, ¥(o) = ¥(o~) wheneverdy(, | lo| = o.

Note that, for every Popperian learnir he can algorithmically determine whethgr
is consistent at- or not, for a givero- € N<. The terminology Popperiari derives
from Popper’s falsifiabillity principle in philosophy of science.

The complexityl‘[‘l) reflects the concept of Popperian learning. The consistency
set Con(;)ie restricts our learning process to be consistent. Additionally, the non-
commutative concatenatidPr Q of P and Q restricts our learning process to be con-
servative, since it represents the following situation: a choice on the first hypokhesis
is refuted if, and only if, the scientist proposes the second (refutable) hypothasid
start verifying it.

Proposition 55. For IT9 sets PQ ¢ N'' and ne N,
[PV Qlfcy <1 [PV Q]]ECM[m-Z] <1 [PV Qlig, <7 [PV Qlly-

Proof. It suffices to showPvQ <} P U Q, since[P v Q], =1 P U Q by Proposition
35 (5) and[P v Q]]ECM[Z] =1 PvQ by Proposition 54 (2). Indeed, we can show that
(P-Q)®(Q P) <1 PUQ. We construct a computable functiomalwitnessingP~Q <1
PUQ. If o € Tp, then set®d(0) = o. If o ¢ Tp, then pick a unique C o such
thatp € Lp, and setd(o) = p~o for suchp, whereLp is the set of all leaves ofp.
Clearly @ is computable, and note thé@{(c) € ®(r) wheneverr C 7. If g € P, then
®d(g) =ge P. If ge Q\ P, then there is a unique c g such thatpo € Lp, and
®(g) =p g€ P Q. Thus,P-Q <} PUQVvia ®. O

Remark. Our notationv is inspired by the sequential disjunction [39] in Computabil-
ity Logic [38]. One may also compare, andv,, with the toggling disjunction and the
parallel disjunction [40].

5.2. Compactified Infinitaly Disjunctions

This subsection is concerned with a trick to repregefiniitary disjunctive notions
as dfective compact sets.

Definition 56. Fix a collection{P;}i¢; of subsets of Baire spad&".

L [Via Pillne = {f € (I xN)" : (@i € 1) pri(f) € P)) & mc(f) = 0.
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2. [Vie Pilliem = {f € (I xN)" 1 ((Fi € 1) pri(f) € Pi) & me(f) < oo}
3. [Via Pille = {f € (I xN)"' : (Ji € 1) pry(f) € Pi}.

Proposition 57. Let{P,}nav be an infinite collection of subsets of Baire spatk

1. [Vnat Palline =1 B P Where@ ., Pn = {(n)~f : f € Pyl
2. [VinPinlliem =1 [Po Vv P113.,,, where R, = P for each i< 2and ne N.

Proof. (1) [V nex Pnllint 2% @neN Py is witnessed byf — (f(0))o"pr(t(y),(f), and
[V ner Palline <7 @B,y P is witnessed byf — write(f(0), f~*), where recall that
write(f(0), 1) = (f(0))' @ (An.f(n + 1)) indicates the instruction to writing the
infinite word f 1 on the f (0)-th tape.

(2) We first construct a computable functigrwitnessingl\/; » PinllLem z% [Po Vv
Pl]]ECM. For (i, n),Vv) € (2x N) x N, we first seE€({((i, n), v))) = {((i, n), v)). For each
stringo = o= (((i, n), v), ((j, M), w)) € ((2xN)xN)<¥ inductively assume th&(c ")
has been already defined. ifif) = (j, m), then we seE(o) = Z(o~) " (w). Otherwise,
we setZ(o) = E(o) (. j,w). Foranyf € [\,Pinlicw, the backtrack symbdi
occurs inZ(f) finitely often, sincenc(f) < «. Therefore;tail(E(f)) converges, and
tail(E(f))* = prim(f) € P; for somei < 2 andme N. Thus,Z(f) € [Py v P1]3,,

We next construct a computable functigf witnessing[\/;  PinllLem <! [P v

Pl]]ﬁCM. SetZ*(()) = (). Foro = o= (v,w) € (N U {#})<V, inductively assume that

Z*(0") has been already defined. To deflBdo), recall the definitioncount(o) =
#{n < |o| : o(n) = #}. ThenZ*(o) is defined as follows.

[1]

(o) = E*(c7) (((tail(o; 0), count(c)), W), if v+ f andw # f,
. =@, otherwise

For anyf € [Po v P1l.,,, we havemc(E*(f)) < oo, sincecount(f) = #k €
N : f(k) = i} is finite. Therefore, we haver .i1(s:0),count(f))(E*(f)) = tail(f)~' e

Ptai1(f;0) Thus,Z*(f) € [Vin PinlliLem- O

We again use the consistent modifications of infinitary mod%]neN P =
[V e Palllem N Con(TPn)neN, and[vm ]neN Pn = [Vnex PallcL N Con(TPn)neN-

Proposition 58. Let {P,}heny be a computable collection dif‘f subsets of Baire space
NN,

1. [Vnew Polliem =1 [v‘“]neN Pn.

2. [[\/neN Pn]]CL E% [VDC ]neN Pn.

Proof. As in the proof of Proposition 50. O

However, the problem is that our models of infinitary disjunctions are not compact.
A modification of infinitary sum was introduced by Binns-Simpson [8] to embed a free
Boolean algebra into the Muchnik lattice Hﬁ subsets of Cantor space, and such a
variation was called recursive meetAn important feature of their modification is that
itis aH‘l) subset of the compact spacé 2

39



Definition 59 (Binns-Simpson [8]) Let P and {Qn}nay be computable collection of
Hg subsets of P, and letp, denote the length-lexicographicaltyth leaf of the cor-
responding computable tree Bf Then, we define théfinitary concatenatiorand
recursive meeas follows:

P {Qi}ien = PU UPnAQn, @ ien Qi = CPA™{Qi}iew.

Here, recall thaCPA is a Medvedev complete set, which consists otalinplete
consistent extensions of Peano Arithmefithhe Medvedev completeness ©PA en-
sures that for any nonempﬂ/i subsetP ¢ 2, a computable functio® : CPA — P
exists. Of course, these definitions are also index-dependent (recall Remark below
Definition 49).

Proposition 60. For any computable sequenf,}ncy of nonempty'l(l’ subsets o™,
;an Eim @neN Pn.

Proof. The conditioncP naiPn s} neny Pn is witnessed by a computable function
n"g — png. We will construct a learner witnessi@ ,,Pn >, @, 4, Pn. Fix
a computable functio®, : CPA — 0°Py. Such®, exists, since every nonempty
Hg subset of 2 is (1, 1)-reducible toCPA. We also fix a partial computable function
®Di) : pn~g > ng, for eachn e N. Foro € 2N if o € Tepa then set¥(o) = e. If
o ¢ Tcpa, thenp, C o for somen. For suchn, we set¥(o) = i(n). The functionl’

identified by the learne¥ is clearly (12)-computable, anfi(g) € &, Pn for any

g€ P 5:Pn ]

5.3. Infinitary Disjunctions along well-Founded Trees

One can consider a computational learning processtatisfinite mind-changes
i.e., amodel represented by transfinitely iterated concatenations. We use Kt@éme's
deal with computable ordinals in a uniformly computable way.

Definition 61 (Transfinite Mind-Changes)Let (O, <o) denoteKleene’s system of or-
dinal notationgsee Rogers [63]). Then for eaate O we introduce tha-th derivative
of P ¢ N" as follows.

P P if a=0,
P = PV PRy P = TPV PP T2, ifa=2
@HEN P [PV Dren Pcpe(n)+]]ECM[2] ifa=3-5°%

Here, we requirabg(n) <o ®e(n + 1) for every 3- 5% € O in the definition of0. In
particular, this implies tha@®(m) <1 p(®") whenevem < m. Additionally, we may
require thatbe(n) < @e(n + 1) as a natural number by padding Ris a nonempty1?
subset of 2, we also define another derivati® as follows.

P ifa=0,
P@ = {p-po) if a=2°
P~ {P®M)} o ifa=3-5°
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Proposition 62. For any nonempt)H(l) set Pc 2" and any notation & O, the a-th
derivative # is aTI? subset oP'".

Proof. Fix a € O. By our definition, obviouslyP® is a subset of 2. We inductively
assume thatP® : b <, a} is uniformly I19. Fora = 2°, we can easily computeld?
index of P@ = P~P® is from aIl? index of P®). Fora = 3- 5°, we can also easily
compute d1? index of P2 = P~{P(®(M)},,; from a computable sequenceldf indices
of (P} . Thus{P® : b <, a} is uniformly 12 m

Proposition 63. For any nonemptﬂg set Pc 2 and any notation & O, the condi-
tion P** <1 P@ <! P2 holds.

Proof. ClearlyP~P® is (1, 1)-equivalent tq{P v P(b)]]ECM[Z], sinceP® is 12 by Propo-
sition 62, where the (1)-equivalence follows by Proposition 37 and 54. It is easy to
see thafP v D, ., PP, <3 PP}y <1 B PO holds. For suc-
cessor steps, it fices to show thaP~P® <, (P®-P). If |bjo is a finite ordinal, it

is clear. If|blo is an infinite ordinal, sap = 3 5°, thenP® <! P®-p holds, since

Notation. Everya € O is often identified with the corresponding well-founded tree
T, consisting of all finite nonempty.-decreasing sequencésy, a;, a, . ..), where

ap = a and for everyi € N, either 2+ = g or aj;; = ®¢(n) holds for somen € N
ande with 3- 5% = g. Our padding assumptiobhe(n) < ®¢(n + 1) implies thatT, is
computable.

Definition 61 immediately induces associated piecewise computability notions. For
a notatioma € O, a collection{S, },ct, of Z(l’ subsets oK ¢ N is a-indexedf S, = X
and the mapping — S, is an order preserving homomorphism from the treg €)
onto the ordered sef,}.t,.2), whereO(< a) = {b: b < a}. It is strictly a-indexed
if it is a-indexed andS, = Unay Sc-o.mn) Whenevew = «~~3 - 5° A partial function
I' :.C w” — ¥ is said to be(strictly) a—indexed‘[‘f d-layerwise computablé there
are a (strictly)a-indexed collection ob:g subsetqS, }e1, Of the domain of” and a
uniformly computable collectiofl, }.cr, of partial computable functions such tHat
agrees witlT', on the domairs, \ U5, Sa.

It is easy to see that these notions are subclasses ;pm%}clf the order typdalp
of{b: b <p a}isw, the stricta-indexedl'lg d-layerwise computability realizes the class
[GT]iff. Obviously, a strica-indexedl'lg d-layerwise computable functidn: P2 —» P
and ara—indexedl‘[‘l’ d-layerwise computable functidrf : P2 — P exist.

Remark. Obviously, a—indexedH‘l’ d-layerwise computability can be viewed as the
effective version of discontinuity levet, a in the sense of Hertling [33] and Hem-
merling [32]. Here, a partial functiofi :c N — N¥ shall be said to bef efective
discontinuity levek, a if there is a computable collectioffip}p<,a of partial com-
putable functions with unifornE? domains{Sp}p<,a such that for everx € dom(’),
[(X) = T'p(x) for a uniqueb <p awith X € Sy \ Uc<,b Sc-

Note that Hemmerling [32] studied its boldface version in the context of levels of
subhierarchy (see Mafek [50]) of the Baire one star functiBhg¢see O’Malley [58]),
whose original definition seems to be a boldface version of the Blum-Blum locking [9]
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in learning theory. Then, the boldface version of the learnability with mind-change 1
seems to be interpreted as the Baire one double star fundiprisee Pawlak [61]).

Indeed, the notion of the discontinuity level is a useful tool to analyze the Baire
hierarchy of the Borel measurable functions. For instance, Solecki [74, Theorem 3.1]
used a transfinite derivation process in the proof of his dichotomy theorem for the
Baire one functions, and Semmes [65, Lemma 4.3.3] introduced a high level analog of
a transfinite derivation process in the proof of his decomposition theorem farthe
functions (a subclass of the Baire two functions).

See also de Brecht [23] for a systematic study on the levels of discontinuity.

Definition 64 (see Freivalds-Smith [28] and Luo-Schulte [49Det ¥ : N<¥ — N
be a learner. We say that: N< — O is amind-change countefor ¥ if, for any
o € N ¢(0) <o ¢(0™) whenevel(c) # ¥(o~). A learner¥ is a-boundedf there
is a computable mind-change counterN<Y — O for ¥ such that(()) <o a.

Remark. The computational power @&-bounded learnability is very closely related
to Ershov’s mind-change hierarchy (Ershov hierarchy [27]2;\g)‘subsets oN, or the
effective version of the Hausdddifference hierarchy oig subsets oNY (for Ershov
hierarchy, see also Stephan-Yang-Yu [77]).

Proposition 65. For a notation ac O, a partial functionl” :c N* — N" is of gfective
discontinuity leveko a if and only if it is learnable via an a-bounded learner.

Proof. The desired equivalence is obtained from an interpretation bet#gand the
29 set generated by the c.e. $ete N : ¢(c) < b}. m]

5.4. Infinitary Disjunctions along any Graphs

In the classical proof process, a verifi#ron “Pg or P;” may change his mind
infinitely often. In the backtrack-tape model, this situation means¥heliooses the
backtrack symbaf infinitely many often. Then the word ok is eventually finite, and
it verifies neithePy nor P1. Therefore, in the model, ¥ succeeds to verifyPq or P;”
then the backtrack symbfbccurs on the recorfl at most finitely often. Consequently,
in the backtrack-tape model, classical verification coincides WM verification.
However, we would like to cover the case that unbounded or infinitely many mind-
changes occur. This may be archived by regarding the backtrack-tape model as a kind
of infinitary tape model.

The dynamic-tape model Assume that a directed grap¥i E) is given, whereV can

be infinite, E € V x V, and aninitial vertexe € V is chosen. For any € V, let

adj(v) = {we V : (v,w) € E}. When a verifie® tries to prove thatY/,.y P,”, infinite

tapesq, andA, for v € V are given. The tape is calledthe declarationA, is called
the working tapgor eachv € V. First the lettere is written ono, and no word is
written onA, for v € V. At each stages, assume thai[g] is written ono. Then the
verifier ¥ executes one or the other of two following actions.

1. ¥ declares some € adj(v[9]), erases all words on, and writesw ono; or
2. ¥ writes a lettek € N on the working tapé\;.

Assume that a verifiep tries to prove thatPy or P;".
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e Intuitionism : ConsideV = {¢,0, 1}, E = {(¢,0), (¢, 1)}, andP, = 0.

e LCM with ordinal-bounded mind-changes: For a computable well-founded
treeV = T ¢ N<¥, consider the following.

. . Po, if |o|is even,
E=E(T)= ,T)eTXT:(@deN)r=0"1}, P, = . .
(M =1 ( =07} {Pl, if |0 is odd,
e LCM: ConsideV = N; E = {(n,n+1) : ne N}; P,, = Py foranyn € N; and
Pani1 = P1 for anyn € N. Moreover, the word written on the declaratiomust
converge.

e (V,E)-relaxed Classical (V, E) = (Vo, V1, E) is a given directed bipartite graph,
andP; = P; foranyr € V; andi < 2.

Definition 66 (Dynamic Disjunctions) Let G = (V, E) be a directed graph, and let
{Py}vev be a collection of subsets of Baire space. Ear V2, putE = EU{{(v,V) : v e
V}. We define thalynamic disjunction ofP,},cy along the graph(V, E) as follows.

“ \/ PVH ={f e (VxN)": (vne N) (((F(M)o, (F(N+ 1))o) € E) & (Fv e V) pry(f) € P}
Vve(VE)

Moreover, if{ P, }vev is @ computable sequencelﬁﬁ subsets o', andTp, be the
corresponding tree fdp,, we also define its consistent versions.

1. VVE(V,E) Py = |[\/ve(\/,E) Pyl n Con(Tp,)vev.
2. V)P = {f € (VXI)' 2 (Y € N) (((f()o, (f(n+1))o) € E)}NCon(Tp,)uev.-

Here, recall that, fox = (Xo, X1), the first coordinate is denoted by X)o. If P, = P
for anyv € V, then we simply writéy/, ., P and ¥y P for Vve(v,E) Py and ¥ vg)Py
respectively.

As our dynamic-tape model is an infinitary-tape model, this model may be natu-
ral to be regarded as expressing a proof process of an infinitary disjungtigrP,.
Therefore, we refer the model witly,(E) as an infinitary disjunction alondV, E).

Later we will introduce a more complicated model. It will be caltbé nested-tape
model We first see an upper and lower bound of the degreesfifuty of these
disjunctive notions, and a relationship among various models we have introduced. Let
Deg(P) denote theTuring upward closuref P, i.e.,DegP) = {g: Af <r g) f € P},

and [V, E)] denote the set of all infinite paths through a graphg), i.e., [(V,E)] =

{pe V" :(p(n), p(n+1)) € E}.

Proposition 67. Let (V, E) be a computable directed graph, af@,}..y be a com-
putable sequence difcl) subsets oR".

1. Deg(Bey Pv) <1 Vievgy Pv <t By Po-
2. Deg([(V, BEle @, Pv) <} YwewpPy <1 (Bl e P, P
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Proof. (1) Ve Pv <1 Doy Py is witnessed by~ f — write(v, f) = V'@ f. For
any f € Vg Pv, we havepr,(f) € P, for somev € V. Thus, we haver,(f) <r f,
sincepr, is partially computable, anfl e domfr,). Hence,f € Ife\g(P\,).

(2) Fix f e [(V.E)]le D, Pv. If f(0) = 1, then we can show the desired condition
asin (1). Iff is of the formf = 0~g, we havein.(g(n),0) € ¥ ve)Py sinceg €
[(V.E)]. Hence,Vveve)Py <1 [(V. E)] @D, Pv. To seeDeg([(V. E)] & P, Pv) <}
V.5 Py, we inductively define a partial computable functioailk :C (V x N) —

VY as follows. Setralk(()) = (), and fixe = o=="((u, m), (v, n)) € (VxN)<¥, Assume
thatwalk(o~) has been already defined. Thealk(o) is defined as follows.

walk(o™)(v) ifv#u,

walk(oc™""((u,m), (v, n))) = {walk(O'_) otherwise

The notationwalk has already been introduced in Definition 45 with a slightly
different definition, but these two notions are essentially equivalent. Therefore, we
may use the same notation.

For anyf € Ve Py, if pr(f) is total for somer € V, then the desired condition
follows as in (1). Otherwisenc(f) = oo, i.e., there are infinitely mang € N such
that (f(n + 1)) # (f(N))o. In this casewalk(f) = Ugnwalk(f | ) is an infinite
path through the graph/(E). In other words, the conditiofi € ¥,y Py ensures
thatpr,(f) is total and belongs tB, for somev € V, or otherwisevalk(f) is total and
belongs to [V, E)]. Consequentlyf € E/)e\g([(\/, E)le P, PV), sincepr, andwalk
are partial computable. |

Proposition 68. Let B Pg, P, Py, forve V, beH‘l’ subsets oNY, uniformly.

1. Ve ey Pv = Yy gy Py for any well-founded tree T N<N,

2' POGBP]. E% vVE(Vl,El) I:)V E% vVE(Vl,El) PV! Where\i = {8’ 0, 1}1 El = {(89 O)’ (8’ 1)}1
and B, = 0.

3. PovP; =] Viesgz) Pv =1 Viewe)Pyw, Where ¥ = {£,0,1,00,10}, E; =
{(,0),(e,1),(0,01), (1, 10)}, P, = 0, Po; = P1, and Rg = Po.

4. pa* =1 Ve, e,y P for every ac O, where recall the definition of ® and T,
in Definition 61 and the notation below Proposition 63.

5. [Po v P1l%, =1 Vieoion?) Pr-

6. [Po Vv P.I3.,, =} Vieqrs) Pvs where S= {(n,n+ 1) : n € N}; Pa, = Py and

LCM
Poni1 = P1 for any ne N,

7. [PV PI3., =1 [Vnew Pliiem =1 Vieqrs) P-
8. Deg(@veN Pv) Ei [[\/VEN Pv]]CL E% VVE(N,NZ) Pv Ei [ch» ]veN Pv.

Proof. (1) By Definition,V/, Py € ¥,P,. On the other hand, arfye V¥ gm)Pv can
pass at most finitely many vertices sinde l£(T)) has no infinite path. In other words,
the set{(f(n))o : n € N} is finite. By Pigeon Hole Principle, there is a vertex T
such that {(n))o = v occurs for infinitely manyn € N. Then,pr,(f) must be infinite.
Thereforepr,(f) € [Tp,] = Py sincef € Con(Tp,)vev. Hence,f e VVE(T,E(T)) P,.

(2) The conditior\/ (v, g,) Pv <1 Po® P; follows from Proposition 67 (1). For any
f € Vie,e,) Py thereis < 2 such that{(n))o = i foranyn e N. Thus,i” f € Po®P;.
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The (1, 1)-equivalence Ovve(vl,a) Py and ¥ (v, g,) Py follows from the item (1) since
(V1, Ey) is finite.

(3) Clearly, Pgv,P1 C VVE(Vz,Ez) P,. Thus, by Proposition 54 (2)PqvP; 21
Ve, £ Pve FOr f € Vi, g,) P if I(F(0))ol = 1 then®(f) = f € PovaPy. |If
I(f(0))ol = 2, say f(0))o = (i, j), thend(f) = write(],pr;(f)) € PoviP1. Hence,
PovPy <} Vye,.g,) Pv Via the computable functio®. The (1 1)-equivalence of
VVE%EH Py and ¥ (v, £,) Py follows from the item (1) since\, E;) is finite.

(4) It o is extendible to an element &f ., g1,y P, there is a unique € Ta
such thato can be represented @$., write(x [ i,cut(c;i)) for some sequence
cut(o) € (Tp)X. Conversely, ifr is extendible to an element 8f*, there is a unique
k € Ta such thatr can be represented ds( -, «* (i)~ cut(c; i) #)"«*(Ix| - 1) for some
sequenceut(o) e (Tp), wherex*(i) indicates the location of(i) in the treeTp. The
procedures to interchange these cuts are the desirgji@ductions.

(5) It is easy to see thaf (o1 012 Pv = PoveP1. Moreover,[Po v P1]% =]
Pov.P1 by Proposition 50.

(6) For eachr = 7((i, m), (j,n)) € (N x N)<¥, we inductively define a computable
functionZ(c) as follows. Ifi = j, then we seE(c) = E(r~{(i, m)))~(n). Otherwise, we
setZ(c) = E(r((i,m))) ¢4, j,m). Then,[Po v P1l.y, <i Vyeqs) Pv is witnessed by
=. Conversely, to seQVE(N’S) Py si [PoV Pl]]ECM, we again inductively define another
computable functio®* (o), for eachr € (NU{#}). Set=*(()) = (), fix o = o7 (j, k) €
(NU{#)<Y, and assume th&* (o) has been already defined. Foe v+2, we consider
the instructiomove(v, W) = ((v+1,0), (v+2,0),..., (W—2,0), (W-1,0)) € (VxN)¥-V-1
to move from the tapa, to the tape\,, in the dynamic tape model. W < v+2, then we
assume thaiove(v, w) is the empty string. Pyi(o’) = 2-count(o)+tail(o; 0), where
recall thatcount (o) = #{n < |o| : o(n) = §}. If j # §andk # §, then we defin&* (o) =
E*(o7) move(p(c™), p(o)) {(p(c), K)), whereo™ is the last strinée* (o) 2 E*((c*)").
Otherwise, we seE*(c) = (o). Then, we havé(E*(f;n))o, E*(f;n+ 1)) € S
foranyf € [Py Vv Pl]]ECM. It is easy to verify thaE*(f) VVE(NS) P,.

(7) The (1 1)-equivalence ofP v P]]ECM and[[V ey PllLem follows from Proposi-
tion 57 (2). Thus, the desired condition follows from (5).

(8) Clearly, [V yew Pvllct N Con(Tp, )ven = VVE(NNZ) Py,. Thus, the equivalence
[Vyen Pullee =1 Veqizz) Py =1 [V lyer Py follows from Proposition 50 and 58.

IS@(UWN P,) S% VVG(N,NZ) P, follows from Proposition 67 (1). We may assume that
®¢(()) = () for each indee € N. We inductively define a computable functibrwit-
nessingVVE(N,Nz) Py s% Deg(Uyen Pv). For eachr € NV ande € N, we also induc-
tively define two parameterscte(o) € N andrqg(o) € N U {—1}. Here,acte(o) will
represent the last stage at which &t strategy acts along, andrge(c) > 0 will indi-
cate that the-th strategyrequires attentionFirst we seticte(()) = 0 andrge(()) = -1
for eache € N. Inductively we assume th@i{o™), acte(o™), andrage(o™) is already
defined. Calculate = min{rg.(c") : e < |o] & rg.(c~) > 0}, and pick the least
such thatrqe(c") = r if suchr ande exist. In this case, we say thatacts If there is
no suche, we setl'(0) = I'(07), acte(o) = acte(o™), andrge(o) = rae(o™). If there
is suche, puto* = (De(0r)) TP Nacte@l e, Dg(0r) = (De(o | |acte(@))]) o*. Then
we setl'(0) = I'(o7) write(e o). Then, putrge(c) = —1 andacte(o) = |o]. For
eache' € N\ {g}, setacte(0) = acte(0™). Moreover, ife" < |o|, rqe(07) = -1,

45



@ Q\—@) v
1) ®\sta{ (2)  Start ®<>@
6 @9 ©
®\—>@ ®\:>@ @i@

Clojelon

3 start 4) Start

P+—0Q start start

Figure 1: The dynamical representations of disjunction operaticmﬂ[P(l/) Qlint (P® Q); (2) P~Q; (3)
[PV Q]]ECM[Z] (PvQ); (A [PV Q2 (Pv-Q); (5) [PV QI3 (6) DegfP), the Turing upward closure of
P.

and |®Og (0 | lacte(0)])] < |®e (o), then declarerge (o) = |o|. Otherwise, put
rge (o) = rae (o). Fix g € N, We claim thatde(g) act infinitely often whenever
®c(g) is total. Our construction ensures that only finitely maisyrequire attentions
alongg | sfor eachs € N. Therefore, foR={ee N : rqg.g [ S) > 0}, if ee R, then
the strategye acts by stage+#R, i.e.,acte(g ' S+#R) > s. Assume that act at stage
t € N. Then the algorithni’(g | t) writes the new informationg( I t)* of ®¢(g) on the
e-th tape, i.e.pre(I'(g I t)) = @e(g I t). Thus, eventually, we hayere(I'(g)) = ®e(9)-
For anyg € Deg(Uyey Pv), there is an index € N such thatde(g) € P, for some
v e N. Consequently(g) € Ve Pv- i

Proposition 69. Let (V, E) be a computable directed graph, afB,}.«y be a com-
putable sequence 6]‘{ subsets o2". Then we have the following.

1. Vieug Pvis 8.
2. vve(\/,E) Py is Hg.

Proof. Clearly, Con{p,)vev iS H‘i’. Moreover, the relatiok(f(n))o, (f(n+ 1))o) € E is
computable, uniformly irf € (NxN)Y andn € N. Thus, ¥ e Py is H‘l). The relation
pr,(f) e P isTIdinve Vandf € NV, since it is equivalent to the following formula.

(VneN)@meN) [pry(f I m)|>né& pr,(f I m)eTp,.
Therefore/ g Py is 3. O

5.5. Infinitary Disjunctions along ill-Founded Trees

To study & w,w)-degrees, the team-learning proof modelPois expected to be
useful. However, the model may be far frdﬂ‘f wheneverP is H‘l’. To break out
of the dilemma, the following minor modification of consistent dynamic disjunction
is helpful. For any tredp ¢ NN andi € N, we letTp™(i) denote the tredp U

UpeL, o~ (i), andTp~Tq denote the tre@p U U e, o~ Tq- In other wordsTp Tq is a
corresponding tree d®~ Q.
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Definition 70. Let V be a subtree dN<V, {P,},cv be a computable sequencemﬂ‘
subsets of 2, andT,. ¢ 2<¥ be the corresponding tree Bf. for eacho € V. Thenthe
concatenation ofP, },cy along the tree s defined as follows.

| (|_| Tm"<r(i)>] T,
7eV \i<|

We assume thaf,, is the full binary tree 2 for eacho ¢ V. Eacha € 2<V is uniquely
represented as

\ oeV P(r =

a = po (T(0))"p1 (r(1))" ... (7(Itl = 2))" pr-1~ (7 (Ir] = 1)) B,

wheretr € 2<% p(i) € T, for eachi < |7, andB € T,. For suchr andg, we
setwalk(e) = 7, andcut(a) = (00,01, - -, Pq-1.8). We also definetail®*(a) =
cut(a; lwalk(e)|) = 8. Hence, each € 2< is represented as

a= |_| cut(a; i) (walk(e;i)) |~ cut(e; walk(a))).
i<jwalk(a)|

Then the seW¥ .., P, is characterized as follows.
VoovPy = [{o € 27" walk(e) € V & (¥i < walk(e)l) cut(e;i) € Tuarai)] -

Remark. The notationwalk has already been introduced in Definition 45 and the
proof of Proposition 67. The meanings of the symbalk in Definitions 45 and 70

are formally diterent, but the ideas behind these definitions are the same. Thus, there
is no confusion in using the same notation.

Proposition 71. Let V be a computable subtree2', and{P,},.v be a computable
sequence dﬂg subsets o2". ThenV¥ o /P, is Hg subset o2". Moreover,¥ .. P, is
(1, 1)-equivalent to¥ ;<)) P in the sense of Definition 66.

Proof. Note thatvalk, cut, andtail®®® are total computable ai<V. Therefore, it is
1. Then,
() = |_| write(walk(a) I'i, cut(a;i))

i<lwalk(a)|

witnessesV ;v P, Zi VUE(VE(V)) P,.

Conversely, to se¥ .« P.- s} ¥ -<(ve(v) P, We inductively define a computable
functionZ. Setd(()). Fixa = o=~ ~((c, m), (r,n)) € (V x 2)<, and assume thdi(a")
has been already defined dtf= 7, then seE(a) = E(a™) " (n). If o # 1, sayr = o (i),
then we first calculate the least ldafaf(Z(a")) of Tp, extending=(e~). Then we set
Z(a) = leaf(E(e) (i, n). Note that, for eaclr = o~ ((r,n)) € (V x 2)<, we have
walk(ZE(a)) = (a(lal - 1)) = 7, andtail™*(E(a)) = Pryak@e)(@). Thus,Z witnesses
v(7'EVP(r S} v0'60/,E0/))P(r- ]
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Definition 72 (Hyperconcatenation)ForH(l’ setsP, Q ¢ 2", the hyperconcatenation
of P and Qis defined by

QVP =V 1 ,P, = {ge 2" : (Yn) walk(g [ n) € Tq & (¥n < |walk(g)l) cut(g;n) € Tp},
whereTq denotes the corresponding tree @randP, = P for anyo € Tq.

Remark. For everyg € QvP, if walk(g) is total, thenwalk(g) € Q, or otherwise
tail®*(g) € P. Therefore, the hyperconcatenati@wP in the sense of Definition 72
can be seen as a consistent conservative version of the hyperconcat@@a\t/i(ﬁ’]];0

2

in the sense of Definition 45.

To see the learnability feature of hyperconcatenation, we introduce new learnability
notions.

Definition 73. Let ¥ be a learner.

1. ¥ is confident(see also [37]) if lig¥(f | S) converges for every € N*.

2. ¥ is eventually-Popperiaif, for every f € N, Diim, w(f 19 (f) is total whenever
lims¥(f | s) converges.

3. ¥ is eventually-Lipschiti there is a constart € N such that, for ever§ € N,
|Diim w(rrg(f 11+ C) > [ for anyl € N, whenever ling'¥(f | s) converges.

Proposition 74.

1. For any set XY ¢ N", if X <g¢ Y, then X<5” Y via a team of eventually-
Popperian learners.

2. Foranyxdset Sc 2" and any set R N¥, if R<} S, then it can be witnessed by
an eventually-Popperian learner. Moreover, if SII$, then it can be witnessed
by a confident eventually-Popperian learner.

3. For anyI1? set Pc 2" and any set @ NV, if P < Q then P<3” Q by a team
of confident learners.

Proof. (1) Straightforward from the definition.

(2) Fix a computable increasing sequefitgic., of infinite computable trees such

thatS = (J;[Ti]. By padding, there is a computable functipn N? — N such that
®pen corresponds exactly tde, andp(e,n + 1) > p(e n) for any indexe andn.
Assume thaR <! S via a learnet?. We need to construct a eventually-Popperian
learnerA witnessingR <! S. At each stages, we define a value oA(o) for each
o € 25 For agiveno € 25 we computeg(oc) = min({i < s: (V71 €2 1t20 —
T € T} U {s}), and putA(o) = p(¥(0),q(0)). If f ¢ S, then limyg(f | n) diverges.
Therefore, lim A(f | n) diverges. On the other hand, fif e S, then lim,q(f | n)
converges to some. Then(I)“mnA(fm)(f) = q)p(limn‘l’(frn),q)(f) = (Dlimn‘l’(frn)(f) e R
ConsequentlyA is eventually-Popperian, and witnesses! S. If S is 19, then we
modify A by settingA(o-) to be a fixed index of a total computable functign- 0%,
whenevew- extends a leaf of . Then,A is also confident.

(3) If P <3¢ Q vian many computable function®;};i.,, then each learne¥; for
eachi < nguesses an index df;. Note that¥; does not change his mind. In particular,
Y¥; is confident. O
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Proposition 75. Let V be a computable subtreelf, and{P,} v be a computable
collection off19 subsets of"". Then[(V, E)] ® B ;< Po <5 Voev P by a team of

T =w

a confident learner and an eventually-Popperian learner.

Proof. We consider two learners: a learfiéywho guesses an index @fi—» 0" walk(a),
and a learne®; who guesses an index of — (1,walk(a)) tail“*(a). As f —
0~walk(f) is partial computable¥, does not change his mind. In particulsy is
confident. Onf € N, the learne®’; changes his mind whenevealk(f | n+ 1)
properly extendsialk(f [ n). If limnee Wa(f [ n) converges, themalk(f) must
be partial. Thustail®*(f) must be total. Ther(l, walk(f))~tail<“*(f) is total.
Therefore ¥, is eventually-Popperian. O

Proposition 76. Let Py, P1, Qp, Q1 be Hfl’ subsets oP" such that Q s}u Q. via an
eventually Lipschitz learner and thap R7 P1. Then, QvPy <, Qi vP;.

Proof. For any partial computable functiah, without loss of generality, we may as-
sume|®(c)| < |®(c7)| + 1 for any stringe € N<. For given indices and j, we
effectively construct a computable functidiy j) as follows. Putyyyi () = O,
and assume thaby,; j)(0~) has been already defined. Note that, eifetk(c)| =
walk(c™)| + 1 or [tail®*(o)| = [tail®“*(c7)| + 1 is satisfied. Here, the nota-
tion tail®* is used in referring to decomposir@ vP;. If the former is the case
(i.e., walk(o)| = |walk(c™)l + 1), then we extendail"*(@nyp( jy(0)) to leaf o
tail®(Dnypi j)(07)), the least leaf offp, extending it, and then, concatenate the bit
®;(walk(c); lwalk(o)| — c) to it. Formally, for a stringr € N with ®nypij(c7) =
77tail™ (Dpyp j(07)), we define

(Dhyp(i,j)(o') =71"leafo tailc‘“(d)hyp(i,j)(a-‘))"(d)i (walk(o); lwalk(o)| — c)).

Here, we fix some string € Tg, of lengthc, and we setj(o;k — ¢) = o(k) for
eachk < c. If ®j(walk(c); lwalk(o)l — c) is undefined, thedyyy j)(r) is undefined
for anyr 2 o. If the former is not the case (theltail®*(o)| = |tail®*(c7)| + 1),
then we concatenate the new valuesboftail®* (o)) to @nyp(.j)(0) if it belongs to
Tr,. Formally, if ®j(tail®*(07)) ¢ ®j(tail®* (o)) € Tp,, say®@j(tail®* (o)) =
®;(tail®* (o)) p, then we defin@yyyi ) () = Pnyp(,j(c") p. Otherwise, we set
Phryp(i.) (07) = Pryp(i.jy ()

Now assume thaPy <! P; via a computable functioe, andQp < Q; via an
eventually Lipschitz learneP with a constant. We construct a learnéy withessing
QovPo <} QuvP;. At first the learnerA guesses the indeX({)) = hyp(¥(()),€).
Fix o € N, and assume that(c~) has been already defined. ¥(walk(c)) #
Y(walk(c™)), thenA also changes his mind a4()) = hyp(¥(walk(c)),€). Assume
not. In the caséwalk(c)| > |walk(o™)|, if either jwalk(c)| < c or walk(o) ¢ Tg;“
is witnessed, the learn@rchanges his mind (this situation occurs only finitely often).
Otherwise, the learnet keeps his previous guess, i.&(g) = A(o). In this way, it is
not hard to see that we may construct a leam@itnessingQovPo <X Q,vP;. O

5.6. Nested Infinitary Disjunctions along ill-Founded Trees

In Part Il, we employ finite iterations of the hyperconcatenati@a show that some
(local) degree structures are not Brouwerian. Beyond this, it is important to see that
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Figure 2: An example nested tape model wieis a linear order of Iength 3012 is written onAg; (101)
is written onA%; (1001) is written on/\101 thenAg, A° A101 andA1011001 are available.

one can iterate the hyperconcatenatornlong any directed graph,(E), though the
iteration of v does not represented by our previous dynamic proof model. Therefore,
we introduce a new model callélde nested disjunction model

The nested tape modelAs an example, first we consider the nested disjunclios
VveToVTEH[T .] along the grapls = ({0, 1, 2},{(0, 1), (1, 2)}) with the initial vertex
& =0, whereT = {TOU{T2} e U {T(E,T}((T’TK(NQJ)Z is a given collection of subtrees of
N<¥. The nested tape model f@i consists of a collectiofAg} U {A%} U (AL}, e U
{AZ_} (o myeqry Of infinite tapes.

Generally, anested systertG, T, A) consists of a grap® = (V, E) with the initial
vertexe, a collectionT = {T)}yeyrequary<r Of (ill-founded) trees, and a collectioh =
{Ag} U {A} leveeam<r Of infinite tapes. A verifiet is only allowed to write a letter
on tapes which aravailable Assume that a wordr[v, o] is written onA}. for each
ve V ando € (NY)<N, Then, the availability conditions are given as follows.

o Ag andAf> are available at each stage.

o If a finite wordv = (V[0], V[1], ..., V[l]) is written on the tape\5, then the fol-
lowing tapes are available.
V(1] V(2] vii]
Apr[v Apr[V[l] pr[VOL.ON> " - ’Apr[V[ —1].pr[Vi-2].....pr[V{1].pr[VOL.OIII] *

Here, on the tapa, the verifier? is only allowed to write a path starting from the
initial vertexe within the graphG = (V, E).

Example 77. On the nested tape model ft, leta € ((I U {O}) x N)<¥ be the record
of a proof process of by some stage, i.epry(@) andpr, (@), foreachy,o) € | <N
represent the words written @, andAY., respectively. Herd,denotes/ x (N<) <M, |f
the letter 1 representing the vertex has been written ong (i.e.,prg(a) 2 (01)),
then the three tapes;, A°, andAj are available, wherp = pro(a).
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The verifier¥ succeedsf he eventually writes a correct solution on some tape
from A (i.e., some solutiorf € [T)] is eventually written omAY. for some ¢, o) €
V x (N<M)<N " or otherwise, some infinite path thoughis written onAy). For each
uv e Vand (o) € Vx N, the tuple(TY, AY, T, AL ety is calledthe
(o, v, u)-component ofG, T, A). The (v, u)-component of our nested system con-
sists of an infinite disjunction along an ill-founded tré&&,.rv [Ty ]. In other words,
on the ¢, v, u)-component of the systenmh,(A, T, G), the setAY. plays the role of the
declarationo, andAg . plays the role of the working tape for eache T}, as in the
dynamic tape model.

Definition 78. Fix a directed graplé = (V, E), and we denote¥ x (N<V)<N py |,
Assume that a collectiofT ) }v..)el Of subtrees o< are given. For € ((1 u{O}) x
N)<¥, we inductively definghe n-th available index along, p(a,n) € I, for each
n < |pry()|, as follows.

P(a.0) = (£.0).  Pla.i+1) = (prg(a)(i). (Pla, )1 (T pe.iy(2)))-

Then we define the set of all indices afailable tapes along by A(a) = {p(a,n) :
n < [prg(@)l}. The setS(e) of successors af is defined as follows:

S(@) ={(p.n) e (1 U{O}) xN: pe Aa) & pry(a) ne Tp}
U{(@,V) : (pro(@)(pra(e)l - 1),v) € E}.

Thenthe nested infinitary disjunctioW,</[T,] € ((I U {T}) X N)' of (T }wcyer is
defined by

W [To] = {f € (1 U{D}) x N)"' : (Yn e N) f(n) e S(f | n)}.
We can also defin®/,¢ [T,] = {f € Woa[To] : Iprg(f)] < oo}.

Proposition 79. Assume that G= (V, E) is a computable directed graph, afi@, },
is a computable collection of computable subtreedidf, where 1= V x (N<N)<N,
ThenW ¢ [T,] is H‘l’. Moreover, if G and T are subtrees a2<Y for eacho € |, then
W,a [To] is (1, 1)-equivalent to a‘Ig subset oP",

Proof. Note thate — A(e) is computable. Therefore, — S(a) is also computable.
Thus,W e [T,] is TI9.

Assume thaG = (V, E(V)) andT, are subtrees of?' for eacho € |. Fix new
symbols+, — which does not belong tt. To construct a'[‘f subset of {+, -} U 2}
which is (1 1)-equivalent toV [ T,], we inductively define a computable function
head : (+,-} U2)™ = Z. Fixa = o~ (W) € ({+,-} U 2N, Put head) = 0,
Put headf) = head¢™) + 1 if w = +; put head§) = head¢™) if w ¢ {+.—}; and put
head@) = head¢™) - 1ifw=—. If « = @™~ (+, +) and head{) = maxheadp) : 8 ¢
a} + 2, or if headg) = —1, then we say that is overflowing If @ has an overflowing
initial segmenp C a, then we also say thatis overflowing. Let Rule denote the set
of all non-overflowing stringa € ({+, =} U 2)< which has neithe¢+, —) nor(—, +) as
substrings. Note that Rule is computable.

We now inductively defingr,, p, andpr, for eacho € V. Putpr,(()), and
P = ()). Fixa = a~w € Rule. Assume thatr,(e~), andp{e~) have been already
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defined. Ifw € {+, -}, thenpry(a) = pro(e”) andpla) = P(a™). Assumew ¢ {+, —}.
Then, if headf) > maxhead@) : 8 ¢ «}, then we defingry(a) = pryla™) w.
Otherwise, sepry(a) = pry(e”). If pro(a) # pro(e), thenpla) = Pla™) ().
Otherwise, defing(@) € (2<M)V@) as follows.

(Pla™))(n), if n < headg);
(P(@))(n) = {(P(@7))(N)"w, if n= head§);
O, if h(a) < n < |pry(Q)l.

Then, for eachr € V, we definepr, (@) = (P(B))(lo) for the greatesB C « such
thato € p(B). Set Rulg = {f € ({+,-}J U2 : (Y\n € N) f | n € Rulg}. Note
that anyg € Rule, has no infinite{+, —}-sequence; otherwigp | sfor somes € N is
overflowing or has a substring, —) or (—, +), and henceg | smust go against Rule.
ThenP is defined as follows.

P={f eRule, : (YneN) (pry(f I n) eV & (Yo €l) pr (f I n) e T,)}.

Clearly, P is computably bounded, arﬁf{. It remains to show tha® zi WoalTol
We first inductively define a computable functidnwitnessingP z% W,e[T,]. Set
D)) = (), fix a = a=~w € Rule, and assume th&i(a~) has been already de-
fined. Ifw € {+.—}, then set®d(a) = ®(a”). Assumew ¢ {+,—}. If head@) >
maxheadpf) : B < a}, then we setd(a) = P(a”) ((O,w)). Otherwise, we set
®O(a) = O(a) {(((pra(a), P(a) T h(a)),w)). Itis not hard to checlP z} Wl [To]
via ®.

To proveP zi W« [T,], we first define a computable function héaéirstly put
head(() = 0. Fixa = a ((o,w)) € ((1 U {O}) UN). If o = O, then we set
head(a) = |pry(a)l. If o € I, then we set hedfly) = |(0)1]. Setd(()) = (), and
assume tha®(a~) has already been defined. Rut head(a) — head(a”). If d > 0O,
then®(e) = ®(a”)" +% “w. If d < 0, then®(a) = ®(a”)" —9 ~w. It is not hard to
checkP <} W, [T,] via ®. o

If TY only depends on € V, i.e., TY = Ty, then the nested systerh A, T,G) can
be viewed as the iteration of the hyperconcatenati@hong the grapl®. In this case,
we write W) Py for this notion.

Proposition 80. Let (V, E) be a computable directed graph, atfB,}..y be a com-
putable collection of1? subsets oN™. Then WPy <1 Vveve)Py.

Proof. We inductively define a computable functidnwhich witnesses the condition
Wievg) Py <1 Ve P Set®(()) = (). Fixa = e ~((U,i), (v, j)) € (V x N)™. As-
sume thatb(a~) has already been defined, ab(h ) is of the form®d(a™) = 8~((o, K))
for someg € (1 U {O}) x N)<¥, o € | U {0}, andk € N. If v = u, then we setb(a) =
Q@) (o, j)- If v # u, then we seth(a) = O(a”) (3, V), (V. ()17 pry(a)), j))-
Fix g € ¥y pgPyv. By induction, we can showr,;(g [ n+ 1) = pr,m(®(g |
n+ 1)), whereg(n) = (v[n], j) and®(g I n+ 1) = g{(o[n], j)). Then, ¢n]): =
(] 7)1 progn-(@(g I n+ 1)), by our definition ofd. Thereforeo[n] is available
wheneverr[n]~ is available. By inductiong[n] is available aig | n, for anyn € N.
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Moreover,prq (P(9)) = pryn(9) € Tyn = Toqn, andpry(®(g)) = walk(g). Here
walk(g) is inductively defined as follows. Set watk( 1) = (9(0))o. If (g(n+ 1))y =
(a(n)o, then walkg I n+ 1) = walk(@ ' n). If (g(n+ 1)) # (9(n))o, then walkg 1
n+ 1) = walk(g I n)"(g(n + 1)),. Note that(walk(g; n), walk(g; n+ 1)) € E for
eachn < |walk(g)| — 1. Thus,®(g;s) € S(®(g) | s) for anys € N. Consequently,
D(g) € Wyevg) Py O

If G = (V, E) is linearly ordered, then we have no choice of the next vertex at each
stage. In this case, to simplify our argument, we assume that{aglyy - iS given,
i.e., the ¢, 0)-th tapeA! does not depend on the vertexe V, and. Moreover, if
T, = T, for anyo, 7 € |, then we only requirg¢A, }v.e - We will use the simplest
depthn nested system. The systef, [T, A) is an N<"-nested systeih G = (n, S) and
T, = T, for anyo,r € I. This system is equivalent to theth iteration of ¥. Let
P'@ = p, andP"™1 = PyP"(™, We also write¥ P for |, P"™.

Proposition 81. Let G = (n+ 2,S), where n+2 = {Im e N : m < n+ 2} and
S ={(mm+1) : m< n}, and{P’}ye be a computable collection difg subsets of
N, Let T denote the corresponding tree of Ror each(v, o) € I. ThenW y, e PY.
is (1, 1)-equivalent to the following set:

— n+1
Q= Vot (Vrr(l)eti@ (- (Yo s PoO) o) ))
In particular, W en,s)P = P*™ for anyI1? subset ofv'".
Proof. Straightforward. O

Remark. We may introduce a transfinite iterati®?® of hyperconcatenation as in
Definition 61, or equivalently, as a nested infinitary disjunctiper, g, P along

the well-founded tred,. Recall from Corollary 48 that the hyperconcatenaton
induces dejf"[Hg]decg’[H‘j]. The induced piecewise computability concept becomes
thea-indexed version of dg¢/[I19]dec; [I19)].

Remark. We may introduce therfested nestédnodel, the ‘hested nested nested
model, and so on. LeQwWP be Wty E(To)) Pv, WhereP, = P for eachv € Tq. Then,
for example, the nested nested model can be introduced as the iterati@iafg any
directed graph\{, E). Therefore,inside the Muchnik degreef any H‘l) setP c 24,
one may iterate this procedure am'sted nested nested nested nested .” Actually
one may iterateriested nested nested nested nested .” along any directed graph,
for example, along the corresponding treePoflf we call it a “hypernestetimodel,
then, of course, we may introduce models which drgpernested hypernestednd
“hypernested hypernested hypernestadd so on. By iterating this notion along the
corresponding tree d?, we obtain a hyperhypernestédnodel. Iterating this proce-
dure, of course, we have the iteration af/per along the correspoding tree &%

In Part 11, we show that the concatenatidn-> P~P alwaysdecreases the Medvedev
degree, and the hyperconcatenatibr> PvP alwaysdecreases the ()-degree on
nontrivial H‘f subsets of 2, while these operations preserve the Muchnik degree. This
observation reveals to us that there are a fine structure, a deep hierarchy, and a morass
inside each Muchnik degree (or equivalently, each Turing upward closure)l'@f a
subset of 2.
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6. Weihrauch Degrees and Wadge Games

6.1. Weihrauch Degrees and Constructive Principles
6.1.1. Basic Notation

We can also give a characterization of our nonuniformly computable functions in
the context of the Weihrauch degrees which is a generalization of the Medvedev de-
grees. Then, our results could be translated into the results on the Weihrauch degrees.
A partial functionP :c N¥ — P(NY) is calleda multi-valued functionThenP is also
written asP : N¥' = N, One can think of each multi-valued functi®ras a collection
{P(X)}xedomp) Of mass problem®(x) € N, or all,-theorem(Yx € domP))(y) y €
P(X).

Definition 82 ([11-14]) LetP :c N = N¥ andQ :c N¥ = N be multi-valued
partial functions.

1. A single-valued functior :c N¥ — N¥ is said to bea realizer of Qif q(x) €
Q(x) for anyx € dom(@).

2. We say thaP is Weihrauch reducible to Quritten P <\ Q) if there are partial
computable functionsl, K such thatk(x, g o H(X)) € Q(x) for any x € dom(P)
and any realizeg of Q.

Remark. If we think of the value$?(x) andQ(x) asrelativized mass problems‘Rnd
Q*, thenP <w Q can be represented as the existence of partial computable functions
®,A :c NV — NV satisfying®* : Q*® — P* for any x € dom(Q), where®* is the
x-computable function mappinge N to ®(x & y).

Indeed, Brattka-Gherardi [13] introduced the following embedding of the Medvedev
degrees into the Weihrauch degrees. For any subsétBaire spacal’, we define
((P) : N = NY by ((P)(x) = P for anyx € N¥. Then, the map provides an embed-
ding of the Medvedev degrees into the Weihrauch degreesPig},Q if and only if
t(P) <w «(Q). See also Higuchi-Pauly [34].

Definition 83 ([11-14, 60, 82]) Let P, Q :c N¥ =3 N¥ pe partial multi-valued func-
tions.

- (Pairing)(P, Q)(x) = P(X) x Q(x).

- (Product) P x Q)((x.y)) = P(x) x Q(y).

. (Coproduct) P[] Q)(0, x) = {0} x P(x); and P [ Q)(1, X) = {1} X Q(X).

. (Composition) P o Q)(X) = U{P(®) : y € Q(X)}, wherex € dom o Q) if
x € dom(@Q) andQ(x) € dom(P).

5. (Parallelization)P((x; : i € N)) = [Ticr P(X).

Note that (2), (3) and (5) in Definition 83 are operations on the Weihrauch degrees
[12, 13, 60], while neither (1) nor (4) is an operation on the Weihrauch degrees.

Thus, the degrees offticulty of I19 sets has also studied under the namelaged
choicein the context of Weihrauch degrees. Rebe a computable metric space (for
definition, see Weihrauch [82]). Thefi_(X) denotes the hyperspace of closed subsets
of X with the upper Fell representatign (see [11]). For exampld is a computable
point in the hyperspacé_(N") (resp.A_(2')) if and only if P is aH‘{ subset of Baire
spaceN" (resp. of Cantor spacé’® The closed choice function represents a problem
to find an element of a given closed set (i.e., aﬂ%telative to some oracle).

A WNPF
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Definition 84 (Closed Choice [11-14])Let X be a computable metric space. Then,
theclosed choiceperation ofX is defined as the following partial function.

Cx CA- X)X A A
Here, domCx) = {Ae A_(X) : A+ 0}.

The Medvedev reducibility can be interpreted as a computability obrestant
multi-valued function.

Definition 85 (Reducibility Problem) Let P and Q be subsets af. Then, there-
ducibility problem of P to Qs defined as the following constant multi-valued function.

P/Q:cN'IINY, x—P domP/Q) =Q.

Clearly,P is Medvedev reducible tQ if and only if P/Q has a computable realizer,
that is,P/Q is Weihrauch reducible to the identityid: x — X.

6.1.2. Principles of Omniscience

Definition 86. A formula istameif it is well-formed formula constructed from symbols
{T,L,A,V,=,¥n, An}hey and one variable symb&i(n) with a number parameter e
N. For any tame formuldé andp € N¥, let A[V/p] denote the new formula obtained
from A by replacingV (n) with T if p(n) = 0 andV(n) with L if p(n) # 0. Then, let
TameForm denote the class of formulas of the fékrm— B for some tame formulas
AandB.

Example 87. The following formulas are contained in TameForm.

1. 2-LEM: T — 3AnV(n) v -3nV(n).

CZ0-LEM 1 T — dmYnV((m,ny) v ~ImvnV((m, n)).

. Z9-DNE : =—3dmvnV((m,ny) — Im¥nV((m, n)).

. £3-DNE : —-3kvmdnV ((k, m n)) — IKYmanV (k, m, n)).

. Z‘l’—LLPO : =@V (0, n)) A AnV((1,ny)) — =IAnV ({0, n)) v =aAnV ({1, ny).

. Zg—LLPO ; =(@MYNnV ({0, m, n)) A AMYnV ({1, m,n))) — =IAm¥nV ({0, m, n)) v
-AmvnV ({1, m, n).

o0k WN

Remark. The symbolsLEM, DNE, LLPO express thdaw of excluded middlethe
double negation eliminatigrand thelessor limited principle of omnisciendgee., de
Morgan’s law), respectively.

Definition 88. Given anyA — B € TameForm, we define a partial multivalued
functionFa_,g :C N =3 N¥ as follows:

dom(Fa—g) = {(p@qeN" : qe [AV/p]l}
Fa_gs(p®q) = [B[V/plI,

where[[-] : Form — P(INY) is a unique Medvedev interpretation in Definition 28 with
[T] = NY,
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One can easily see that eithese] = N or [-¢] = 0 holds for every arithmetical
sentence in any Medvedev interpretation. Therefore, for every princible— B in
Example 87, its domain i@ q e N : [A[V/p]] # 0}, that is, we need not to use the
information ong. This observation immediately implies the following proposition.

Proposition 89. The induced functiofs_,g from a principle A— B in Example
87 is Weihrauch equivalent to the following associated partial multi-valued function
A — B on Baire space.

0, if (In e N) p(n) =0,

0-LEM : N — 2, O-LEM(p) =

. - . (P {1, otherwise.

» 0,9), if (Yme N)(In> m) p(n) =0,

Y0-LEM : N 3 2x N, 0-LEM (

2 = ex 2LEMP) 21 (1 o if (vn> 9 p(n) # 0.
¥9-DNE :c N 3 I, ¥9-DNE(p) = {me N : (¥n > m) p(n) # 0}.
¥3-DNE :c N 3 N, ¥3-DNE(p) = {k : (Yme N)(@n > m) p(¢k, ny) = 0}.

o

, if (Yn € N) po(n) =0,
, if (YneN) py(n) =0.
, if (Ym)(3n > m) po(n) = 0,
, if (Ym)(3n > m) py(n) = 0.

0-LLPO :c (N2 32, 3%-LLPO(po, p1) 3

=

29-LLPO :c ()2 32,  £9-LLPO(po, p1) 3

/—/?r—H

=

Here, their domains are given as follows.

dom@E3-DNE) = {p € N'' : (3Ime N)(Vn > m) p(n) # O}.
dom@EJ-DNE) = {p € N : (Fk € N)(¥m € N)(dn > m) p((k, n)) = O}.
dom@E9-LLPO) = {(po, p1) € (W")? : (Fi < 2)(Vn e N) pi(n) = O}.

{

{

{

dom@E3-LLPO) = {(po, p1) € (W2 : (i < 2)(vm)(In > m) pi(n) = O}.

Remark. 1. The single-valued functioE?—LEM is usually calledhe limited prin-
ciple of omniscienc@_PO). Brattka-de Brecht-Pauly [11] showed that a single-
valued partial functionf :c N — N is (1, w)-computable if and only iff is
Weihrauch reducible to the closed choiCg for the discrete spadd. Here, in
their term, the (lw)-computability is calledhe computability with finitely many
mind changes

2. Zg—LLPO is Weihrauch equivalent to tHamp LLPO’ of LLPO in the sense of
Brattka-Gherardi-Marcone [14]. They also showed thiaPO’ is Weihrauch
equivalent to the Borzano-Weierstrass Theo®W T, for the discrete space
{0,1}. Brattka-Gherardi-Marcone [14] also pointed out that thih jump of
LLPO andLPO correspond t(EgH-LLPO (that is, the lessor limited principle of
omniscience foE2+1-formuIas) ancizg+l—LEM (the law of excluded middle for

50  -formulas), respectively.

3. The study of arithmetical hierarchy of semiclassical principles SuG-4£M,

¥0-LLPO, and 23-DNE was initiated by Akama-Berardi-Hayashi-Kohlenbach

[1]. In particular, on the study of the second level of arithmetical hierarchy for
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semiclassical principles, see also Berardi [4] and Toftdal [79]. The relationship
between the learnability arb-DNE has been also studied by Nakata-Hayashi
[57] in the context of a realizability interpretation of limit computable mathe-
matics.

Definition 90 (Unique variant [14]) Let P : X =3 Y be a multi-valued function. Then
UniqueP : X =3 Y is defined as the restriction & up to domUniqueP) = {x €
dom@P) : #P(X) = 1}.

Definition 91. We define the partial multi-valued functiaﬂ’g-LEM as follows.

0, if p € Tot;,

AQ-LEM :c N2 x NV — 2, AJ-LEM(, j, p) = )
2 2 (1.3 p) 1, otherwise.

Here, domfS-LEM) = {(i, j, p) € N2 x N'' : Tot; = N'' \ Tot;}, where Tot denotes the
set of all oraclesr € N such thatbe(a; n) converges for all inputs € N.

Proposition 92. AS-LEM is Weihrauch reducible toniqueZ3-LLPO.

Proof. To seeAJ-LEM <y UniqueX3-LLPO, given (. e, p) € N? x NV, define
H(ep, €1, p) to be a pair %o, x1), wherex(s) = 0 if and only if the computation
D¢ s+1(p) at stages+ 1 properly extend®d s(p) at the previous stage. Thencontains
infinitely many 0’s if and only ifp is contained in Tqf. Note that, whenevegg, e, p)

is contained in the domain m“g—LEM, H(ep, €1, p) is also contained in the domain of
UniqueX3-LLPO, since Tog, = N\ Totg,. ThereforeUniqueX3-LLPO o H(ep, €1, p) =
AJ-LEM(ep, €1, p). O

Theorem 93. Let f :c N* — N* be a single-valued partial function.

1. fis(1,2)-computable if and only if &y Z9-LEM.
2. fis (1, wl2)-computable if and only if &y AJ-LEM.
3. fis (1, w)-computable if and only if &y Z9-DNE.

Proof. (1) Let f be a (12)-computable function. By Theorem 26 (1), we hdve
deg[I19]. Then, there is &9 setS € N* such thatf = f | Sandf, = f | N\ Sis
computable. Put) = {p € N' : (In) p(n) = 0}. Note thatzg-LEM is the characteristic
function1y of U. By Zfl’ completeness dfl, we can find a Wadge reduction (indeed, a
computable functionH such thatls = 1y o H. PutK(x,i) = fi(x) for everyi < 2 and

x € N¥, Then, for every € dom(f),

K(x,0)= fo(x) if xeS,

K(x, 1y o H(X)) = K(x, 15(X)) = {K(X 1)=fi(x) ifx¢S.

Conversely, we havBJ-LEM = 1y € deg@[I19] sinceU is X2. This implies that
Ho(id,1yoH) e decﬁ[Hg] for every partial computable functiort$ andK.

(2) Let f be a (1w|2)-computable function. By Theorem 26 (2), we hdves
de@[AY]. Then, there argld setsPo, P; € N with Py = N*' \ P; such thatf | Po
andf | P; are computable. Then, we can find indiéeg such thatPy = Tot, and
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P, = Tot;. LetH be the function sending € N to (i, j, p). PutkK(x,i) = fi(x) for
everyi < 2 andx € N™. Itis not hard to see that(x, AY-LEM o H(x)) = f(X) for every
x € dom(f).

We show the converse implication. By Proposition 92, we hiaygy Ag-LEM <w
UniqueXd-LLPO. Assume thatf <y UniqueZ3-LLPO via partial computable func-
tionsK :c N x 2 — N¥ andH :c N — (NY)2, Let g be an index oftx.K(x, i)
for eachi < 2. We first computen(o,i) = #n < [Hi(o)| : Hi(o;n) = 0}, where
H(o) = (Hi(0))i<2. Then letc(o) be the least < 2 such thah(o, k) < h(c, 1) for any
k < 2. Let us consider a learnd : NN — (g}, defined by¥(o) = €. For any
x € dom(f), we haveH(x) e dom(Uniquezg—LLPO), and then limh(x ' n,i) = o
for just onei < 2. Then, limyc(x | n) also converges to sudh< 2. Moreover, for
any x € dom(f), Uniquezg-LLPO(H(x)) = {i} if and only if limyh(x I n,i) = oo.
We fix a realizerU of UniqueX9-LLPO, i.e., U(X) € UniqueZd-LLPO(x) for any
X € dom(Uniquezg-LLPO). Then, lim, ¢(x | n) = U o H(X) for anyx € dom(f) There-
fore, the limit lim, W(x | n) converges t@y.H(x, and Aindxy(X) < #g i < 2} < 2.
Thus, @iim,, w(xpn)(X) = Dey.p (X) = K(X, U o H(X)) = f(x) for anyx € dom(f). Hence,
f is (1, w|2)-computable.

3) CIearIy,Zg—DNE is Weihrauch equivalent to the closed choi@e for discrete
spaceN. Therefore, the desired condition follows from Brattka-Brecht-Pauly [11.

In particular, for instance? < Qif and only if P/Q <y foo--- o f, for some

—<w

fo, ..., fn <w Zg-LEM. One can apply this idea to any non-constructive principle.

Definition 94. Let © :c N¥ =3 N* be a partial multi-valued function. A partiedulti-
valued functiorF :c N* =3 N" is @-computabléf F is Weihrauch reducible t8. By
g, we denote the least class containingnalllti-valued®-computable functions and
closed under composition (in the sense of Definition 83 (4)). Then, for suBY@tsf
NY, we writeP <g Qif P/Q <w F for someF € Gp.

Theorem 95. Let P be allg subset of\"', and Q be any subset bf'.

1. P SIOJ Q |f and Only |f PSZg-LLPO Q

Proof. (1) If P <3 Q via two algorithms, we have a functioh : Q — P with
fe detf,[l‘[g] by Proposition 27 (3). Thenfo = f | Quandf; = f | N¥\ Qo
are computable for somﬁg setQy ¢ N¥. Sincef; is computable, we can extend
the domain offy to all) setQ* includingN"" \ Q. ThenQ; = Q* N f [P is I19
sinceP is Hg and f; is computable. It is easy to see th@j U Q; includesQ. Since
Qo and Qg are Hg, they are (computably) Wadge reducible to ﬂﬂ% complete set
U = {x e N¥: (3%n) x(n) = 0). That is, for evenyi < 2, there is a computable
functionsH; such thatlg, = 1y o H;. LetH be a computable function sendimg NN
to the pair Ho(X), H1(X)), and putk(x, i) = fi(x). We can easily see that

XeQ © 1g(¥) =1 & 1y(Hi(¥) =1 & ieZ%-LLPO(H(X).
Thus, for every realizeG :c N — 2 of £3-LLPO, we haveK(x,G o H(X)) =
fGoH(X)(X) e P.
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Assume that the reducibility problef®/Q is Weihrauch reducible tag—LLPO.
Then, there are computable functiads: NV — (NV)2 andK : NV x 2 — N such
thatK(x, G o H(x)) € P for any realizeiG of Zg-LLPO and any elememnt € Q. Then
K(x,i) € P for somei < 2, sinceG o H(x) < 2. Setdg;)(X) = K(x,i) for eachi < 2.
ThenP wa Qvia {(De(i)}i<2-

(2) Assume thaP <¢ Q. It suffices to show thalP/Q <w Zg—DNE. Note that the
condition®e(x) is total and belongs tB is I19, uniformly ine € N andx € N*. Thus,
there is a computable functidt : N — N satisfying thatH (x; e, n) = 0 for infinitely
manyn € N if and only if ®¢(x) is total and belongs t®. By our assumption, there
is e € N such thatH(x; e,n) = 0 for infinitely manyn € N, for anyx € Q. Therefore,
H(x) € dom(@E3-DNE) for any x € Q, and, for any realizeG of £3-DNE, G o H(x)
choose® < b such thatbe(x) € P. Then, for a computable functidf : N¥ x N — NY
mapping K, €) to ®e(X), we haveK(x, G o H(X)) = ®¢(X) € P.

If P/Q <w Zg-DNE, then there are computable functioHs: N — N and
K : N¥ x N - NY¥ such thatk(x, G o H(x)) € P for any realizeiG of Eg—DNE and
any elementx € Q. ThenK(x,i) € P for somei € N, sinceG o H(x) < m. Set
gy (X) = K(x, 1) for eachi € N. ThenP <{ Q via {®gj) i O

Theorem 96. Let P and Q bel‘[‘f subsets ofN". Then, P<gi Q if and only if
P <s0-11p0 Q.
Proof. We assume thd® sftj‘i Q via two truth-table functional$y and f;. Note that
f=1(P) isT19 wheneverf is total computable, anB is TI9. Then, forQ; = QN ©;(P),
the domainQ is covered byQo U Q;. By I12 completeness dff = {x : (¥n) x(n) # O},
for everyi < 2, we have a computable functiéf) such thatlg, = 1y o H;. As in the
proof of Theorem 95 (2), we sét : X — (Ho(X), H1(X)) andK : (x,i) — fi(x). Then,
itis not hard to see that the conditiéh<so., po Qis witnessed byd andK

If P/Q <w Z{-LLPO, then there are computable functiods: N*' — (N')? and
K : N x 2 —» N such thatK(x,G o H(x)) € P for any realize/G of £9-LLPO and
any elementx € Q. ThenK(x,i) € P for somei < 2, sinceG o H(X) < 2. For
U = {x: (¥n) x(n) # 0}, defineD; = Hi‘l[U], whereH(X) = (Ho(X), Hi(X)). The
computability ofH; implies thatD; is TIS. Definef; : D — N by fi(x) = K(x,i) on
D;i. SinceD; is H(l’, fi has a total computable extensidg;. Therefore P sftf{ Qvia
{De(i) li<2- o

Recall from Remark after Theorem 40 th@tz) is the reducibility relation induced
by the disjunction operatioft v Iso-

Theorem 97. Let P and Q be any subsetsidf. Then, P<yo Qifand only if P<so. gy
Q.

Proof. Assume that there are two computable functibhs N — N andK : N x
2xN — N¥ such thaK (x, GoH(x)) € Pforanyx € Qand any realize® : N — 2xN
of £3-LEM. Then theZ sentenceqv)6(v, X) is given by @v)(Yn > V)H(x; n) # 0. We
also defineA(X) = K(x, (0, 0)), andIy(X) = K(x, (1, v)), for anyx € NV, Fix x € Q. If
0(v, X) is true, then there is a realizérof Zg—LEM mappingH(x) to (1, v). Therefore,
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Figure 3: Constructive principles, and nonuniform computability.

(X)) = K(%,{1,v)) = K(X,GoH(X)) € P. If (YV)=6(v, X) is true, then there is a realizer
G of Zg-LEM mappingH(x) to (0,0). ThereforeA(x) = K(x,(0,0)) = K(x, GoH(X)) €
P. Hence, by Theorem 46, we obtdiR v Pl <1 Q.

Conversely, we assume thHd v P]]zg s% Q. Then, there are computable collection
A, {T'y}e of computable functions, and% sentencelvi(v, X), as in Theorem 46.
By analyzing the proof of Theorem 46, we may assume thatZ@]isentence has an
additional property that, if(v, X) is true andv < u, thené(u, x) is also true. For any
x € NY, put K(x,(0,n)) = A(X) for eachn € N, andK(x, (1,v)) = I'\(X). From the
Zg sentencévd(v, X), we can easily construct a computable function N¥ — NY
satisfying that(v, x) is true if and only ifH(x;n) # 0 for anyn > v. Fix x € Q. If
Avl(v, X) is true, then any realiz&s of Zg-LEM mapsH(x) to some (1v) witnessing
0(v, X). Then,K(x,G o H(X)) = I'\(X) € P. If Yv=6(v, X) is true, then any realiz&s of
Zg—LEM mapsH(x) to (0, s) for somes € N. Then,K(x,G o H(X)) = A(X) € P. ]

Corollary 98. Let P and Q be subsets bf', where P isl‘[g. Then, P<S® Q if and
only if P <so. gy Q.

Proof. By Proposition 27 (2) and Theorem 97. O

6.2. Duality between Dynamic Operations and Nonconstructive Principles
We now interpret our results in Section 4 in context of the Weihrauch degrees.

Definition 99 ([14, 48]). LetF,G :c N¥ = N" be any multi-valued functions. Then,
FxG=max,(F oG :F<wF & G* <w G}. |

If multi-valued functionsC, D :c N*' =3 N* satisfy the condition
DoE<wF < E<ywCxF

for any multi-valued function€, F :c N = N, then we may think oD as the
inverseof C. One could think of our disjunction operators as inverse operators of
various constructive principles.
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Definition 100. Fix x € NV,

Lv(X)={ye WU{)"' :#neN:y(n) =4 <1& tail(y) = x}.
2. V(X)) ={ye (2xN): 3i < 2) pri(y) = X & mc(y) < oo}.

3. Voo(X) = {ye @x N) : (Ji < 2) pri(y) = x}.

4. degr(X) = {y e N : x <7 ).

Then-th iteration ofv (v,, andv,,) is denoted by ™ (vff) andv(o[])). Here, recall
from Remark below Definition 34 that the symhbis supposed to be updated each
time. For instancey@ refers to two special symbolg andt, and therv((x) can be
identified with the set of all sequencgsuch thaty contains at most many#f’s and
tail(y) = x. More precisely, given a partial multi-valued functi&n every element
of vV o E(x) is of the formaifioat . . . fonfly with y € E(X). Thus,v™ o Z2-LEM"(x)
has a computable realizer, and indee) o E has a computable realizer for every
E <w EE—LEM“(X). We will see more general results in Proposition 101.

A multi-valued functionP :c N* = NV is Popperianif there is a computable
functionr :c N"xN" — N" satisfying=9-LEMor(X,y) = 1p(y), for anyx € dom(P)
andy € N, wherelp denotes the characteristic function®(x). In other wordsP
is Popperian if and only if the conditione P(x) is I1%, uniformly in x € dom(P) and
y € N¥, Every Popperian multi-valued function is clearly Weihrauch reducible to the
closed choice,yr of Baire spacél”.

Proposition 101. Let E, F : N' =3 N pbe any multi-valued functions.

1. vV o E <y F ifand only if E<y Z%-LEM" x F.

2. v o E <y F if and only if E <y UniqueZ3-LLPO, % F.

3. vo E <y F ifand only if E<y Z3-DNE x F, wherev = Jnq v.
Moreover, if E is Popperian, then we also have the following conditions.

4. v o E <y Fifand only if E<y 29-LLPO, * F.

5. v 0 v o E <y F if and only if E<w (£3)2-LLPO, * F.

6. deg; o E <w F if and only if E<w Z3-DNE * F.

Proof. (1) Assume that there are partial computable functidnss N — N¥ and
K :c N x N¥ — NY such tha (x, f o H(X)) € v{" o E(x) for anyx € domE™ o E)
and any realizef of F. Then, for any realizef of F, we have the following condition
for anyx € dom(E).

K o (id x f) o (id, H)(X) = K(x, f o H(x)) € v 0 E(X) = VAE(X).

Note thatH* = (id,H) : N — NY x N is computable, an#* = K o (id x
F) : N¥ x N = N¥ is Weihrauch reducible t&. As in the proof of Theorem 26,
we can construct an (fh)-computable functiory : Vﬁ E(x) — E(X), uniformly in
x € dom(E). Therefore, by Theorem 93, we have a functjofiy Eg-LCM” satisfying
vo f* o H*(X) € E(X) for any x € dom(E) and any realizef* of F*. Consequently,
E <w Z-LEM" x F.

Conversely, we assume tHat<y, S* o F* for someS* <y ZE-LEM” andF* <w F.
Then there are computable functidds, K* such thak*(x, H* o (X)) € F*(x) for any
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realizerf of F. From any single valued functioh : N — N, we can &ectively
obtain f*(x) = K*(x,H* o f(x)). Assume thaS* <y Z9-LEM" via H andK, and
E <w S* o F* via H andK. We consideH(x) = H o f* o H(X) and K¢(x,i) =
K(x, K(f* o H(X),i)). Then, we have the following condition for amye dom(E).

K¢ (%, Z9-LCM" 0 H¢ (X)) € E(X).

By calculatingH (x) = Ho f*oH(x), we can approximatéf; x) = E?-LEM”on(x)
uniformly in f. Therefore, we can construgt to showv(™ o E <\ F by the following
way. Set{(()) = (), fix o € N, and assume th&t} (c~) has been already defined. If
i(f;o) #i(f;07), we putF; (o) = F{(07) #K¢(o,i(f; 0)). OtherwiseF{ continues
the approximation oK (o, i(f; ). Itis not hard to see thadt;(x) € v o E(X) for
anyx € dom() and any realizef of F. Then,F} is Weihrauch reducible t<¢, Hy),
and(Ks, Hs) is Weihrauch reducible té. Moreover, these reductions do not depend
onf.Hencev™ o E <y F.

(2,3) By the same argument as in the proof of the item (1).

(4) Assume thakE :c N =3 NV is Popperian, and there are partial computable
functionsH :c N¥ — N andK :c NN — N such thaK (x, foH(x)) € vVoE(X)
foranyx € dom(v(;f) o E) and any realizef of F. Then, for any realizef of F, we
have the following condition for any € dom(E).

K o (id x f) o (id, H)(X) = K(x, f o H(x)) € v 0 E(x) = [V IXE(X).

As in the proof of Theorem 26, we can construct anl§-computable function
v [V],l1 E(x) — E(x), uniformly in x € dom(E). Here, note thaE(x) is aIl13(x)
subset of Baire space, uniformly i Therefore, by relativizing Theorem 95, we have
a functiony <w EQ-LLPOn satisfyingy o (idx f)o(id, H)(X) € E(X) for anyx € dom(E)
and any realizef of F. ConsequentlyE < X9-LLPO" x F.

(5,6) By the same argument as in the proof of the item (4). m|

6.3. Borel Measurability, and Backtrack Games

Berardi-Coquand-Hayashi [5] showed that-#dcktrack Tarski gamerovides a
semantics of positive arithmetical fragment of Limit Computable Mathematics (i.e.,
Ag—mathematic,sin the sense of Kleene realizability). A positive arithmetical formula
A is true in the Limit Realizability Interpretation if and only if th&player has a
computable winning strategy in thelcktracking gaméck(G(A)) associated with
the Tarski game foA (for notations, see [5]).

Meanwhile, Van Wesep [80] introducdzhcktrack gameo study the Wadge de-
grees, and Andretta [3] used this game to characterizagheeasurable functions
(also called the first level Borel functions) on Baire spae Motto Ros [52] and
Semmes [65] studied more general games to study the Baire hierarchy of Borel mea-
surable functions. The hierarchy of Borel measurable functions are deeply studied in
descriptive set theory [45]. We consider the following notions for a function Baire
spacel’ and a countable ordingl< w;.

1. f is aBorel function at levef (or a):gﬂf+1 function; see [41, 42, 53, 65]) if the

preimagef ~*(A) is TP, , for everyX? , setA C N'.
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2. fis ):g+1—measurable(or equivalently, oBaire classt; see for instance, Kechris

[45]) if the preimagef ~1(A) is x2,, for every open seA c N'.

Clearly, every levek Borel function on Baire spads’ is ):gﬂ-measurable. The
effective hierarchy of Borel measurable functions is studied by Brattka [10] and de-
veloped by many researchers (see [23, 46]). Evﬁ%;ctivezg+1 measurable function
maps each point to a point computable in theth Turing jumpx€) uniformly. There-
fore, the class of (@ectively)X%-measurable functions does not closed under composi-
tion, whereas the class of the legeBorel functions must be closed under composition.
Our results (Theorem 26) suggest that our notions of piecewise computability behave
more like dfective versions of the level Borel functions rather thanfiectively 22-
measurable functions. )

Recall from Definition 25 that dg¢I']# denotes the class dFpiecewisef func-
tions. If ¥ is the class of all partial continuous functions on Baire space, we abbreviate
it asdeq;[I']. Jayne-Rogers [43] proved thaeq;[ng] is exactly the class of the first
level Borel functions, and Semmes [65] showed thiﬂdedg[ﬂg] is exactly the class
of the second level Borel functions.

As shown in Theorem 26 and Proposition 27,;;1@2‘1)] is exactly the class of the
learnable functions, and the degree strucfa,réeq,'[ng] is exactly the degree structure
#7 induced from nonuniform computability. Actually, our dynamic models directly fit
into the backtrack and multitape game characterization of subclasses of Borel mea-
surable functions. We now introduce various games basetienVadge gamehe
backtrack gamgandthe multitape game

Definition 102 (see also Motto Ros [52] and Semmes [69])x a partial functionf
onN¥, and a se which has no intersection with. The setX may containpass,
backf, (move, i) for eachi € N. Then, we introduce various two-players gamesfon
as follows. At every roundh € N, Player | chooses an element € N, and Player Il
chooses an elemept € N U X.

I Xo X1 X2
I Yo Y1 Y2

A pair of infinite sequenceéx,y) € N x (N U X)! is calleda play. Fix a play
(X, Yy, wherex = (Xp)new @Ndy = (Yn)nen- Player | constructs an inpute dom(f) step
by step, and Player Il try to write a collect outpitx) on some tape, where there may
be infinitely many tape&ilicn. Here, Player Il can select a special symbol contained
in X at each step.

e (move, i) indicates the instruction to move the head onitkietapeA,;.
¢ pass indicates that Player Il writes no letter at this step.
e backy indicates the instruction to delete all words on the tape under the head.

Formally, we define the following notions. For each N, the i-th contenbf the
playy of Player Il is a functiorcontent; : (NUX)" — N which is inductively defined
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as follows. Setontent;(()) = () andtape({)) = 0. Assume thatontent;(y [ n) and
tape(y ' n) have been already defined for eachN.

contenti(y [ N)(yn) ifyp e N& i = tape(y ' n),
contenti(y I n+1)={( if y, = backff & i = tape(y | n),
content;(y ' n) otherwise.

i if yn = (move, i),

1) =
tape(y I n+1) {tape(yrn) otherwise.

Then, for each € N, we definecontent;(y) = limpey content;(y | n) for anyy €
(WU X)M. We consider the following speciallesfor this game.

Player Iviolates the basic rulé@ x ¢ dom(f).

Player llviolates the basic rul# eithery, € {pass, (move,i) : i € N} for almost
all n € N, ory, = back for infinitely manyn € N.

Player llviolates the rule nif y contains at leash manyback’s.

Player llviolate the rulex if y, € {(move,i) : i € N} for infinitely manyn € N.

We say that Player MWins(resp.is winnablg on the playx, y) € N¥ x (N uU X)Y of the
gameG(f, X) if either Player Il does not violate the basic rule, difg) = content;(y)
for the least € N with content;(y) being total (resp. for somee N), or Player |
violates the basic rule. We also say that Playewvilis (resp.is winnablg on the play
(x,y) of the gameG,(f, X) if Player Il wins (resp. is winnable) the gan® f, X) and
does not violate the rulm, and that Player Wins(resp.is winnablg the games..(f, X)
if Player Il wins (resp. is winnable) the gan@® f, X) and does not violate the rule

A strategyof Player Il is a functiony : N<¥ — (N u X)<V such thaty(c)| = |o| for
eacho € w*¥, andy (o) C y(7) whenevelr C 7. A strategyy of Player Il iswinning
(resp.winnablg in the games if Player Il wins (resp. is winnable) the gar@on the
play (X, Une ¥(X [ n)) for anyx € N,

We write P, B, andM,, for {pass}, {backfl}, and{(move,i) : i < a}, respectively, for
eacha < w. Then, forS, T,U € {P, B, M, },<w, the unionSU T U U is denoted by5TU.

Remark. The gamess(f, P), G(f,PB), andG(f,PM,,) are essentially same #se
Wadge gamghe backtrack gamendthe multitape gameaespectively. See also Motto
Ros [52] and Semmes [65].

Let f be a partial function on Baire spatg'.

1. (Wadge [81])f is continuous if and only if Player Il has a winning strategy in
the games(f, P).

2. (Andretta [3])f is Ag if and only if Player Il has a winning strategy in the game
G(f,PB).

3. (Andretta, Semmes [64]) is Hg-piecewise continuous if and only if Player Il
has a winning strategy in the garééf, PM,,).

64



Theorem 103(Game representation).et f be a partial function on Baire spadé".

1. fis(1,1)-computable if and only if Player Il has a computable winning strategy

in the game Gf, P).

2. fis (1, m)-computable if and only if Player Il has a computable winning strategy

in the game G(f, PB).
3. fis(1, wim)-computable if and only if Player Il has a computable winning strat-
egy in the game Gf, PMy,).

4. fis (1, w)-computable if and only if Player Il has a computable winning strategy

in the game Gf, PB).
5. fis(m, 1)-computable if and only if Player Il has a computable winnable strat-
egy in the game &, PMy,).
6. f is (m, w)-computable if and only if Player Il has a computable winnable strat-
egy in the game (3, PBM,;)).
7. fis (w,1)-computable if and only if Player Il has a computable winnable strat-
egy in the game (&, PM,,).

Proof. (2,4) We need to construct a winning stratggyN<"" — (NU{pass, backf})<"'
from a given partial (lw)-computable functiorf :c NY¥ — N, Assume thatf is
(1, w)-computable via a learn&¥. We inductively define a strategy : N<' — (N U
{pass, backf})<"' and an auxiliary parametdacklog : NV — (N U {back#}})<". Set
U(()) = backlog({)) = (), and assume thai(o~) andbacklog(o~) have been already
defined. Then, defing(o) andbacklog(o) as follows:

() = Y(o~) pass if backlog(o™) = (),
YY) = y(o-) (backlog(e)(0))  if backlog(o™) ().

backlog(o™) "1 new®y(,) (o) if ¥(o) = ¥(o),

backlog(c) = {backlog(o-‘)hl”backﬁ”qmy(g)(0') if W(or) # ¥(o).

Here, recall the notationew®y (o) defined before Theorem 40. Note tiate
N (Ukw(x T K)(n) = backfl} = mcly(X) for any x € dom(f). It is easy to see that
is a computable winning strategy in the ga@®, PB).

Assume that a computable winning strategyin the gameG(f, PB) is given. We
consider the computable functigi{c) = contento(y*(c)). Then{n € N : y(x |
n+ 1) 2 y(x I n)}is finite, for anyx € dom(f), sincel o ¥(X | n) contains finitely
manybackf’s. Moreover,f(x) = limpy¥(x | n). Thus, by Proposition 3f is (1, w)-
computable.

(3) Assume thaf is (1, w| < w)-computable via a learn&f. We inductively define
a strategyy : N — (N U {pass, back#})<"' and an auxiliary paramet@acklog :
N — (N U {back#f})<N. Sety(()) = backlog(()) = (), and assume that(c")
andbacklog(o~) have been already defined. Then, defife) andbacklog(o) as
follows:

(o) = ¥(o) pass if backlog(c™) = (),
V= Y(o) (backlog(o)(0)) if backlog(o™) # (),

backlog(o) = backlog(o™) "1 (move, ¥(0)) new Oy, (o)
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Here, recall the notationew*®y (o) defined in the proof of Theorem 40 (2).
Note that{n € N : (Ux¢(X I K))(n) = backll} = {ne N : ¥(x | n+ 1) # ¥(x | n)} for
any x € dom(f). It is easy to see that is a computable winning strategy in the game
G(f, PMp). Moreover, since #ndxy(X) is finite,y(X) = [, ¥(X | n) contains fove, i)
for only finitely many ditferenti’s. Thereforeys does not violate the rule. Hencey
is a winning strategy in the gant&.(f, PMp,).

Assume that a computable winning strategyin the gameG..(f, PMp,) is given.
Let g(i) be an index of a partial computable functigm— content; o *(X) for each
i < m. Sincey* does not violate the rule, there is a uniqué < m such thatbgj =
content; o ¥*(X) is total, for anyx € dom(f). We inductively define a learndf. The
learnerV¥ first guesse¥({)) = &0). Set¥(o) = ¥(o~) when there is nd < msuch
that | Dy (0)] > |Deiy(07)l. Otherwise, for the least suéh< m, the learner guesses
¥(o) = €(i). Clearly, #¥(x [ n) : n € N} < mfor anyx € N¥. It is easy to
check that, for anyk € dom(f), lim,¥(x | n) converges tei) for the unique < m
ensuring the totality ofontent; o *(x), and, for such < m, we havedjm, wn)(X) =
content; o ¥*(X) = f(X). Consequentlyf is (1, w|m)-computable.

(5,7) For a given collectiofi®;}i; of partial computable functions, we can easily
construct a strategy : NV — (N U {pass, (move,i) : i € |}) ensuringcontent; o
w(X) = @i(x) for any x € N*'. Therefore,f is nonuniformly computable viéD;}ic;,
theny is winnable inG(f, PM,). Conversely, if a winnable strategy: N<V — (N U
{pass, (move,i) : i € I}) of the game5(f, PM,) is given. Then we consider the partial
computable functiofi; computinglj(X) = content; o y(X) for anyx € N, It is easy
to see thaff is nonuniformly computable vifl'i}ie; .

(6) By combining the proofs of the items (3) and (4), it is not hard to see the
equivalence of thenj, w)-computability of f and the computable winnability in the
gameG(f, PBMy,). O

Remark. We may introduce more general multitape games based on our dynamic tape
models, and nested (nested nested, nested nested nested, etc.) tape models.
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