Inside the Muchnik Degrees II: The Degree Structures induced by the Arithmetical Hierarchy of Countably Continuous Functions

K. Higuchi
Department of Mathematics and Informatics, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, Japan
T. Kihara*
School of Information Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan

Abstract

It is known that infinitely many Medvedev degrees exist inside the Muchnik degree of any nontrivial Π_{1}^{0} subset of Cantor space. We shed light on the fine structures inside these Muchnik degrees related to learnability and piecewise computability. As for nonempty Π_{1}^{0} subsets of Cantor space, we show the existence of a finite- Δ_{2}^{0}-piecewise degree containing infinitely many finite- $\left(\Pi_{1}^{0}\right)_{2}$-piecewise degrees, and a finite- $\left(\Pi_{2}^{0}\right)_{2}-$ piecewise degree containing infinitely many finite- Δ_{2}^{0}-piecewise degrees (where $\left(\Pi_{n}^{0}\right)_{2}$ denotes the difference of two Π_{n}^{0} sets), whereas the greatest degrees in these three "finite- Γ-piecewise" degree structures coincide. Moreover, as for nonempty Π_{1}^{0} subsets of Cantor space, we also show that every nonzero finite- $\left(\Pi_{1}^{0}\right)_{2}$-piecewise degree includes infinitely many Medvedev (i.e., one-piecewise) degrees, every nonzero countable-Δ_{2}^{0}-piecewise degree includes infinitely many finite-piecewise degrees, every nonzero finite- $\left(\Pi_{2}^{0}\right)_{2}$-countable- Δ_{2}^{0}-piecewise degree includes infinitely many countable- Δ_{2}^{0}-piecewise degrees, and every nonzero Muchnik (i.e., countable- Π_{2}^{0}-piecewise) degree includes infinitely many finite- $\left(\Pi_{2}^{0}\right)_{2}$-countable- Δ_{2}^{0}-piecewise degrees. Indeed, we show that any nonzero Medvedev degree and nonzero countable- Δ_{2}^{0}-piecewise degree of a nonempty Π_{1}^{0} subset of Cantor space have the strong anticupping properties. Finally, we obtain an elementary difference between the Medvedev (Muchnik) degree structure and the finite- Γ-piecewise degree structure of all subsets of Baire space by showing that none of the finite- Γ-piecewise structures are Brouwerian, where Γ is any of the Wadge classes mentioned above.

Keywords: Π_{1}^{0} class, Medvedev degree, Borel measurable function, countable continuity
2010 MSC: 03D30, 03D78, 03E15, 26A21, 68Q32

[^0]
1. Summary

1.1. Introduction

This paper is a continuation of Higuchi-Kihara [29]. Our objective in this paper is to investigate the degree structures induced by intermediate notions between the Medvedev reduction (uniformly computable function) and Muchnik reduction (nonuniformly computable function). We will shed light on a hidden, but extremely deep, structure inside the Muchnik degree of each Π_{1}^{0} subset of Cantor space.

In 1963, Albert Muchnik [46] introduced the notion of Muchnik reduction as a partial function on Baire space that is decomposable into countably many computable functions. Such a reduction is also called a countably computable function, σ-computable function, or nonuniformly computable function. The notion of Muchnik reduction has been a powerful tool for clarifying the noncomputability structure of the Π_{1}^{0} subsets of Cantor space [57-59, 61]. Muchnik reductions have been classified in Part I [29] by introducing the notion of piecewise computability.

Remarkably, many descriptive set theorists have recently focused their attention on the concept of piecewise definability of functions on Polish spaces, in association with the Baire hierarchy of Borel measurable functions (see [43, 44, 55]). Roughly speaking, if $\boldsymbol{\Gamma}$ is a pointclass (in the Borel hierarchy) and $\boldsymbol{\Lambda}$ is a class of functions (in the Baire hierarchy), a function is said to be $\boldsymbol{\Gamma}$-piecewise $\boldsymbol{\Lambda}$ if it is decomposable into countably many $\boldsymbol{\Lambda}$-functions with $\boldsymbol{\Gamma}$ domains. If $\boldsymbol{\Gamma}$ is the class of all closed sets and $\boldsymbol{\Lambda}$ is the class of all continuous functions, it is simply called piecewise continuous (see for instance $[32,36,45,50]$). The notion of piecewise continuity is known to be equivalent to the Δ_{2}^{0}-measurability [32]. If $\boldsymbol{\Gamma}$ is the class of all sets and $\boldsymbol{\Lambda}$ is the class of all continuous functions, it is also called countably continuous [44] or σ-continuous [54]. Nikolai Luzin was the first to investigate the notion of countable-continuity, and today, many researchers have studied this concept, in particular, with an important dichotomy theorem (see [51, 64]).

Our concepts introduced in Part I [29], such as Δ_{2}^{0}-piecewise computability, are indeed the lightface versions of piecewise definability. This notion is also known to be equivalent to the effective Δ_{2}^{0}-measurability [50]. See also [5, 19, 38] for more information on effective Borel measurability.

To gain a deeper understanding of piecewise definability, we investigate the Medvedevand Muchnik-like degree structures induced by piecewise computable notions. This also helps us to understand the notion of relative learnability since we have observed a close relationship between lightface piecewise definability and algorithmic learning in Part I [29].

In Part II, we restrict our attention to the local substructures consisting of the degrees of all Π_{1}^{0} subsets of Cantor space. This indicates that we consider the relative piecewise computably (or learnably) solvability of computably-refutable problems. When a scientist attempts to verify a statement P, his verification will be algorithmically refuted whenever it is incorrect. This falsifiability principle holds only when P is represented as a Π_{1}^{0} subset of a space. Therefore, the restriction to the Π_{1}^{0} sets can be regarded as an analogy of Popperian learning [11] because of the falsifiability principle.

From this perspective, the universe of the Π_{1}^{0} sets is expected to be a good playground of Learning Theory [31].

The restriction to the Π_{1}^{0} subsets of Cantor space $2^{\mathbb{N}}$ is also motivated by several other arguments. First, many mathematical problems can be represented as Π_{1}^{0} subsets of certain topological spaces (see Cenzer and Remmel [15]). The Π_{1}^{0} sets in such spaces have become important notions in many branches of Computability Theory, such as Recursive Mathematics [23], Reverse Mathematics [60], Computable Analysis [65], Effective Randomness [21, 48], and Effective Descriptive Set Theory [42]. For these reasons, degree structures on Π_{1}^{0} subsets of Cantor space $2^{\mathbb{N}}$ are widely studied from the viewpoint of Computability Theory and Reverse Mathematics.

In particular, many theorems have been proposed on the algebraic structure of the Medvedev degrees of Π_{1}^{0} subsets of Cantor space, such as density [13], embeddability of distributive lattices [3], join-reducibility [2], meet-irreducibility [1], noncuppability [12], non-Brouwerian property [28], decidability [16], and undecidability [56] (see also [30,57-59, 61] for other properties on the Medvedev and Muchnik degree structures). The Π_{1}^{0} sets have also been a key notion (under the name of closed choice) in the study of the structure of the Weihrauch degrees, which is an extension of the Medvedev degrees (see [6-8]).

Among other results, Cenzer and Hinman [13] showed that the Medvedev degrees of the Π_{1}^{0} subsets of Cantor space are dense, and Simpson [57] questioned whether the Muchnik degrees of Π_{1}^{0} subsets of Cantor space are also dense. However, this question remains unanswered. We have limited knowledge of the Muchnik degree structure of the Π_{1}^{0} sets because the Muchnik reductions are very difficult to control. What we know is that as shown by Simpson-Slaman [62] and Cole-Simpson [17], there are infinitely many Medvedev degrees in the Muchnik degree of any nontrivial Π_{1}^{0} subsets of Cantor space. Now, it is necessary to clarify the internal structure of the Muchnik degrees. In Part II, we apply the disjunction operations introduced in Part I [29] to understand the inner structures of the Muchnik degrees induced by various notions of piecewise computability.

1.2. Results

In Part I [29], the notions of piecewise computability and the induced degree structures are introduced. Our objective in Part II is to study the interaction among the structures $\mathcal{P} / \mathcal{F}$ of \mathcal{F}-degrees of nonempty Π_{1}^{0} subsets of Cantor space for notions \mathcal{F} of piecewise computability listed as follows.

- $\operatorname{dec}_{p}^{<\omega}\left[\Pi_{1}^{0}\right]$ also denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ that are decomposable into finitely many partial computable functions with Π_{1}^{0} domains.
- $\operatorname{dec}_{d}^{<\omega}\left[\Pi_{1}^{0}\right]$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ that are decomposable into finitely many partial computable functions with $\left(\Pi_{1}^{0}\right)_{2}$ domains, where a $\left(\Pi_{1}^{0}\right)_{2}$ set is the difference of two Π_{1}^{0} sets.
- $\operatorname{dec}_{\mathrm{p}}^{<\omega}\left[\Delta_{2}^{0}\right]$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ that are decomposable into finitely many partial computable functions with Δ_{2}^{0} domains.
- $\operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Delta_{2}^{0}\right]$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ that are decomposable into countably many partial computable functions with Δ_{2}^{0} domains.
- $\operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{2}^{0}\right]$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ that are decomposable into finitely many partial computable functions with $\left(\Pi_{2}^{0}\right)_{2}$ domains.
- $\operatorname{dec}_{d}^{<\omega}\left[\Pi_{2}^{0}\right] \operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Delta_{2}^{0}\right]$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ that are decomposable into finitely many partial Δ_{2}^{0}-piecewise computable functions with $\left(\Pi_{2}^{0}\right)_{2}$ domains, where a $\left(\Pi_{2}^{0}\right)_{2}$ set is the difference of two Π_{2}^{0} sets.
- $\operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Pi_{2}^{0}\right]$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ that are decomposable into countably many partial computable functions with Π_{2}^{0} domains.

The relationship among these notions is summarized as follows.

$$
\mathcal{P} / \operatorname{dec}_{\mathrm{p}}^{<\omega}\left[\Pi_{1}^{0}\right]-\mathcal{P} / \operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{1}^{0}\right]-\mathcal{P} / \operatorname{dec}_{\mathrm{p}}^{<\omega}\left[\Delta_{2}^{0}\right] \quad \mathcal{P} / \operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{2}^{0}\right]<\mathcal{P} / \operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Delta_{2}^{0}\right]>\mathcal{P} / \operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{2}^{0}\right] \operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Delta_{2}^{0}\right]-\mathcal{P} / \operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Pi_{2}^{0}\right]
$$

In Part I [29], we observed that these degree structure are exactly those induced by the ($\alpha, \beta \mid \gamma$)-computability.

- $\left[\mathfrak{C}_{T}\right]_{1}^{1}$ denotes the set of all partial computable functions on $\mathbb{N}^{\mathbb{N}}$.
- $\left[\mathfrak{C}_{T}\right]_{<\omega}^{1}$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ learnable with bounded mind changes.
- $\left[\mathfrak{C}_{T}\right]_{\omega \mid<\omega}^{1}$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ learnable with bounded errors.
- $\left[\mathfrak{C}_{T}\right]_{\omega}^{1}$ denotes the set of all partial learnable functions on $\mathbb{N}^{\mathbb{N}}$.
- $\left[\mathfrak{C}_{T}\right]_{1}^{<\omega}$ denotes the set of all partial k-wise computable functions on $\mathbb{N}^{\mathbb{N}}$ for some $k \in \mathbb{N}$.
- $\left[\mathfrak{C}_{T}\right]_{\omega}^{<\omega}$ denotes the set of all partial functions on $\mathbb{N}^{\mathbb{N}}$ learnable by a team.
- $\left[\mathfrak{C}_{T}\right]_{1}^{\omega}$ denotes the set of all partial nonuniformly computable functions on $\mathbb{N}^{\mathbb{N}}$ (i.e., all functions f satisfying $f(x) \leq_{T} x$ for any $x \in \operatorname{dom}(f)$).

As in Part I [29], each degree structure $\mathcal{P} /\left[\mathfrak{C}_{T}\right]_{\beta \mid \gamma}^{\alpha}$ is abbreviated as $\mathcal{P}_{\beta \mid \gamma}^{\alpha}$. Then, we have the following relationship among these notions.

$$
\mathcal{P}_{1}^{1}-\mathcal{P}_{<\omega}^{1}-\mathcal{P}_{\omega \mid<\omega}^{1}<\mathcal{P}_{1}^{<\omega}>\mathcal{P}_{\omega}^{1}>\mathcal{P}_{\omega}^{<\omega}-\mathcal{P}_{1}^{\omega}
$$

We will see that all of the above inclusions are proper. Beyond the properness of these inclusions, there are four LEVELs signifying the differences between two classes \mathfrak{F} and \mathfrak{G} of partial functions on $\mathbb{N}^{\mathbb{N}}$ (lying between $\left[\mathfrak{C}_{T}\right]_{1}^{1}$ and $\left[\mathfrak{C}_{T}\right]_{1}^{\omega}$) listed as follows.

1. There is a function $\Gamma \in \mathfrak{F} \backslash \mathfrak{G}$.
2. There are sets $X, Y \subseteq \mathbb{N}^{\mathbb{N}}$ such that \mathfrak{F} has a function $\Gamma_{\mathfrak{F}}: X \rightarrow Y$, but \mathfrak{G} has no function $\Gamma_{\mathfrak{6}}: X \rightarrow Y$.
3. There are Π_{1}^{0} sets $X, Y \subseteq 2^{\mathbb{N}}$ such that \mathfrak{F} has a function $\Gamma_{\mathscr{F}}: X \rightarrow Y$, but $\Gamma_{\mathfrak{G}}$ has no function $\Gamma_{\mathfrak{F}}: X \rightarrow Y$.
4. For every special Π_{1}^{0} set $Y \subseteq 2^{\mathbb{N}}$, there is a Π_{1}^{0} set $X \subseteq 2^{\mathbb{N}}$ such that \mathscr{F} has a function $\Gamma_{\tilde{F}}: X \rightarrow Y$, but ${ }^{5}$ has no function $\Gamma_{\mathfrak{F}}: X \rightarrow Y$.

The LEVEL 1 separation just represents $\mathfrak{F} \nsubseteq(\mathfrak{F}$. Clearly, $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$. Note that the LEVEL 2 separation holds for no Σ_{1}^{0} sets $X, Y \subseteq \mathbb{N}^{\mathbb{N}}$, since Π_{1}^{0} is the first level in the arithmetical hierarchy which can define a nonempty set $S \subseteq \mathbb{N}^{\mathbb{N}}$ without computable element. Such a Π_{1}^{0} set is called special, i.e., a subset of Baire space is special if it is nonempty and contains no computable points. As mentioned before, Simpson-Slaman [62] (see Cole-Simpson [17]) showed that the LEVEL 4 separation holds between $\left[\mathfrak{C}_{T}\right]_{1}^{1}$ and $\left[\mathfrak{C}_{T}\right]_{1}^{\omega}$, that is, every nonzero Muchnik degree $\mathbf{a} \in \mathcal{P}_{1}^{\omega}$ contains infinitely many Medvedev degrees $\mathbf{b} \in \mathcal{P}_{1}^{1}$.

In section 2, we use the consistent two-tape disjunction operations on Π_{1}^{0} subsets of Cantor space introduced in Part I [29] to obtain LEVEL 3 separation results.

- ∇_{n} is the disjunction operation on Π_{1}^{0} sets induced by the two-tape Brouwer-Heyting-Kolmogorov-interpretation with mind-changes $<n$.
- ∇_{ω} is the disjunction operation on Π_{1}^{0} sets induced by the two-tape Brouwer-Heyting-Kolmogorov-interpretation with finitely many mind-changes.
- ∇_{∞} is the disjunction operation on Π_{1}^{0} sets induced by the two-tape Brouwer-Heyting-Kolmogorov-interpretation permitting unbounded mind-changes.

By using these operations, we obtain the LEVEL 3 separation results for $\left[\mathfrak{C}_{T}\right]_{1}^{1}$, $\left[\mathfrak{C}_{T}\right]_{<\omega}^{1},\left[\mathfrak{C}_{T}\right]_{\omega \mid<\omega}^{1}$, and $\left[\mathfrak{C}_{T}\right]_{1}^{<\omega}$. We show that there exist Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that all of the following conditions are satisfied.

1. (a) There is no computable function $\Gamma_{1}^{1}: P \nabla_{2} Q \rightarrow P \nabla_{1} Q$;
(b) There is a function $\Gamma_{<\omega}^{1}: P \nabla_{2} Q \rightarrow P \nabla_{1} Q$ learnable with bounded mindchanges.
2. (a) There is no function $\Gamma_{<\omega}^{1}: P \nabla_{\omega} Q \rightarrow P \nabla_{1} Q$ learnable with bounded mindchanges;
(b) There is a function $\Gamma_{\omega \mid<\omega}^{1}: P \nabla_{\omega} Q \rightarrow P \nabla_{1} Q$ learnable with bounded errors.
3. (a) There is no function $\Gamma_{\omega \mid<\omega}^{1}: P \nabla_{\infty} Q \rightarrow P \nabla_{1} Q$ learnable with bounded errors;
(b) There is a 2-wise computable function $\Gamma_{1}^{<\omega}: P \nabla_{\infty} Q \rightarrow P \nabla_{1} Q$.

The above conditions also suggest how does degrees of difficulty of our disjunction operations behave.

In contrast to the above results, in section 3, we will see that the hierarchy between $\left[\mathfrak{C}_{T}\right]_{<\omega}^{1}$ and $\left[\mathfrak{C}_{T}\right]_{1}^{<\omega}$ collapses for homogeneous Π_{1}^{0} subsets of Cantor space $2^{\mathbb{N}}$. In other words, the LEVEL 4 separations fail for $\left[\mathfrak{C}_{T}\right]_{<\omega}^{1},\left[\mathfrak{C}_{T}\right]_{\omega \mid<\omega}^{1}$, and $\left[\mathfrak{C}_{T}\right]_{1}^{<\omega}$. For other classes, is the LEVEL 4 separation successful?

To archive the LEVEL 4 separations, we use dynamic disjunction operations developed in Part I [29].

1. The concatenation $P \mapsto P^{\wedge} P$ of two Π_{1}^{0} sets $P \subseteq 2^{\mathbb{N}}$ indicates the mass problem "solve P by a learning proof process with mind-change-bound 2 ".
2. Every iterated concatenation along a well-founded tree indicates a learning proof process with an ordinal bounded mind changes.
3. The hyperconcatenation $P \mapsto P \vee P$ of two Π_{1}^{0} sets $P \subseteq 2^{\mathbb{N}}$ is defined as the iterated concatenation of P along the corresponding ill-founded tree of P.

These operations turn out to be extremely useful to establish the LEVEL 4 separation results. Some of these results will be proved by applying priority argument inside some learning proof model of P.

1. The LEVEL 4 separation succeeds for $\left[\mathfrak{C}_{T}\right]_{1}^{1}$ and $\left[\mathfrak{C}_{T}\right]_{<\omega}^{1}$, via the map $P \mapsto P^{\wedge} P$.
2. The LEVEL 4 separation succeeds for $\left[\mathfrak{C}_{T}\right]_{1}^{<\omega}$ and $\left[\mathfrak{C}_{T}\right]_{\omega}^{1}$, via the map

$$
P \mapsto \bigcup_{m \in \mathbb{N}}\left(P^{\wedge} P^{\wedge} \ldots(m \text { times }) \ldots P^{\wedge} P\right)
$$

3. The LEVEL 4 separation succeeds for $\left[\mathfrak{C}_{T}\right]_{\omega}^{1}$ and $\left[\mathfrak{C}_{T}\right]_{\omega}^{<\omega}$, via the map $P \mapsto P \vee P$.
4. The LEVEL 4 separation succeeds for $\left[\mathfrak{C}_{T}\right]_{\omega}^{<\omega}$ and $\left[\mathfrak{C}_{T}\right]_{1}^{\omega}$, via the map $P \mapsto$ $\widehat{\operatorname{Deg}}(P)$, where $\widehat{\operatorname{Deg}}(P)$ denotes the Turing upward closure of P.

The method that we use to show the first and the third items also implies that any nonzero $\mathbf{a} \in \mathcal{P}_{1}^{1}$ and $\mathbf{a} \in \mathcal{P}_{\omega}^{1}$ have the strong anticupping property, i.e., for every nonzero $\mathbf{a} \in \mathcal{P}$, there is a nonzero $\mathbf{b} \in \mathcal{P}$ below a such that $\mathbf{a} \leq \mathbf{b} \vee \mathbf{c}$ implies $\mathbf{a} \leq$ c. Indeed, these strong anticupping results are established via concatenation ${ }^{\wedge}$ and hyperconcatenation \mathbf{V}

1. $\mathcal{P}_{1}^{1} \vDash(\forall \mathbf{a}, \mathbf{c})\left(\mathbf{a} \leq\left(\mathbf{a}^{\sim} \mathbf{a}\right) \vee \mathbf{c} \rightarrow \mathbf{a} \leq \mathbf{c}\right)$.
2. $\mathcal{P}_{\omega}^{1} \vDash(\forall \mathbf{a}, \mathbf{c})(\mathbf{a} \leq(\mathbf{a} \mathbf{V}) \vee \mathbf{c} \rightarrow \mathbf{a} \leq \mathbf{c})$.

In section 5, we apply our results to sharpen Jockusch's theorem [33] and Simpson's Embedding Lemma [58]. Jockusch showed the following nonuniform computability result for DNR_{k}, the set of all k-valued diagonally noncomputable functions.

1. There is no (uniformly) computable function $\Gamma_{1}^{1}: \mathrm{DNR}_{3} \rightarrow \mathrm{DNR}_{2}$.
2. There is a nonuniformly computable function $\Gamma_{1}^{\omega}: \mathrm{DNR}_{3} \rightarrow \mathrm{DNR}_{2}$.

This result will be sharpened by using our learnability notions as follows.

1. There is no learnable function $\Gamma_{\omega}^{1}: \mathrm{DNR}_{3} \rightarrow \mathrm{DNR}_{2}$.
2. There is no k-wise computable function $\Gamma_{1}^{<\omega}: \mathrm{DNR}_{3} \rightarrow \mathrm{DNR}_{2}$ for $k \in \mathbb{N}$.
3. There is a (uniformly) computable function $\Gamma_{1}^{1}: \mathrm{DNR}_{3} \rightarrow \mathrm{DNR}_{2} \vee \mathrm{DNR}_{2}$. Hence, there is a function $\Gamma_{\omega}^{<\omega}: \mathrm{DNR}_{3} \rightarrow \mathrm{DNR}_{2}$ learnable by a team of two learners.

Finally, we employ concatenation and hyperconcatenation operations to show that neither $\mathcal{D}_{<\omega}^{1}$ nor $\mathcal{D}_{1}^{<\omega}$ nor $\mathcal{D}_{\omega}^{<\omega}$ are Brouwerian. Hence, these degree structures are not elementarily equivalent to the Medvedev (Muchnik) degree structure.

1.3. Notations and Conventions

For any sets X and Y, for convenience, we say that f is a function from X to Y (written $f: X \rightarrow Y$) if the domain $\operatorname{dom}(f)$ of f includes X, and the image of X under f is included in Y. We also use the notation $f: \subseteq X \rightarrow Y$ to denote that f is a partial function from X to Y, i.e., the image of $\operatorname{dom}(f) \cap X$ under f is included in Y.

For basic terminology in Computability Theory, see Soare [63]. For $\sigma \in \mathbb{N}^{<\mathbb{N}}$, we let $|\sigma|$ denote the length of σ. For $\sigma \in \mathbb{N}^{<\mathbb{N}}$ and $f \in \mathbb{N}^{<\mathbb{N}} \cup \mathbb{N}^{\mathbb{N}}$, we say that σ is an initial segment of f (denoted by $\sigma \subset f$) if $\sigma(n)=f(n)$ for each $n<|\sigma|$. Moreover, $f \upharpoonright n$ denotes the unique initial segment of f of length n. let σ^{-}denote an immediate predecessor node of σ, i.e. $\sigma^{-}=\sigma \upharpoonright(|\sigma|-1)$. We also define $[\sigma]=\left\{f \in \mathbb{N}^{\mathbb{N}}: f \supset \sigma\right\}$. A tree is a subset of $\mathbb{N}^{<\mathbb{N}}$ closed under taking initial segments. For any tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$, we also let $[T]$ be the set of all infinite paths of T, i.e., f belongs to [T] if $f \upharpoonright n$ belongs to T for each $n \in \mathbb{N}$. A node $\sigma \in T$ is extendible if $[T] \cap[\sigma] \neq \emptyset$. Let $T^{\text {ext }}$ denote the set of all extendible nodes of T. We say that $\sigma \in T$ is a leaf or a dead end if there is no $\tau \in T$ with $\tau \supsetneq \sigma$.

For any set X, the tree $X^{<\mathbb{N}}$ of finite words on X forms a monoid under concatenation ${ }^{-}$. Here the concatenation of σ and τ is defined by $\left(\sigma^{\wedge} \tau\right)(n)=\sigma(n)$ for $n<|\sigma|$ and $\left(\sigma^{\wedge} \tau\right)(|\sigma|+n)=\tau(n)$ for $n<|\tau|$. We use symbols ${ }^{\wedge}$ and \sqcap for the operation on this monoid, where $\prod_{i \leq n} \sigma_{i}$ denotes $\sigma_{0}{ }^{\wedge} \sigma_{1}{ }^{\wedge} \ldots{ }^{\wedge} \sigma_{n}$. To avoid confusion, the symbols \times and Π are only used for a product of sets. We often consider the following three left monoid actions of $X^{<\mathbb{N}}$: The first one is the set $X^{\mathbb{N}}$ of infinite words on X with an operation ${ }^{\wedge}: X^{<\mathbb{N}} \times X^{\mathbb{N}} \rightarrow X^{\mathbb{N}} ;\left(\sigma^{-} f\right)(n)=\sigma(n)$ for $n<|\sigma|$ and $\left(\sigma^{-} f\right)(|\sigma|+n)=f(n)$ for $n \in \mathbb{N}$. The second one is the set $\mathcal{T}(X)$ of subtrees $T \subseteq X^{<\mathbb{N}}$ with an operation ${ }^{-}: X^{<\mathbb{N}} \times \mathcal{T}(X) \rightarrow \mathcal{T}(X) ; \sigma^{\wedge} T=\left\{\sigma^{\wedge} \tau: \tau \in T\right\}$. The third one is the power set $\mathcal{P}\left(X^{\mathbb{N}}\right)$ of $X^{\mathbb{N}}$ with an operation ${ }^{\wedge}: X^{<\mathbb{N}} \times \mathcal{P}\left(X^{\mathbb{N}}\right) \rightarrow \mathcal{P}\left(X^{\mathbb{N}}\right) ; \sigma^{\wedge} P=\left\{\sigma^{\wedge} f: f \in P\right\}$.

We say that a set $P \subseteq \mathbb{N}^{\mathbb{N}}$ is Π_{1}^{0} if there is a computable relation R such that $P=\{f \in$ $\left.\mathbb{N}^{\mathbb{N}}:(\forall n) R(n, f)\right\}$ holds. Equivalently, $P=\left[T_{P}\right]$ for some computable tree $T_{P} \subseteq \mathbb{N}^{\mathbb{N}}$. Let $\left\{\Phi_{e}\right\}_{e \in \mathbb{N}}$ be an effective enumeration of all Turing functionals (all partial computable functions ${ }^{1}$) on $\mathbb{N}^{\mathbb{N}}$. Then the e-th Π_{1}^{0} subset of $2^{\mathbb{N}}$ is defined by $P_{e}=\left\{f \in 2^{\mathbb{N}}\right.$: $\left.\Phi_{e}(f ; 0) \uparrow\right\}$. Note that $\left\{P_{e}\right\}_{e \in \mathbb{N}}$ is an effective enumeration of all Π_{1}^{0} subsets of Cantor space $2^{\mathbb{N}}$. If (an index e of) a Π_{1}^{0} set $P_{e} \subseteq 2^{\mathbb{N}}$ is given, then $T_{e}=\left\{\sigma \in 2^{<\mathbb{N}}: \Phi_{e}(\sigma ; 0) \uparrow\right\}$ is called the corresponding tree for P_{e}. Here $\Phi(\sigma ; n)$ for $\sigma \in \mathbb{N}^{<\mathbb{N}}$ and $n \in \mathbb{N}$ denotes the computation of Φ with an oracle σ, an input n, and step $|\sigma|$. Whenever a Π_{1}^{0} set P is given, we assume that an index e of P is also given. If $P \subseteq 2^{\mathbb{N}}$ is Π_{1}^{0}, then the corresponding tree $T_{P} \subseteq 2^{<\mathbb{N}}$ of P is computable, and $\left[T_{P}\right]=P$. Moreover, the set L_{P} of all leaves of the computable tree T_{P} is also computable. We also say that a sequence of $\left\{P_{i}\right\}_{i \in I}$ of Π_{1}^{0} subsets of a space X is computable or uniform if the set $\left\{(i, f) \in I \times X: f \in P_{i}\right\}$ is again a Π_{1}^{0} subset of the product space $I \times X$. A set $P \subseteq \mathbb{N}^{\mathbb{N}}$ is special if P is nonempty and P has no computable member. For $f, g \in \mathbb{N}^{\mathbb{N}}, f \oplus g$ is defined by $(f \oplus g)(2 n)=f(n)$ and $(f \oplus g)(2 n+1)=g(n)$ for each $n \in \mathbb{N}$. For $P, Q \subseteq \mathbb{N}^{\mathbb{N}}$, put $P \oplus Q=(\langle 0\rangle-P) \cup(\langle 1\rangle-Q)$ and $P \otimes Q=\{f \oplus g: f \in P \& g \in Q\}$.

[^1]
1.4. Notations from Part I

1.4.1. Functions

Every partial function $\Psi: \subseteq \mathbb{N}<\mathbb{N} \rightarrow \mathbb{N}$ is called a learner. In Part I [29, Proposition 1], it is shown that we may assume that Ψ is total, and we fix an effective enumeration $\left\{\Psi_{e}\right\}_{e \in \mathbb{N}}$ of all learners. For any string $\sigma \in \mathbb{N}^{<\mathbb{N}}$, the set of mind-change locations of a learner Ψ on the informant σ is defined by

$$
\operatorname{mcl}_{\Psi}(\sigma)=\{n<|\sigma|: \Psi(\sigma \upharpoonright n+1) \neq \Psi(\sigma \upharpoonright n)\} .
$$

We also define $\operatorname{mcl}_{\Psi}(f)=\bigcup_{n \in \mathbb{N}} \operatorname{mcl}_{\Psi}(f \upharpoonright n)$ for any $f \in \mathbb{N}^{\mathbb{N}}$. Then, $\# \mathrm{mcl}_{\Psi}(f)$ denotes the number of times that the learner Ψ changes her/his mind on the informant f. Moreover, the set of indices predicted by a learner Ψ on the informant σ is defined by

$$
\operatorname{indx}_{\Psi}(\sigma)=\{\Psi(\sigma \upharpoonright n): n \leq|\sigma|\} .
$$

We also define $\operatorname{indx}_{\Psi}(f)=\bigcup_{n \in \mathbb{N}} \operatorname{indx}_{\Psi}(f \upharpoonright n)$ for any $f \in \mathbb{N}^{\mathbb{N}}$. We say that a partial function $\Gamma: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ is identified by a learner Ψ on $g \in \mathbb{N}^{\mathbb{N}}$ if $\lim _{n} \Psi_{e}(g \upharpoonright n)$ converges, and $\Phi_{\lim _{n} \Psi_{e}(g \upharpoonright n)}(g)=\Gamma(g)$. We also say that a partial function Γ is identified by a learner Ψ if it is identified by Ψ on every $g \in \operatorname{dom}(\Gamma)$. In Part I [29, Definition 2], we introduced the seven notions of $(\alpha, \beta \mid \gamma)$-computability for a partial function $\Gamma: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ listed as follows:

1. Γ is $(1,1)$-computable if it is computable.
2. Γ is $(1,<\omega)$-computable if it is identified by a learner Ψ with $\sup \left\{\# m c l_{\Psi}(g)\right.$: $g \in \operatorname{dom}(\Gamma)\}<\omega$.
3. Γ is $(1, \omega \mid<\omega)$-computable if it is identified by a learner Ψ with $\sup \{\# \operatorname{indx} \Psi(g)$: $g \in \operatorname{dom}(\Gamma)\}<\omega$.
4. Γ is $(1, \omega)$-computable if it is identified by a learner.
5. Γ is $(<\omega, 1)$-computable if there is $b \in \mathbb{N}$ such that for every $g \in \operatorname{dom}(\Gamma)$, $\Gamma(g)=\Phi_{e}(g)$ for some $e<b$.
6. Γ is $(<\omega, \omega)$-computable if there is $b \in \mathbb{N}$ such that for every $g \in \operatorname{dom}(\Gamma), \Gamma$ is identified by Ψ_{e} for some $e<b$ on g.
7. Γ is ($\omega, 1$)-computable if it is nonuniformly computable, i.e., $\Gamma(g) \leq_{T} g$ for every $g \in \operatorname{dom}(\Gamma)$.

Let $\left[\mathscr{C}_{T}\right]_{\beta}^{\alpha}$ (resp. $\left.\left[\mathfrak{C}_{T}\right]_{\beta \mid \gamma}^{\alpha}\right)$ denote the set of all (α, β)-computable (resp. $(\alpha, \beta \mid \gamma)$ computable) functions. If \mathcal{F} be a monoid consisting of partial functions under composition, $\mathcal{P}\left(\mathbb{N}^{\mathbb{N}}\right)$ is preordered by the relation $P \leq_{\mathcal{F}} Q$ indicating the existence of a function $\Gamma \in \mathcal{F}$ from Q into P, that is, $P \leq_{\mathcal{F}} Q$ if and only if there is a partial function $\Gamma: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ such that $\Gamma \in \mathcal{F}$ and $\Gamma(g) \in P$ for every $g \in Q$. Let $\mathcal{D} / \mathcal{F}$ and $\mathcal{P} / \mathcal{F}$ denote the quotient sets $\mathcal{P}\left(\mathbb{N}^{\mathbb{N}}\right) / \equiv_{\mathcal{F}}$ and $\Pi_{1}^{0}\left(2^{\mathbb{N}}\right) / \equiv_{\mathcal{F}}$, respectively. Here, $\Pi_{1}^{0}\left(2^{\mathbb{N}}\right)$ denotes the set of all nonempty Π_{1}^{0} subsets of $2^{\mathbb{N}}$. For $P \in \mathcal{P}\left(\mathbb{N}^{\mathbb{N}}\right)$, the equivalence class $\left\{Q \subseteq \mathbb{N}^{\mathbb{N}}: Q \equiv_{\mathcal{F}} P\right\} \in \mathcal{D} / \mathcal{F}$ is called the \mathcal{F}-degree of P. If $\mathcal{F}=\left[\mathfrak{C}_{T}\right]_{\beta \mid \gamma}^{\alpha}$ for some $\alpha, \beta, \gamma \in\{1,<\omega, \omega\}$, we write $\leq_{\beta \mid \gamma}^{\alpha}, \mathcal{D}_{\beta \mid \gamma}^{\alpha}$, and $\mathcal{P}_{\beta \mid \gamma}^{\alpha}$ instead of $\leq_{\mathcal{F}}, \mathcal{D} / \mathcal{F}$ and $\mathcal{P} / \mathcal{F}$. The preorderings \leq_{1}^{1} and \leq_{1}^{ω} are equivalent to the Medvedev reducibility [41] and the Muchnik reducibility [46], respectively.

In Part I [29, Theorem 26 and Proposition 27], we showed the following equivalences:

$$
\begin{array}{lll}
\mathcal{P}_{<\omega}^{1}=\mathcal{P} / \operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{1}^{0}\right] & \mathcal{P}_{\omega \mid<\omega}^{1}=\mathcal{P} / \operatorname{dec}_{\mathrm{p}}^{<\omega}\left[\Delta_{2}^{0}\right] & \mathcal{P}_{\omega}^{1}=\mathcal{P} / \operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Delta_{2}^{0}\right] \\
\mathcal{P}_{1}^{<\omega}=\mathcal{P} / \operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{2}^{0}\right] & \mathcal{P}_{\omega}^{<\omega}=\mathcal{P} / \operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{2}^{0}\right] \operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Delta_{2}^{0}\right] & \mathcal{P}_{1}^{\omega}=\mathcal{P} / \operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Pi_{2}^{0}\right]
\end{array}
$$

Here, for a pointclass Λ, a function $\Gamma: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ is finite (countable, resp.) Λ-piecewise computable if there is a finite Λ-cover $\left\{X_{i}\right\}_{i<\omega}$ (a uniform Γ-cover $\left\{X_{i}\right\}_{i \in \omega}$, resp.) of $\operatorname{dom}(f)$ such that $\Gamma \upharpoonright X_{i}$ is computable for any $i \in \mathbb{N}$, and the set of all finite (countable, resp.) Λ-piecewise computable functions is denoted by $\operatorname{dec}_{\mathrm{p}}^{<\omega}[\Lambda]$ $\left(\operatorname{dec}_{\mathrm{p}}^{\omega}[\Lambda]\right)$. We denote by $\operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{n}^{0}\right]$ the set of all finite Π_{n}^{0}-layerwise computable function (see Part I [29, Section 2.5]), which is equivalent to $\operatorname{dec}_{\mathrm{p}}^{<\omega}\left[\left(\Pi_{n}^{0}\right)_{2}\right]$, where $\left(\Pi_{n}^{0}\right)_{2}$ is the complexity of the differences of two Π_{n}^{0} sets.

This observation allows us to think of each degree structure $\mathcal{P}_{\beta \mid \gamma}^{\alpha}$ as a piecewisedegree structure in the following sense.

1. \mathcal{P}_{1}^{1} is the Medvedev degrees of Π_{1}^{0} sets.
2. $\mathcal{P}_{<\omega}^{1}$ is the finite- $\left(\Pi_{1}^{0}\right)_{2}$-piecewise degrees of Π_{1}^{0} sets.
3. $\mathcal{P}_{\omega \mid<\omega}^{1}$ is the finite- Δ_{2}^{0}-piecewise degrees of Π_{1}^{0} sets.
4. \mathcal{P}_{ω}^{1} is the countable- Δ_{2}^{0}-piecewise degrees of Π_{1}^{0} sets.
5. $\mathcal{P}_{1}^{<\omega}$ is the finite- $\left(\Pi_{2}^{0}\right)_{2}$-piecewise degrees of Π_{1}^{0} sets.
6. $\mathcal{P}_{\omega}^{<\omega}$ is the finite- $\left(\Pi_{2}^{0}\right)_{2}$-countable- Δ_{2}^{0}-piecewise degrees of Π_{1}^{0} sets.
7. \mathcal{P}_{1}^{ω} is the Muchnik degrees (or equivalently, the countable- Π_{2}^{0}-piecewise degrees) of Π_{1}^{0} sets.

1.4.2. Sets

To define the disjunction operations in Part I [29, Definition 29], we introduced some auxiliary notions. Let $I \subseteq \mathbb{N}$ be a set. Fix $\sigma \in(I \times \mathbb{N})^{<\mathbb{N}}$, and $i \in I$. Then the i-th projection of σ is inductively defined as follows.

$$
\operatorname{pr}_{i}(\langle \rangle)=\langle \rangle, \quad \quad \operatorname{pr}_{i}(\sigma)=\left\{\begin{array}{l}
\operatorname{pr}_{i}\left(\sigma^{-}\right)^{-} n, \text { if } \sigma=\sigma^{--}\langle(i, n)\rangle, \\
\operatorname{pr}_{i}\left(\sigma^{-}\right), \text {otherwise } .
\end{array}\right.
$$

Moreover, the number of times of mind-changes of (the process reconstructed from a record) $\sigma \in(I \times \mathbb{N})^{<\mathbb{N}}$ is given by

$$
\operatorname{mc}(\sigma)=\#\left\{n<|\sigma|-1:(\sigma(n))_{0} \neq(\sigma(n+1))_{0}\right\} .
$$

Here, for $x=\left(x_{0}, x_{1}\right) \in I \times \mathbb{N}$, the first (second, resp.) coordinate x_{0} (x_{1}, resp.) is denoted by $(x)_{0}\left((x)_{1}\right.$, resp.). Furthermore, for $f \in(I \times \mathbb{N})^{\mathbb{N}}$, we define $\mathrm{pr}_{i}(f)=$ $\bigcup_{n \in \mathbb{N}} \operatorname{pr}_{i}(f \upharpoonright n)$ for each $i \in I$, and $\operatorname{mc}(f)=\lim _{n} \operatorname{mc}(f \upharpoonright n)$, where if the limit does not exist, we write $\operatorname{mc}(f)=\infty$.

In Part I [29, Definition 33, 36 and 55], we introduced the disjunction operations. Fix a collection $\left\{P_{i}\right\}_{i \in I}$ of subsets of Baire space $\mathbb{N}^{\mathbb{N}}$.

1. $\llbracket \bigvee_{i \in I} P_{i} \rrbracket_{\mathrm{lnt}}=\left\{f \in(I \times \mathbb{N})^{\mathbb{N}}:\left((\exists i \in I) \operatorname{pr}_{i}(f) \in P_{i}\right) \& \operatorname{mc}(f)=0\right\}$.
2. $\llbracket \bigvee_{i \in I} P_{i} \mathbb{l}_{\mathrm{LCM}[\mathrm{n}]}=\left\{f \in(I \times \mathbb{N})^{\mathbb{N}}:\left((\exists i \in I) \operatorname{pr}_{i}(f) \in P_{i}\right) \& \operatorname{mc}(f)<n\right\}$.
3. $\llbracket \bigvee_{i \in I} P_{i} \|_{\mathrm{CL}}=\left\{f \in(I \times \mathbb{N})^{\mathbb{N}}:(\exists i \in I) \operatorname{pr}_{i}(f) \in P_{i}\right\}$.

As in Part I , we use the notation write (i, σ) for any $i \in \mathbb{N}$ and $\sigma \in \mathbb{N}^{<\mathbb{N}}$.

$$
\operatorname{write}(i, \sigma)=i^{|\sigma|} \oplus \sigma=\langle(i, \sigma(0)),(i, \sigma(1)),(i, \sigma(2)), \ldots,(i, \sigma(|\sigma|-1))\rangle
$$

This string indicates the instruction to write the string σ on the i-th tape in the one/twotape model. We also use the notation write $(i, f)=\bigcup_{n \in \mathbb{N}} \operatorname{write}(i, f \upharpoonright n)=i^{\mathbb{N}} \oplus f$ for any $f \in \mathbb{N}^{\mathbb{N}}$.

In Part II, we are mostly interested in the degree structures of Π_{1}^{0} subsets of $2^{\mathbb{N}}$. As mentioned in Part I [29], the consistent disjunction operations are useful to study such local degree structures. The consistency set $\operatorname{Con}\left(T_{i}\right)_{i \in I}$ for a collection $\left\{T_{i}\right\}_{i \in I}$ of trees is defined as follows.

$$
\operatorname{Con}\left(T_{i}\right)_{i \in I}=\left\{f \in(I \times \mathbb{N})^{\mathbb{N}}:(\forall i \in I)(\forall n \in \mathbb{N}) \operatorname{pr}_{i}(f \upharpoonright n) \in T_{i}\right\}
$$

Then we use the following modified definitions. Fix a collection $\left\{P_{i}\right\}_{i \in I}$ of Π_{1}^{0} subsets of Baire space $\mathbb{N}^{\mathbb{N}}$ and $n \in \omega \cup\{\omega\}$.

1. $\left[\nabla_{n}\right]_{i \in I} P_{i}=\llbracket \bigvee \bigvee_{i \in I} P_{i} \rrbracket_{\mathrm{LCM}[n]} \cap \operatorname{Con}\left(T_{P_{i}}\right)_{i \in I}$.
2. $\left[\nabla_{\infty}\right]_{i \in I} P_{i}=\llbracket \bigvee_{i \in I} P_{i} \rrbracket_{\mathrm{CL}} \cap \operatorname{Con}\left(T_{P_{i}}\right)_{i \in I}$.

Here $T_{P_{i}}$ is the corresponding tree for P_{i} for every $i \in I$. If $i \in\{0,1\}$, then we simply write $P_{0} \nabla_{n} P_{1}, P_{0} \nabla_{\omega} P_{1}$, and $P_{0} \nabla_{\infty} P_{1}$ for these notions. In Part II, we use the following notion.

Definition 1. Pick any $* \in \mathbb{N} \cup\{\omega\} \cup\{\infty\}$. For each disjunctive notions ∇_{*} and collection $\left\{P_{i}\right\}_{i \in I}$ of subsets of $\mathbb{N}^{\mathbb{N}}$, fix the corresponding tree $T_{P_{i}} \subseteq \mathbb{N}^{<\mathbb{N}}$ of P_{i} for every $i \in I$ and we may also associate a tree T_{*} with (the closure of) $P_{0} \nabla_{*} P_{1}$. Then the heart of $P_{0} \nabla_{*} P_{1}$ is defined by $T_{*}^{\ominus}=\left\{\sigma \in T_{*}:(\forall i \in I) \operatorname{pr}_{i}(\sigma) \in T_{P_{i}}^{e x t}\right\}$.

Note that every $\sigma \in T_{*}^{\ominus}$ is extendible in T_{*}, since $T_{*}^{\ominus} \subseteq\left\{\sigma \in T_{*}:(\exists i \in I) \operatorname{pr}_{i}(\sigma) \in\right.$ $\left.T_{P_{i}}^{e x t}\right\}$.

Let L_{P} denote the set of all leaves of the corresponding tree for a nonempty Π_{1}^{0} set P (where recall that such a tree is assumed to be uniquely determined when an index of P is given). Then the (non-commutative) concatenation of P and Q is defined as follows.

$$
P^{\wedge} Q=P \cup \bigcup_{\rho \in L_{P}} \rho^{\wedge} Q .
$$

We also write $T_{P}{ }^{\wedge} T_{Q}$ for the corresponding tree of $P^{\wedge} Q$. Moreover, the commutative concatenation $P \nabla Q$ is defined as $\left(P^{\wedge} Q\right) \oplus\left(Q^{-} P\right)$. Let P and $\left\{Q_{n}\right\}_{n \in \mathbb{N}}$ be computable collection of Π_{1}^{0} subsets of $2^{\mathbb{N}}$, and let ρ_{n} denote the length-lexicographically n-th leaf of the corresponding computable tree of P. Then, we define the infinitary concatenation and recursive meet [3] as follows:

$$
P^{\sim}\left\{Q_{i}\right\}_{i \in \mathbb{N}}=P \cup \bigcup_{n} \rho_{n} Q_{n},
$$

$$
\bigoplus \underset{i \in \mathbb{N}}{\rightarrow} Q_{i}=\operatorname{CPA}^{-}\left\{Q_{i}\right\}_{i \in \mathbb{N}} .
$$

Here, CPA is a Medvedev complete set, which consists of all complete consistent extensions of Peano Arithmetic. The Medvedev completeness of CPA ensures that for any nonempty Π_{1}^{0} subset $P \subseteq 2^{\mathbb{N}}$, a computable function Φ : CPA $\rightarrow P$ exists.

In Part I, we studied the disjunction and concatenation operations along graphs. For nonempty Π_{1}^{0} subsets P and Q of $2^{\mathbb{N}}$, the hyperconcatenation $Q \mathbf{v} P$ of Q and P is defined by the iterated concatenation of P 's along the ill-founded tree T_{Q}, that is,

$$
Q \mathbf{v} P=\left[\bigcup_{\tau \in T_{Q}}\left(\prod_{i<|\tau|} T_{P}{ }^{-}\langle\tau(i)\rangle\right){ }^{\wedge} T_{P}\right] .
$$

Note that, after writing this paper, Kihara [37] gave effective topological interpretations of some of these constructions.

Remark. Recall from Section 1.3 that a corresponding tree of a Π_{1}^{0} set is assumed to be uniquely determined when an index of the Π_{1}^{0} set is given. Indeed, most of our above definitions obviously depend on our choice of indices (hence, corresponding trees) of given Π_{1}^{0} sets, that is, most of operations introduced above are defined on subtrees of $\mathbb{N}^{<\mathbb{N}}$ rather than subsets of $\mathbb{N}^{\mathbb{N}}$. Although there is no effective well-defined map from the Π_{1}^{0} sets into the indices, it does not really matter what we chose, if we only focus on the degree-theoretic behavior. Formally, the reader should replace the words "for any (there exists a) Π_{1}^{0} set" in this paper with "for any (there exitsts an) index of a Π_{1}^{0} set", or simply, the reader may suppose the definition of "a Π_{1}^{0} set" to mean a structure \mathcal{P} consisting of a pair of a Π_{1}^{0} set P and its index e (or equivalently, its corresponding tree T_{P}). We will frequently use index-dependent definitions in order to simplify our notations, but in each case, one can easily ensure that it cause no problems at all.

Contents

1 Summary 2
1.1 Introduction . 2
1.2 Results . 3
1.3 Notations and Conventions . 7
1.4 Notations from Part I . 8
1.4.1 Functions . 8
1.4.2 Sets . 9

2 Degrees of Difficulty of Disjunctions 12
2.1 The Disjunction \oplus versus the Disjunction \cup. 13
2.2 The Disjunction \cup versus the Disjunction $\nabla \ldots \ldots$
2.3 The Disjunction ∇ versus the Disjunction ∇_{ω}. 15
2.4 The Disjunction ∇_{ω} versus the Disjunction ∇_{∞}. 16
2.5 The Disjunction \bigoplus versus the Disjunction ∇_{∞}. 17
3 Contiguous Degrees and Dynamic Infinitary Disjunctions 20
3.1 When the Hierarchy Collapses 20
3.2 Concatenation, Dynamic Disjunctions, and Contiguous Degrees 24
3.3 Infinitary Disjunctions along the Straight Line 28
3.4 Infinitary Disjunctions along ill-Founded Trees 31
3.5 Infinitary Disjunctions along Infinite Complete Graphs 34
4 Applications and Questions 37
4.1 Diagonally Noncomputable Functions 37
4.2 Simpson's Embedding Lemma 39
4.3 Weihrauch Degrees 40
4.4 Some Intermediate Lattices are Not Brouwerian 42
4.5 Open Questions 45
Bibliography 46

2. Degrees of Difficulty of Disjunctions

The main objective in this section is to establish LEVEL 3 separation results among our classes of nonuniformly computable functions by using disjunction operations introduced in Part I [29, Sections 3 and 5]. We have already seen the following inequalities for Π_{1}^{0} subsets $P, Q \subseteq 2^{\mathbb{N}}$ in Part I [29, Section 5.1].

$$
P \oplus Q \geq_{1}^{1} P \cup Q \geq_{1}^{1} P \nabla Q \geq_{1}^{1} P \nabla_{\omega} Q \geq_{1}^{1} P \nabla_{\infty} Q .
$$

As observed in Part I [29, Section 4], these binary disjunctions are closely related to the reducibilities $\leq_{1}^{1}, \leq_{t t, 1}^{<\omega}, \leq_{<\omega}^{1}, \leq_{\omega \mid<\omega}^{1}$, and $\leq_{1}^{<\omega}$, respectively. We employ rather exotic Π_{1}^{0} sets constructed by Jockusch and Soare to separate the strength of these disjunctions. We say that a set $A \subseteq \mathbb{N}^{\mathbb{N}}$ is an antichain if it is an antichain with respect to the Turing reducibility \leq_{T}. In other words, f is Turing incomparable with g, for any two distinct elements $f, g \in A$. A nonempty closed set $A \subseteq \mathbb{N}^{\mathbb{N}}$ is perfect if it has no isolated point.

Theorem 2 (Jockusch-Soare [35]). There exists a perfect Π_{1}^{0} antichain in $2^{\mathbb{N}}$.
A stronger condition is sometimes required. For a set $P \subseteq \mathbb{N}^{\mathbb{N}}$ and an element $g \in \mathbb{N}^{\mathbb{N}}$, let $P^{\leq T g}$ denote the set of all element of P which are Turing reducible to g. Then, a set $A \subseteq \mathbb{N}^{\mathbb{N}}$ is antichain if and only if $A^{\leq T g}=\{g\}$ for every $g \in A$. A set $P \subseteq \mathbb{N}^{\mathbb{N}}$ is independent if $P^{\leq_{T} \oplus D}=D$ for every finite subset $D \subset P$.

Theorem 3 (see Binns-Simpson [3]). There exists a perfect independent Π_{1}^{0} subset of $2^{\mathbb{N}}$.

On the other hand, in Section 3.1, we will see that our hierarchy of disjunctions collapses for homogeneous sets, which may be regarded as an opposite notion to antichains and independent sets.

2.1. The Disjunction \oplus versus the Disjunction \cup

We first separate the strength of the coproduct (the intuitionistic disjunction) \oplus and the union (the classical one-tape disjunction) \cup. This automatically establish the LEVEL 3 separation result between $\left[\mathfrak{C}_{T}\right]_{1}^{1}$ and $\left[\mathbb{C}_{t t}\right]_{1}^{<\omega}$. Recall that a set $P \subseteq \mathbb{N}^{\mathbb{N}}$ is special if it is nonempty and it contains no computable points.

Lemma 4. Let P_{0}, P_{1} be Π_{1}^{0} subsets of $2^{\mathbb{N}}$, and let Q be a special Π_{1}^{0} subset of $2^{\mathbb{N}}$. Assume that there exist $f \in P_{0}$ and $g \in P_{1}$ with $Q^{\leq_{T} f \oplus g}=Q^{\leq_{T} f} \cup Q^{\leq_{T} g}$ such that $Q^{\leq_{T} f}$ and $Q^{\leq r g}$ are separated by open sets. Then $Q \not ¥_{1}^{1}\left(P_{0} \otimes 2^{\mathbb{N}}\right) \cup\left(2^{\mathbb{N}} \otimes P_{1}\right)$.
Proof. Suppose that $Q \leq 1$ $f \oplus g \in\left(P_{0} \otimes 2^{\mathbb{N}}\right) \cup\left(2^{\mathbb{N}} \otimes P_{1}\right)$. By our choice of f and $g, \Phi(f \oplus g)$ must belong to $Q^{\leq T f \oplus g}=Q^{\leq T f} \cup Q^{\leq T g}$. By our assumption, $Q^{\leq T f}$ and $Q^{\leq T g}$ are separated by two disjoint open sets $U, V \subseteq 2^{\mathbb{N}}$. That is, $Q^{\leq_{T} f} \subseteq U, Q^{\leq_{T} g} \subseteq V$, and $U \cap V=\emptyset$. Therefore, either $\Phi(f \oplus g) \in Q \cap U$ or $\Phi(f \oplus g) \in Q \cap V$ holds. In any case, there exists an open neighborhood $[\sigma] \ni \Phi(f \oplus g)$ such that $[\sigma] \subseteq U$ or $[\sigma] \subseteq V$. Without loss of generality, we can assume $[\sigma] \subseteq U$. We pick initial segments $\tau_{0} \subset f$ and $\tau_{1} \subset g$ with $\Phi\left(\tau_{0} \oplus \tau_{1}\right) \supseteq$ σ. Then $\left(\tau_{0}-0^{\mathbb{N}}\right) \oplus g \in\left(P_{0} \otimes 2^{\mathbb{N}}\right) \cup\left(2^{\mathbb{N}} \otimes P_{1}\right)$, and it is Turing equivalent to g. However this is impossible because $\Phi\left(\tau_{0}-0^{\mathbb{N}} \oplus g\right) \in[\sigma]$, and $[\sigma] \cap Q^{\leq T g} \subseteq U \cap Q^{\leq r g}=\emptyset$.

Corollary 5. 1. There are Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P \cup Q<{ }_{1}^{1} P \oplus Q$.
2. There are Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P \equiv_{t t, 1}^{<\omega} Q$ and $P<_{1}^{1} Q$.

Proof. (1) Let R be a perfect independent Π_{1}^{0} subset of $2^{\mathbb{N}}$. Set $P=2^{\mathbb{N}} \otimes R$ and $Q=R \otimes 2^{\mathbb{N}}$. Note that $P \oplus Q \equiv \equiv_{1}^{1} R$. Pick $f, g \in R$ such that $f \neq g$. Then $R^{\leq_{T} f}=\{f\}$, $R^{\leq T g}=\{g\}$, and $R^{\leq T f \oplus g}=R^{\leq T f} \sqcup R^{\leq T g}=\{f, g\}$. Since $2^{\mathbb{N}}$ is Hausdorff, two points f and g are separated by open sets. Thus, $P \oplus Q \equiv_{1}^{1} R \not{ }_{1}^{1} P \cup Q$ by Lemma 4. (2) $P \oplus Q \equiv_{t t, 1}^{<\omega} P \cup Q<_{1}^{1} P \oplus Q$.

Remark. One can adopt the unit interval $[0,1]$ as our whole space instead of Cantor space $2^{\mathbb{N}}$. Then, $P_{0} \dagger P_{1}:=\left(P_{0} \times[0,1]\right) \cup\left([0,1] \times P_{1}\right)$ is connected as a topological space. If $P_{0} \subseteq[0,1]$ is homeomorphic to Cantor space, then the connected space $P_{0} \dagger P_{0}$ is sometimes called the Cantor tartan. The above proof shows that every perfect independent Π_{1}^{0} set $R \subseteq[0,1]$ is not (1,1)-reducible to the obtained $\operatorname{tartan} R \dagger R$, while these sets are $(<\omega, 1)$-tt-equivalent. Note that the tartan plays an important role on the constructive study of Brouwer's fixed point theorem (see [10]).

2.2. The Disjunction \cup versus the Disjunction ∇

We next separate the strength of the union \cup and the concatenation (the LCM disjunction with mind-change-bound 2) ∇. Moreover, we also see the LEVEL 3 separation between $\left[\mathfrak{C}_{t t}\right]_{1}^{<\omega}$ and $\left[\mathfrak{C}_{T}\right]_{<\omega}^{1}$.

Lemma 6. Let P_{0}, P_{1} be Π_{1}^{0} subsets of $2^{\mathbb{N}}$, and let Q be a special Π_{1}^{0} subset of $2^{\mathbb{N}}$. Assume that there exist $f \in P_{0}$ and $g \in P_{1}$ such that any $h \in Q^{\leq r f}$ and $Q^{\leq r g}$ are separated by open sets. Then $Q \not \bigsqcup_{1}^{1} P_{0} \frown P_{1}$.

Proof. Suppose that $Q \leq_{1}^{1} P_{0} \frown P_{1}$ via a computable functional Φ. By our choice of $f \in P_{0} \subseteq P_{0} \frown P_{1}$, there must exist an open set $U \subseteq 2^{\mathbb{N}}$ such that $\Phi(f) \in Q \cap U$ and $Q^{\leq r g} \cap U=\emptyset$. Since U is open there exists a clopen neighborhood $[\sigma] \ni \Phi(f)$ such that $[\sigma] \cap Q \subseteq U$. We pick an initial segment $\tau \subset f$ with $\Phi(\tau) \supseteq \sigma$. Since $f \in P_{0}$ holds, we have that $\tau \in T_{P_{0}}$, and we pick $\rho \in L_{P_{0}}$ extending τ. Then $\rho^{\wedge} g \in P_{0} \wedge P_{1}$, and $\rho^{\wedge} g$ is Turing equivalent to g. So, if $Q \leq_{1}^{1} P_{0} \curvearrowright P_{1}$ via Φ, then $\Phi\left(\rho^{\wedge} g\right)$ must belong to $Q^{\leq T g}$. However this is impossible because $\Phi\left(\rho^{\wedge} g\right) \in[\sigma]$, and $[\sigma] \cap Q^{\leq T g} \subseteq U \cap Q^{\leq_{T} g}=\emptyset$.

Corollary 7. There are Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P^{-} Q<{ }_{1}^{1} P \cup Q<{ }_{1}^{1} P \oplus Q$.
Proof. Assume that R be a perfect Π_{1}^{0} antichain of $2^{\mathbb{N}}$. Set $P=2^{\mathbb{N}} \otimes R$ and $Q=$ $R \otimes 2^{\mathbb{N}}$. Pick $f, g \in R$ such that $f \neq g$. Then $R^{\leq_{r} f}=\{f\}$ and $R^{\leq_{r} g}=\{g\}$ since R is antichain. Therefore, $(P \cup Q)^{\leq_{T} X} \subseteq\left(\{X\} \otimes 2^{\mathbb{N}}\right) \cup\left(2^{\mathbb{N}} \otimes\{X\}\right)$ for each $X \in\{f, g\}$. For $h=h_{0} \oplus h_{1} \in(P \cup Q)^{\leq r f}$, we have $h_{0} \neq g$ and $h_{1} \neq g$. Thus, $h \notin\left(2^{\mathbb{N}} \otimes\{g\}\right) \cup\left(\{g\} \otimes 2^{\mathbb{N}}\right)$, and note that $\left(2^{\mathbb{N}} \otimes\{g\}\right) \cup\left(\{g\} \otimes 2^{\mathbb{N}}\right)$ is closed. Then, there is an open neighborhood $U \subseteq 2^{\mathbb{N}}$ such that $h \in U$ and $U \cap(P \cup Q)^{\leq_{T} g}=\emptyset$, since $P \cup Q$ is regular, and $(P \cup Q)^{\leq T g} \subseteq\left(2^{\mathbb{N}} \otimes\{g\}\right) \cup\left(\{g\} \otimes 2^{\mathbb{N}}\right)$. Namely, any $h \in(P \cup Q)^{\leq_{T f} f}$ and $(P \cup Q)^{\leq T g}$ are separated by some open set. Consequently, by Lemma 6, we have $P \cup Q \not \not_{1}^{1} P^{\wedge} Q$.

One can establish another separation result for the concatenation. Recall from [12] that a closed set $P \subseteq \mathbb{N}^{\mathbb{N}}$ is immune if $T_{P}^{\text {ext }}$ contains no infinite c.e. subset. In [12] it is shown that the class of non-immune Π_{1}^{0} subsets of Cantor space is downward closed in the Medvedev degrees \mathcal{P}_{1}^{1}. This property also holds in a coarser degree structure. In Part I [29, Section 2.4] we have seen that $\mathcal{P}_{t t, 1}^{<\omega}$ is an intermediate structure between \mathcal{P}_{1}^{1} and $\mathcal{P}_{<\omega}^{1}$.

Lemma 8. Let P and Q be Π_{1}^{0} subsets of $2^{\mathbb{N}}$. If P is not immune, and $Q \leq_{t t, 1}^{<\omega} P$, then Q is not immune.

Proof. Let V be an infinite c.e. subset of $T_{P}^{e x t}$. Assume that $Q \leq_{t t, 1}^{<\omega} P$ holds via n truthtable functionals $\left\{\Gamma_{i}\right\}_{i<n}$. Note that every functional Γ_{i} can be viewed as a computable monotone function from $2^{<\omega}$ into $2^{<\omega}$. Let V_{k} be the c.e. set $V \cap \bigcap_{i<k} \Gamma_{i}^{-1}\left[2^{<\omega} \backslash T_{P}^{e x t}\right]$ for each $k \leq n$. By our assumption, V_{n} is finite, since otherwise the tree generated from V has an infinite path f such that $\Phi_{i}(f) \notin P$ for every $i<n$. Let k be the least number such that V_{k+1} is finite. Then, $\Gamma_{k}\left[V_{k}\right]$ is an infinite c.e. set, and $\Gamma_{k}\left[V_{k}\right]$ is included in $T_{P}^{e x t}$ except for finite elements.

Corollary 9. There are Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $Q<_{t t, 1}^{<\omega} P \equiv_{<\omega}^{1} Q$.
Proof. Let P be an immune Π_{1}^{0} subset of $2^{\mathbb{N}}$. Put $Q=P^{\wedge} P$. As seen in Part I [29, Section 4], we have $Q \leq_{1}^{1} P \equiv_{<\omega}^{1} Q$. Then, Q is not immune since $T_{Q}^{e x t}$ includes an infinite computable subset T_{P}. Hence, $P \not \not_{t t, 1}^{<\omega} Q$ by Proposition 8.

We have introduced two concatenation operations - and ∇, while there are several other concatenation-like operations (see Duparc [22]). For Π_{1}^{0} sets P and Q, let $P^{\rightarrow} Q$ and $P \sqcap Q$ denote $\left[\left\{\sigma^{-} \sharp \tau: \sigma \in T_{P} \& \tau \in T_{Q}\right\}\right]$ and $\left[\left\{\sigma^{\sim} \tau: \sigma \in T_{P} \& \tau \in T_{Q}\right\}\right]$, respectively. (Note that these definitions are also index-dependent, and recall that the final remark in Section 1.4.2.) As seen in Part I [29, Proposition 53], we have $P^{-} Q \equiv_{1}^{1}$ $P^{\rightarrow} Q$. However, there is a $(1,1)$-difference between $P^{\wedge} Q$ and $P^{\sqcap} Q$.

Proposition 10. There are Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P^{\sqcap} Q<{ }_{1}^{1} P^{\wedge} Q$.
Proof. It is easy to see that $P^{\sqcap} Q \leq_{1}^{1} P^{\rightarrow} Q$ for any Π_{1}^{0} sets $P, Q \subseteq \mathbb{N}^{\mathbb{N}}$. Let $R \subseteq 2^{\mathbb{N}}$ be a Π_{1}^{0} antichain. Then we divide R into four parts, P_{0}, P_{1}, P_{2}, and P_{3}. Put $P=P_{3}$, and $Q=\left(\langle 0,1\rangle \wedge P_{2} \wedge P_{0}\right) \cup\left(\langle 1\rangle \wedge P_{2} \wedge P_{1}\right)$. Without loss of generality, we may assume that $\langle 0\rangle \in T_{P}$. Suppose that $P^{\rightarrow} Q \leq_{1}^{1} P^{\sqcap} Q$ via a computable function Φ. Choose $g \in P_{2}$. Then we have $\langle 0,1\rangle^{`} g \in P^{\sqcap} Q$. Therefore, $\Phi(\langle 0,1\rangle-g) \in P^{\rightarrow} Q$ must contain \sharp, since $P=P_{3}$ has no element computable in $g \in P_{2}$. Thus, there is $n \in \mathbb{N}$ such that $\Phi(\langle 0,1\rangle `(g \upharpoonright n))$ contains $\langle\sharp, i\rangle$ as a substring for some $i<2$. Fix such i. Then, $\Phi\left(\langle 0,1\rangle^{`}(g \upharpoonright n)\right) \in P^{\rightarrow}(Q \cap[\langle i\rangle])$. We extend $g \upharpoonright n$ to some leaf ρ of P_{2}. Choose $h_{k} \in P_{k}$ for each $k<2$. Then, $\langle 0,1\rangle^{\wedge} \rho^{\wedge} h_{0} \in Q \subseteq P^{\sqcap} Q$, and $\langle 0,1\rangle^{\wedge} \rho^{\wedge} h_{1} \in\langle 0\rangle^{\wedge} Q \subseteq$ $P^{\sqcap} Q$. Thus, $\Phi\left(\langle 0,1\rangle^{`} \rho^{\wedge} h_{k}\right)$ must belongs to $P^{\rightarrow}(Q \cap[\langle i\rangle])$, for each $k<2$. However $P^{\rightarrow}(Q \cap[\langle i\rangle])$ has no element computable in $\langle 0,1\rangle^{`} \rho^{-} h_{1-i}$. A contradiction.

Proposition 11. $P^{\sqcap} Q \equiv_{\omega}^{1} P^{\wedge} Q$ holds for every Π_{1}^{0} sets $P, Q \subseteq \mathbb{N}^{\mathbb{N}}$.
Proof. It suffices to show that $P \rightarrow Q \leq_{\omega}^{1} P \sqcap Q$. Given $f \in P \sqcap Q$, our learner Ψ first guesses that f is also a correct solution to $P \rightarrow Q$. If $f \upharpoonright n \notin T_{P}$ happens, we know that $(f \upharpoonright m)^{\wedge} \sharp f^{\llcorner m} \in P^{\rightarrow} Q$ for some $m \leq n$, where note that $f=(f \upharpoonright m)^{\wedge} f^{\llcorner m}$ holds for each $m \in \mathbb{N}$. Thus, the learner Ψ can guess a correct number $m \leq n$ such that $(f \upharpoonright m)^{\sim} \sharp \neg f^{\llcorner m} \in P^{\rightarrow} Q$ with at most n mind-changes.

2.3. The Disjunction ∇ versus the Disjunction ∇_{ω}

Let Ψ be a learner (i.e., a total computable function $\Psi: \mathbb{N}^{<\mathbb{N}} \rightarrow \mathbb{N}$). A point $\alpha \in \mathbb{N}^{\mathbb{N}}$ is said to be an m-changing point of Ψ if $\# \mathrm{mcl}_{\Psi}(\alpha) \geq m$. Then, the set of all m-changing points ${ }^{2}$ of Ψ is denoted by $\mathrm{mc}_{\Psi}(\geq m)$. A point $\alpha \in \mathbb{N}^{\mathbb{N}}$ is anti-Popperian with respect to Ψ if $\lim _{n} \Psi(\alpha \upharpoonright n)$ converges, but $\Phi_{\lim _{n} \Psi(\alpha \uparrow n)}(\alpha)$ is partial ${ }^{3}$. The set of all anti-Popperian points of Ψ is denoted by AP_{Ψ}.

Remark (Trichotomy). Let Γ be a $(1, \omega)$-computable function identified by a learner Ψ, and let P be any subset of Baire space $\mathbb{N}^{\mathbb{N}}$. Then $\mathbb{N}^{\mathbb{N}} \backslash \Gamma^{-1}(P)$ is divided into the following three parts: the set $\Gamma^{-1}\left(\mathbb{N}^{\mathbb{N}} \backslash P\right)$; the Σ_{2}^{0} set AP_{Ψ}; and the Π_{2}^{0} set $\bigcap_{m \in \mathbb{N}} \mathrm{mc} \mathcal{F}_{\Psi}(\geq$ $m)$.

We say that P_{0} and P_{1} are everywhere ($\omega, 1$)-incomparable if $P_{0} \cap\left[\sigma_{0}\right]$ is Muchnik incomparable with $P_{1} \cap\left[\sigma_{1}\right]$ (that is, $P_{i} \cap\left[\sigma_{i}\right] \not \searrow_{1}^{\omega} P_{1-i} \cap\left[\sigma_{1-i}\right]$ for each $i<2$) whenever $\left[\sigma_{i}\right] \cap P_{i} \neq \emptyset$ for each $i<2$.

[^2]Theorem 12. Let P_{0}, P_{1} be everywhere ($\omega, 1$)-incomparable Π_{1}^{0} subsets of $2^{\mathbb{N}}$, and ρ be any binary string. For any $(1, \omega)$-computable function Γ identified by a learner Ψ, the closure of $\mathrm{mc}_{\Psi}(\geq m) \cup \Gamma^{-1}\left(\mathbb{N}^{\mathbb{N}} \backslash P_{0} \oplus P_{1}\right) \cup \mathrm{AP}_{\Psi}$ includes $\rho^{-}\left(P_{0} \nabla_{n} P_{1}\right)^{\ominus}$ with respect to the relative topology on $\rho^{-}\left(P_{0} \nabla_{m+n} P_{1}\right)^{\varnothing}$ (as a subspace of Baire space $\mathbb{N}^{\mathbb{N}}$).

Proof. Fix a string $\rho^{\wedge} \tau_{0}$ which is extendible in the heart of $\rho^{\wedge}\left(P_{0} \nabla_{n} P_{1}\right)$. Then, $\operatorname{pr}_{i}\left(\tau_{0}\right)$ must be extendible in P_{i}. Fix $f_{i} \in P_{i} \cap\left[\operatorname{pr}_{i}\left(\tau_{0}\right)\right]$ witnessing $P_{1-i} \not Z_{1}^{\omega} P_{i}$ for each $i<2$, i.e., P_{1-i} contains no f_{i}-computable element. Such f_{i} exists, by everywhere $(\omega, 1)$-incomparability. Assume that $f_{i}=\operatorname{pr}_{i}\left(\tau_{0}\right)^{-} f_{i}^{*}$ for each $i<2$ and that the last declaration along τ_{0} is j_{0}, i.e., $\tau_{0}=\tau_{0}^{--}\left(j_{0}, k\right)$ for some $k<2$. Then we can proceed the following actions.

- Extend τ_{0} to $g_{0}=\tau_{0}{ }^{-}$write $\left(j_{0}, f_{j_{0}}^{*}\right) \in \rho^{-}\left(P_{0} \nabla_{n} P_{1}\right)$.
- Wait for the least $s_{0}>\left|\tau_{0}\right|$ such that $\Phi_{\Psi\left(g_{0} \upharpoonright s_{0}\right)}\left(g_{0} \upharpoonright s_{0} ; 0\right)=j_{0}$.
- Extend $g_{0} \upharpoonright s_{0}$ to $g_{1}=\left(g_{0} \upharpoonright s_{0}\right)^{`}$ write $\left(j_{1}, f_{j_{1}}^{*}\right) \in \rho^{\wedge}\left(P_{0} \nabla_{n+1} P_{1}\right)$, where $j_{1}=$ $1-j_{0}$.
- Wait for the least $s_{1}>s_{0}$ such that $\Phi_{\Psi\left(g_{1} \upharpoonright s_{1}\right)}\left(g_{1} \upharpoonright s_{1} ; 0\right)=1-j_{0}$.

If both s_{0} and s_{1} are defined, then this action forces the learner Ψ to change his mind. In other words, $g_{1} \in \mathrm{mC}_{\Psi}(\geq 1)$. Assume that s_{l} is undefined for some $l<2$ Note that $g_{l} \equiv_{T} f_{j_{l}}$, since $\operatorname{pr}_{j_{l}}\left(g_{l}\right)=f_{j_{l}}$ and $\mathrm{pr}_{1-j_{l}}\left(g_{l}\right)$ is finite, for each $l<2$. Therefore, $\Gamma\left(g_{l}\right) \notin\left(1-j_{l}\right)^{\wedge} P_{1-j_{l}}$ since $P_{1-j_{l}}$ has no g_{l}-computable element. In this case, $g_{l} \in$ $\Gamma^{-1}\left(\mathbb{N}^{\mathbb{N}} \backslash P_{0} \oplus P_{1}\right)$. Hence, in $\rho^{-}\left(P_{0} \nabla_{n+1} P_{1}\right)^{)}$, the closure of $\mathrm{mc}(\geq 1) \cup \Gamma^{-1}\left(\mathbb{N}^{\mathbb{N}} \backslash\right.$ $\left.P_{0} \oplus P_{1}\right) \cup \mathrm{AP}_{\Psi}$ includes $\rho^{-}\left(P_{0} \nabla_{n} P_{1}\right)^{\varnothing}$. By iterating this procedure, in $\rho^{\wedge}\left(P_{0} \nabla_{m+n} P_{1}\right)^{\rho}$, we can easily see that the closure of $m \mathrm{C}_{\Psi}(\geq m) \cup \Gamma^{-1}\left(\mathbb{N}^{\mathbb{N}} \backslash P_{0} \oplus P_{1}\right) \cup \mathrm{AP}_{\Psi}$ includes $\rho^{-}\left(P_{0} \nabla_{n} P_{1}\right)^{\rho}$.

Corollary 13.

1. There exists Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P \nabla_{\omega} Q<{ }_{<\omega}^{1} P \nabla Q$.
2. There exists Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P \equiv_{\omega \mid<\omega}^{1} Q$ and $P \ll_{<\omega}^{1} Q$.

Proof. (1) Let P be a perfect Π_{1}^{0} antichain in $2^{\mathbb{N}}$ of Theorem 2. Fix a clopen set C such that $P_{0}=P \cap C \neq \emptyset$, and $P_{1}=P \backslash C \neq \emptyset$. Then every $f \in P_{0}$ and $g \in P_{1}$ are Turing incomparable. Therefore, P_{0} and P_{1} are everywhere ($\omega, 1$)-incomparable. Let ρ_{n} denote the n-th leaf of the tree $T_{\text {CPA }}$ of a Medvedev complete Π_{1}^{0} set CPA \subseteq $2^{\mathbb{N}}$. Fix a $(1, m)$-computable function Γ identified by a learner Ψ. By Theorem 12, $\rho_{m+1}^{\wedge}\left(P_{0} \nabla_{m+1} P_{1}\right)$ intersects with $\mathrm{mc}_{\Psi}(\geq m+1) \cup \Gamma^{-1}\left(\omega^{\omega} \backslash P_{0} \oplus P_{1}\right)$. Thus, $P_{0} \oplus$ $P_{1} \not ڭ_{<\omega}^{1} \bigoplus \vec{n}\left(P_{0} \nabla_{n} P_{1}\right)$. Additionally, we easily have $P_{0} \nabla_{\omega} P_{1} \leq_{<\omega}^{1} \bigoplus_{n}\left(P_{0} \nabla_{n} P_{1}\right)$. (2) $P=\bigoplus_{n} \vec{~}\left(P_{0} \nabla_{n} P_{1}\right)$ and $Q=P_{0} \oplus P_{1}$ are Π_{1}^{0}.

2.4. The Disjunction ∇_{ω} versus the Disjunction ∇_{∞}

By the similar argument, we can separate the strength of the concatenation ∇_{ω} and the classical disjunction ∇_{∞}.

Figure 1: The two-tape (bounded-errors) model of disjunctions for independent Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$.

Theorem 14. Let P_{0}, P_{1} be everywhere ($\omega, 1$)-incomparable Π_{1}^{0} subsets of $2^{\mathbb{N}}$. For any $(1, \omega)$-computable function Γ, the complement of $\Gamma^{-1}\left(P_{0} \oplus P_{1}\right)$ is dense in $\left(P_{0} \nabla_{\infty} P_{1}\right)^{\circ}$ (as a subspace of Baire space $\mathbb{N}^{\mathbb{N}}$).

Proof. Fix a learner Ψ which identifies the $(1, \omega)$-computable function Γ. Fix any clopen set $[\tau]$ intersecting with the heart of $\left(P_{0} \nabla_{\infty} P_{1}\right)$. Assume that $[\tau] \cap\left(P_{0} \nabla_{\infty} P_{1}\right)^{\text {® }}$ contains no element of $\Gamma^{-1}\left(\mathbb{N}^{\mathbb{N}} \backslash P_{0} \oplus P_{1}\right) \cup \mathrm{AP}_{\Psi}$. By Theorem $12, \mathrm{mc}_{\Psi}(\geq n)$ is dense and open in the heart of $\left(P_{0} \nabla_{\infty} P_{1}\right) \cap[\tau]=\tau^{-}\left(\left(P_{0} \cap\left[\mathrm{pr}_{0}(\tau)\right]\right) \nabla_{\infty}\left(P_{1} \cap\left[\mathrm{pr}_{1}(\tau)\right]\right)\right)$. As $[\tau] \cap\left(P_{0} \nabla_{\infty} P_{1}\right)^{\rho}$ is Π_{1}^{0}, the intersection $\bigcap_{n \in \mathbb{N}} \mathrm{~m} \mathcal{C}_{\Psi}(\geq n)$ is dense in $[\tau] \cap\left(P_{0} \nabla_{\infty} P_{1}\right)^{\nu}$, by Baire Category Theorem. Hence, $\mathbb{N}^{\mathbb{N}} \backslash \Gamma^{-1}\left(P_{0} \oplus P_{1}\right)$ intersects with any nonempty clopen set $[\tau]$ with $[\tau] \cap\left(P_{0} \nabla_{\infty} P_{1}\right)^{\varrho} \neq \emptyset$.

Corollary 15.

1. There exist Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P \equiv_{1}^{<\omega} Q$ holds but $Q \not \ddagger_{\omega}^{1} P$ holds.
2. There exist Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P \equiv_{\omega}^{<\omega} Q$ holds but $P<_{\omega}^{1} Q$ holds.

Proof. Let P be a perfect Π_{1}^{0} antichain in $2^{\mathbb{N}}$ of Theorem 2. Fix a clopen set C such that $P_{0}=P \cap C \neq \emptyset$, and $P_{1}=P \backslash C \neq \emptyset$. Then P_{0} and P_{1} are everywhere $(\omega, 1)$ incomparable. Fix a $(1, \omega)$-computable function Γ identified by a learner Ψ. By Theorem 14, $\mathbb{N}^{\mathbb{N}} \backslash\left(P_{0} \oplus P_{1}\right)$ is dense in $\left(P_{0} \nabla_{\infty} P_{1}\right)^{)}$. For Π_{1}^{0} sets $P_{0}, P_{1} \subseteq 2^{\mathbb{N}}$, both $P_{0} \nabla_{\infty} P_{1}$ and $P_{0} \oplus P_{1}$ are Π_{1}^{0}, and $P_{0} \nabla_{\omega} P_{1} \leq_{1}^{1} P_{0} \oplus P_{1}$.

2.5. The Disjunction \bigoplus versus the Disjunction ∇_{∞}

By the similar argument, we can separate infinitary disjunctions. A sequence $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ of elements of $\mathbb{N}^{\mathbb{N}}$ is Turing independent if x_{i} is not computable in $\bigoplus_{j \neq i} x_{j}$ for each $i \in \mathbb{N}$. A collection $\left\{P_{i}\right\}_{i \in I}$ of subsets of $\mathbb{N}^{\mathbb{N}}$ is pairwise everywhere independent if, for any collection $\left\{\left[\sigma_{i}\right]\right\}_{i \in I}$ of clopen sets with $P_{i} \cap\left[\sigma_{i}\right] \neq \emptyset$ for each $i \in I$, there is a choice $\left\{x_{i}\right\}_{i \in I} \in \prod_{i \in I}\left(P_{i} \cap\left[\sigma_{i}\right]\right)$ such that P_{i} has no element computable in $\bigoplus_{j \in I \backslash\{i\}} x_{j}$ for each $i \in I$.

Theorem 16. Let $\left\{P_{i}\right\}_{i<2^{t}}$ be a pairwise everywhere independent collection of Π_{1}^{0} subsets of $2^{\mathbb{N}}$, and let ρ be any binary string. For any (t, ω)-computable function Γ, the complement of $\Gamma^{-1}\left(P_{0} \oplus \cdots \oplus P_{2^{t}-1}\right)$ is dense in the heart of $\rho^{\wedge}\left(P_{0} \nabla_{\infty} \cdots \nabla_{\infty} P_{2^{t}-1}\right)$ (as
a subspace of Baire space $\mathbb{N}^{\mathbb{N}}$). Indeed, for any nonempty interval I in the heart of $\rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)$, there is $g \in \rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)^{\ominus} \cap I \backslash \Gamma^{-1}\left(P_{0} \oplus \cdots \oplus P_{2^{t}-1}\right)$ which is computable in some $g^{*} \in \bigotimes_{k<2^{t}-1} P_{k}$.
Proof. Assume that the (t, ω)-computable function Γ is identified by a team $\left\{\Psi_{i}\right\}_{i<t}$ of learners. Fix a string $\rho^{\wedge} \tau_{0}$ which is extendible in the heart of $\rho^{-}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)$. Then, $\operatorname{pr}_{i}\left(\tau_{0}\right)$ must be extendible in P_{i} for each $i<2^{t}$. Fix $\left\{f_{i}\right\}_{i<2^{t}} \in \prod_{i<2^{t}}\left(P_{i} \cap\left[\operatorname{pr}_{i}\left(\tau_{0}\right)\right]\right)$ witnessing the independence of $\left\{P_{i}\right\}_{i<2^{t}}$, i.e., P_{i} contains no $\bigoplus_{j \neq i} f_{j}$-computable element. Assume that $f_{i}=\operatorname{pr}_{i}\left(\tau_{0}\right)^{-} f_{i}^{*}$ for each $i<2^{t}$ and that the last declaration along τ_{0} is $j_{0}<2^{t}$, i.e., $\tau_{0}=\tau_{0}^{--}\left(j_{0}, k\right)$ for some $k<2$. Fix a computable function δ mapping $j<2^{t}$ to a unique binary string $\delta(j)$ satisfying $j=\sum_{e=0}^{t-1} 2^{e} \cdot \delta(j ; e)$. Let E_{k}^{e} denote the set $\left\{j<2^{t}: \delta(j ; e)=k\right\}$. Then we can proceed the following actions.

- Extend τ_{0} to $g_{0}=\tau_{0}{ }^{-} \operatorname{write}\left(j_{0}, f_{j_{0}}^{*}\right) \in \rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)$.
- Wait for the least $s_{0}>\left|\tau_{0}\right|$ such that $\Phi_{\Psi_{e}\left(g_{0} \mid s_{0}\right)}\left(g_{0} \upharpoonright s_{0} ; 0\right) \in E_{\delta\left(j_{0} ; e\right)}^{e}$ for some $e<2^{t}$.
- If such s_{0} exists, then enumerate all such $e<2^{t}$ into an auxiliary set Ch_{0}, and define $\delta\left(j_{1}\right)$ as follows:

$$
\delta\left(j_{1} ; e\right)= \begin{cases}\delta\left(j_{0} ; e\right) & \text { if } e \notin \mathrm{Ch}_{0} \\ 1-\delta\left(j_{0} ; e\right) & \text { if } e \in \mathrm{Ch}_{0}\end{cases}
$$

- Extend $g_{0} \upharpoonright s_{0}$ to $g_{1}=\left(g_{0} \upharpoonright s_{0}\right)^{\wedge}$ write $\left(j_{1}, f_{j_{1}}^{*}\right) \in \rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)$, where $j_{1}=\sum_{e=0}^{t-1} 2^{e} \cdot \delta\left(j_{1} ; e\right)$.
These actions force each learner Ψ_{e} with $e \in \mathrm{Ch}_{0}$ to change his mind whenever the learner Ψ_{e} want to have an element of $\bigoplus_{i<2^{2}} P_{i}$. Fix $u \in \mathbb{N}$. Assume that j_{u}, g_{u}, s_{u}, and Ch_{u} has been already defined, and the following induction hypothesis at stage u is satisfied.
- $\operatorname{pr}_{e}\left(g_{u}\right) \subseteq f_{e}$ for any $e<2^{t}$, hence, $g_{u} \in \rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t-1}}\right)^{\ominus} \cap\left[\rho^{\wedge} \tau_{0}\right]$.
- $\left\{s_{v}\right\}_{v \leq u}$ is strict increasing, and $\mathrm{Ch}_{u} \neq \emptyset$.
- For each $e \in \mathrm{Ch}_{u}$, if $\Phi_{\Psi_{e}\left(g_{u} \mid s_{u}\right)}\left(g_{u} \upharpoonright s_{u} ; 0\right)$ converges to some value $k<2^{t}$, then $k \in E_{\delta\left(j_{u} ; e\right)}^{e}$
It is easy to see that $u=0$ satisfies the induction hypothesis. At stage $u+1 \in \mathbb{N}$, we proceeds the following actions.
- Define $\delta\left(j_{u+1}\right)$ as follows:

$$
\delta\left(j_{u+1} ; e\right)= \begin{cases}\delta\left(j_{u} ; e\right) & \text { if } e \notin \mathrm{Ch}_{u}, \\ 1-\delta\left(j_{u} ; e\right) & \text { if } e \in \mathrm{Ch}_{u} .\end{cases}
$$

- Extend $g_{u} \upharpoonright s_{u}$ to $g_{u+1}=\left(g_{u} \upharpoonright s_{u}\right)^{\wedge} \operatorname{write}\left(j_{u+1}, f_{j_{u+1}}^{(u+1)}\right)$, where $j_{u+1}=\sum_{e=0}^{t-1} 2^{e}$. $\delta\left(j_{u+1} ; e\right)$, and f^{u+1} satisfies $\operatorname{pr}_{j_{u+1}}\left(g_{u+1}\right)=\operatorname{pr}_{j_{u+1}}\left(g_{u} \upharpoonright s_{u}\right)^{-} f_{j_{u+1}}^{(u+1)}=\rho^{\wedge} f_{j_{u+1}}$.
- Wait for the least $s_{u+1}>s_{u}$ such that $\Phi_{\Psi_{e}\left(g_{u+1} \mid s_{u+1}\right)}\left(g_{u+1} \upharpoonright s_{u+1} ; 0\right) \in E_{\delta\left(j_{u+1} ; e\right)}^{e}$ for some $e<2^{t}$.
- If such s_{u+1} exists, then enumerate all such $e<2^{t}$ into Ch_{u+1},

By our action, it is easy to see that $u+1$ satisfies the induction hypothesis. As the set $\rho^{\frown}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)^{\ominus}$ is closed (with respect to the Baire topology) and $\left\{s_{u}\right\}_{u \in \mathbb{N}}$ is strictly increasing, the sequence $\left\{g_{u}\right\}_{u \in \mathbb{N}}$ converges to some $g \in \rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)^{\rho}$. Let $I(g) \subseteq 2^{t}$ be the set of all $e<2^{t}$ such that $\operatorname{pr}_{e}(g)$ is total.

Claim. $g \leq_{T} \bigoplus_{e \in I(g)} f_{e}$.
Note that $g=g\left[f_{0}, \ldots, f_{2^{t}-1}\right]$ is effectively constructed uniformly in a given collection $\left\{f_{k}\right\}_{k<2^{t}}$. In other words, there is a (uniformly) computable function Θ mapping $\left\{f_{k}\right\}_{k<2^{t}}$ to $\Theta\left(\left\{f_{k}\right\}_{k<2^{t}}\right)=g=g\left[f_{0}, \ldots, f_{2^{t}-1}\right]$. Then, it is easy to see that the function Θ maps $\left\{f_{e}\right\}_{e \in I(g)} \cup\left\{\operatorname{pr}_{e}(g)^{-} 0^{\mathbb{N}}\right\}_{e \in 2^{2} \backslash \backslash(g)}$ to g. Hence, $g \leq_{T} \bigoplus_{e \in I(g)} f_{e} \oplus \bigoplus_{e \in 2^{\top} \backslash(g)} \operatorname{pr}_{e}(g)^{\sim} 0^{\mathbb{N}}$. Therefore, $g \leq_{T} \bigoplus_{e \in I(g)} f_{e}$ as desired, since $\operatorname{pr}_{e}(g)^{-} 0^{\mathbb{N}}$ is computable for any $e \in$ $2^{t} \backslash I(g)$.

Let Γ_{e} denote the $(1, \omega)$-computable function identified by Ψ_{e}, that is, $\Gamma_{e}(\alpha)=$ $\Phi_{\lim _{n} \Psi(\alpha \uparrow n)}(\alpha)$ for any $\alpha \in \mathbb{N}^{\mathbb{N}}$. We consider the following two cases.
Case $1\left(e \in \mathrm{Ch}_{u}\right.$ for finitely many $\left.u \in \mathbb{N}\right)$. Fix u such that $e \notin \mathrm{Ch}_{v}$ for any $v>u$. For each $v>u, \Phi_{\Psi_{e}\left(g \upharpoonright s_{u}\right)}\left(g \upharpoonright s_{u} ; 0\right)$ does not converges to an element of $E_{\delta(j ; ; e)}^{e}=$ $E_{\delta\left(j_{u} ; e\right)}^{e}$. By our definition, for each $k \notin E_{\delta\left(j_{u} ; e\right)}^{e}, \operatorname{pr}_{k}(g) \subset \rho^{-} f_{k}$ is finite. By previous claim, $g \leq_{T} \bigoplus_{e \neq k} f_{e}$. Thus, by independence, P_{k} has no g-computable element. If $\Phi_{\Psi_{e}\left(g \upharpoonright s_{u}\right)}\left(g \upharpoonright s_{u} ; 0\right) \uparrow$ for any $u \in \mathbb{N}$, then $g \in \mathrm{AP}_{\Psi_{e}}$. If $\lim _{n} \Psi_{e}(g \upharpoonright n)$ does not converge, then $g \in \bigcap_{m \in \mathbb{N}} \mathrm{mC}_{\Psi_{e}}(\geq m)$. Otherwise, $\Phi_{\lim _{n} \Psi_{e}(g \upharpoonright n)}(g ; 0)$ converges to some value $k \notin E_{\delta\left(j_{u} ; e\right)}^{e}$. As $\Phi_{\lim _{n} \Psi_{e}(g \upharpoonright n)}(g)$ is g-computable, we see $\Phi_{\lim _{n} \Psi_{e}(g \upharpoonright n)}(g) \notin k^{\wedge} P_{k}$. Consequently, $g \in \mathbb{N}^{\mathbb{N}} \backslash \Gamma_{e}^{-1}\left(\bigoplus_{k<2^{t}} P_{k}\right)$.
Case $2\left(e \in \mathrm{Ch}_{u}\right.$ for infinitely many $u \in \mathbb{N}$). We enumerate an infinite increasing sequence $\{u[n]\}_{n \in \mathbb{N}}$, where $u[n]$ is the n-th element such that $e \in \mathrm{Ch}_{u}$. As $e \in$ $\mathrm{Ch}_{u[n]}$, we have $\Phi_{\Psi_{e}(g \upharpoonright u[n])}(g \upharpoonright u[n] ; 0) \in E_{\delta\left(j_{u[n]} ; e\right)}^{e}$. By our action, $\delta\left(j_{u[n+1]} ; e\right)=$ $\delta\left(j_{u[n]+1} ; e\right) \neq \delta\left(j_{u[n]} ; e\right)$. This implies $E_{\delta\left(j_{u[n+1]} ; e\right)}^{e} \cap E_{\delta\left(j_{u[n]} ; e\right)}^{e}=\emptyset$. However, we must have $\Phi_{\Psi_{e}(g \upharpoonright u[n+1])}(g \upharpoonright u[n+1] ; 0) \in E_{\delta\left(j_{u[n+1]} ; e\right)}^{e}$, since $e \in \mathrm{Ch}_{u[n+1]}$. This forces the learner Ψ_{e} to change his mind. By iterating this procedure, we eventually obtain $g \in \bigcap_{m \in \mathbb{N}} \mathrm{mC}_{\Psi_{e}}(\geq m)$.

Consequently, $g \in \bigcap_{e \in \mathbb{N}}\left(\mathbb{N}^{\mathbb{N}} \backslash \Gamma_{e}^{-1}\left(\bigoplus_{k<2^{t}} P_{k}\right)\right.$). Thus, $g \in \mathbb{N}^{\mathbb{N}} \backslash \Gamma_{e}^{-1}\left(\bigoplus_{k<2^{t}} P_{k}\right)$. For any τ_{0} such that $\rho^{\wedge} \tau_{0}$ which is extendible in the heart of $\rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)$, we can construct such g extending τ_{0}. Therefore, $\mathbb{N}^{\mathbb{N}} \backslash \Gamma_{e}^{-1}\left(\bigoplus_{k<2^{t}} P_{k}\right)$ intersects any nonempty interval in $\rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)^{\varnothing}$. In other words, $\mathbb{N}^{\mathbb{N}} \backslash \Gamma_{e}^{-1}\left(P_{0} \oplus \cdots \oplus P_{2^{t}-1}\right)$ is dense in $\rho^{\wedge}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)^{\circ}$ as desired.

The following theorem by Jockusch-Soare [35, Theorem 4.1] is important.
Theorem 17 (Jockusch-Soare [35]). There is a computable sequence $\left\{\prod_{n} P_{n}^{i}\right\}_{i \in \mathbb{N}}$ of nonempty homogeneous Π_{1}^{0} subsets of $2^{\mathbb{N}}$ such that $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ is Turing independent for any choice $x_{i} \in \prod_{n} P_{n}^{i}, i \in \mathbb{N}$.

Clearly any such Π_{1}^{0} set contains no element of a PA degree, a Turing degree of a complete consistent extension of Peano Arithmetic. Accordingly, every element of such a Π_{1}^{0} set computes no element of a Medvedev complete Π_{1}^{0} set CPA.
Corollary 18. There are Π_{1}^{0} sets $P_{n} \subseteq 2^{\mathbb{N}}, n \in \mathbb{N}$, such that $\bigoplus_{t} \rightarrow\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{t}\right)<\omega$ $\bigoplus_{t} \rightarrow P_{t}$.

Proof. Fix the computable sequence $\left\{P_{i}\right\}_{i \in \mathbb{N}}$ of Theorem 17. Then $\left\{P_{i}\right\}_{i \in \mathbb{N}}$ is pairwise everywhere independent. Assume that $\bigoplus_{t} \rightarrow P_{t} \leq_{\omega}^{<\omega} \bigoplus_{t} \rightarrow\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{t}\right)$ via a (t, ω)-computable function Γ. Let ρ_{n} denote the n-th leaf of the tree $T_{\text {CPA }}$ of a Medvedev complete Π_{1}^{0} subset of $2^{\mathbb{N}}$. By Theorem 16, $\Gamma^{-1}\left(\bigcup_{k<2^{t}} \rho_{k} P_{k}\right)$ is dense in the heart of $\rho_{2^{t}}{ }^{-}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)$. In particular, there is $g \in \rho_{2^{t}}{ }^{t}\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{2^{t}-1}\right)$ such that $\Gamma(g) \notin \bigcup_{k<2^{t}} \rho_{k}-P_{k}$ which is computable in some $g^{*} \leq_{T} \bigotimes_{k<2^{t}} P_{k}$. By our choice of $\left\{P_{i}\right\}_{i \in \mathbb{N}}, \Gamma(g)$ computes no element of $\bigcup_{k \geq 2^{t}} P_{k} \cup$ CPA. Thus, $\Gamma(g) \notin \bigoplus_{t} \rightarrow P_{t}$.

Corollary 19.

1. There exists a computable sequence $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ of Π_{1}^{0} subsets of Cantor space $2^{\mathbb{N}}$, such that the condition $\left[\nabla_{\infty}\right]_{n} P_{n}<_{\omega}^{<\omega} \bigoplus_{n} P_{n}$ is satisfied.
2. There exist Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P \equiv_{1}^{\omega} Q$ holds but $P<_{\omega}^{<\omega} Q$ holds.

Proof. (1) By Corollary 18. the condition [$\left.\nabla_{\infty}\right]_{n} P_{n} \leq 1 \bigoplus_{t}^{1} \rightarrow\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{t}\right)<{ }_{\omega}^{<\omega}$ $\bigoplus_{t} \rightarrow P_{t} \leq_{1}^{1} \bigoplus_{n} P_{n}$ is satisfied. (2) Put $P=\left[\nabla_{\infty}\right]_{n} P_{n} \leq_{1}^{1} \bigoplus_{t} \rightarrow\left(P_{0} \nabla_{\infty} \ldots \nabla_{\infty} P_{t}\right)$ and $Q=\bigoplus_{t} P_{t}$. Then P and Q are (1,1)-equivalent to Π_{1}^{0} subsets as seen in Part I [29, Section 5.2]. By Theorem 18, $P<_{\omega}^{<\omega} Q$, and $Q \equiv_{1}^{\omega} P$ as seen in Part I [29, Sections 4 and 5.2].

3. Contiguous Degrees and Dynamic Infinitary Disjunctions

3.1. When the Hierarchy Collapses

We have already observed the following hierarchy, for pairwise independent Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$.

$$
P \oplus Q>{ }_{1}^{1} P \cup Q>{ }_{1}^{1} P \nabla Q>{ }_{<\omega}^{1} P \nabla_{\omega} Q>_{\omega \mid<\omega}^{1} P \nabla_{\infty} Q \equiv_{1}^{<\omega} P \oplus Q .
$$

Homogeneity is an opposite notion of antichain (and independence). Recall that $S \subseteq \mathbb{N}^{\mathbb{N}}$ is homogeneous if $S=\prod_{n} S_{n}$ for some $S_{n} \subseteq \mathbb{N}, n \in \mathbb{N}$. Every antichain is degree-non-isomorphic everywhere. On the other hand, every homogeneous set S is degree-isomorphic everywhere, that is to say, $S \cap C$ is degree-isomorphic to $S \cap D$ for any clopen sets $C, D \subseteq \mathbb{N}^{\mathbb{N}}$ with $S \cap C \neq \emptyset$ and with $S \cap D \neq \emptyset^{4}$.

The next observation is that every finite-piecewise computable method of solving a homogeneous Π_{1}^{0} mass problem can be refined by a finite- $\left(\Pi_{1}^{0}\right)_{2}$-piecewise computable method. That is to say, our hierarchy between $\leq_{<\omega}^{1}$ and $\leq_{1}^{<\omega}$ collapses for homogeneous Π_{1}^{0} sets, modulo the $(1,<\omega)$-equivalence.

[^3]Theorem 20. For every homogeneous Π_{1}^{0} set $S \subseteq \mathbb{N}^{\mathbb{N}}$ and for any set $Q \subseteq \mathbb{N}^{\mathbb{N}}$, if $S \leq_{1}^{<\omega} Q$ then $S \leq_{<\omega}^{1} Q$.
Proof. Let $S=\prod_{x} F_{x}$ for some Π_{1}^{0} sets $F_{x} \subseteq \mathbb{N}$. Assume $S \leq_{1}^{<\omega} Q$ via the bound b. That is, for every $g \in Q$ there exists an index $e<b$ such that $\Phi_{e}(g) \in S$. Let us begin defining a learner Ψ who changes his mind at most finitely often. Fix $g \in Q$. The learner Ψ first sets $A_{0}=\{e \in \mathbb{N}: e<b\}$. By our assumption, we have $\Phi_{e}(g) \in S$ for some $e \in A_{0}$. Then the learner Ψ challenges to predict the solution algorithm $e<b$ such that $\Phi_{e}(g) \in S$ by using an observation $g \in Q$. He begins the 1 -st challenge. On the ($s+1$)-th challenge of Ψ, inductively assume that, the learner have already defined a set $A_{s} \subseteq A_{0}$. Let v be a stage at which the $s+1$-th challenge of Ψ on g begins. In this challenge, the learner Ψ uses the two following computable functionals Γ and Δ.

- For a given argument $x, \Gamma(x, s+1)$ outputs the least $\langle e(x), t(x)\rangle$ such that $e(x) \in A_{s}$ and $\Phi_{e(x)}(g \upharpoonright t(x) ; x) \downarrow$ if $\operatorname{such}\langle e(x), t(x)\rangle$ exists.
- If $\Gamma(x, s+1)=\langle e(x), t(x)\rangle$, then $\Delta(g ; x, s+1)=\Phi_{e(x)}(g \upharpoonright t(x) ; x)$.

Set $\Delta_{s+1}(g ; x)=\Delta(g ; x, s+1)$. Clearly, an index $d(s+1)$ of Δ_{s+1} is calculated from $s+1$. Then the learner $\Psi(g \upharpoonright v)$ outputs $d(s+1)$ on the $(s+1)$-th challenge. Hence $\Phi_{\Psi(g \upharpoonright v)}(g ; x)=\Phi_{d(s+1)}(g ; x)=\Phi_{e(x)}(g \upharpoonright t(x) ; x)$ for any x. He does not change his mind until the beginning stage v^{\prime} of the next challenge, i.e., $\Phi_{\Psi\left(g \upharpoonright v^{\prime \prime}\right)}(g)=\Phi_{\Psi(g \upharpoonright k)}(g)$ for $k \leq v^{\prime \prime}<v^{\prime}$. The next challenge might begin when it turns out that Ψ 's prediction on his ($s+1$)-th challenge is incorrect, namely:

- $\Phi_{\Psi(g \upharpoonright v)}(g \upharpoonright u) \upharpoonright n \notin T_{S, u}$ for some $n<u$ at some stage $u>v$.

Here T_{S} is a corresponding computable tree of S. For each $x \in \mathbb{N}$, fix a decreasing approximation $\left\{F_{x, s}\right\}_{s \in \mathbb{N}}$ of a Π_{1}^{0} set $F_{x} \subseteq\{0,1\}$, uniformly in x. In this case, there exists $x<n$ such that the following condition holds.

$$
\Phi_{\Psi(g \upharpoonright v)}(g \upharpoonright u ; x)=\Delta_{s+1}(g ; x)=\Phi_{e(x)}(g ; x) \notin F_{x, s}
$$

For such a least x, the learner removes $e(x)$ from A_{s}, that is, let $A_{s+1}=A_{s} \backslash\{e(x)\}$. If $A_{s+1} \neq \emptyset$ then the learner Ψ begins the $(s+2)$-th challenge at the current stage u. The construction of the learner Ψ is completed. An important point of this construction is that the learner never uses an index rejected on some challenge. This makes the prediction on $g \in Q$ of the learner Ψ converge.

Claim. Ψ changes his mind at most b times.
Whenever Ψ changes, A_{s} must decrease. However $\# A_{0}=b$.
Claim. For every $g \in Q$ it holds that $\Phi_{\lim _{s} \Psi(g \mid s)}(g) \in S$.
For $g \in Q$, let $B^{g} \subseteq A_{0}$ be the set of all $e \in A_{0}$ such that $\Phi_{e}(g) \in S=\prod_{x} F_{x}$. By the definition of A_{0}, clearly B^{g} is not empty. Moreover, $B^{g} \subseteq \bigcap_{s} A_{s}$ holds, since e is removed from $\bigcap_{s} A_{s}$ only when $\Phi_{e}(g ; x) \notin F_{x}$ for some x. Thus, $\Phi_{\Psi(g \upharpoonright v)}(g): \mathbb{N} \rightarrow \mathbb{N}$ is total for every stage v. This means that, if $\Phi_{\Psi(g \upharpoonright v)}(g) \notin S$, then the learner Ψ will know his mistake at some stage u, i.e., $\Phi_{\Psi(g \upharpoonright v)}(g \upharpoonright u ; x) \notin F_{x, u}$ for some $x<u$. Then some index is removed from $\bigcap_{s} A_{s}$. However, this occurs at most b times. Thus, $\Phi_{\lim _{s} \Psi(g \upharpoonright s)}(g) \in S$.

Let $\alpha, \beta, \gamma \in\{1,<\omega, \omega\}$. We say that a $(\alpha, \beta \mid \gamma)$-degree a of a nonempty Π_{1}^{0} subset of $2^{\mathbb{N}}$ is $(\alpha, \beta \mid \gamma)$-complete if $\mathbf{b} \leq \mathbf{a}$ for every $(\alpha, \beta \mid \gamma)$-degree \mathbf{b} of a nonempty Π_{1}^{0} subset of $2^{\mathbb{N}}$. If a Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$ has an $(\alpha, \beta \mid \gamma)$-complete ($\alpha, \beta \mid \gamma$)-degree, then it is also called ($\alpha, \beta \mid \gamma$)-complete .

Corollary 21. A Π_{1}^{0} subset of $2^{\mathbb{N}}$ is $(1,<\omega)$-complete if and only if it is $(1, \omega \mid<\omega)$ complete if and only if it is $(<\omega, 1)$-complete.

Proof. Let DNR_{2} denote the set of all two-valued diagonally noncomputable functions, where a function $f: \mathbb{N} \rightarrow 2$ is diagonally noncomputable if $f(e) \neq \Phi_{e}(e)$ for any index e. This set is clearly homogeneous, and Π_{1}^{0}. Moreover, it is $(1,1)$-complete (hence $(\alpha, \beta \mid \gamma)$-complete for any $\alpha, \beta, \gamma \in\{1,<\omega, \omega\})$. Therefore, we can apply Theorem 20 with $S=\mathrm{DNR}_{2}$.

Corollary 22. There are Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ such that $P \oplus Q \equiv_{<\omega}^{1} P \nabla_{\infty} Q$. Indeed, if P is homogeneous and $Q \equiv_{1}^{1} P$, then $P \oplus Q \equiv_{<\omega}^{1} P \nabla_{\infty} Q$ is satisfied.
Proof. Let P be any homogeneous Π_{1}^{0} subset of $2^{\mathbb{N}}$. Then $P \oplus P$ is also homogeneous. As seen in Part I [29, Section 4], there is a (2,1)-computable function from $P \nabla_{\infty} P$ to $P \oplus P$, hence $P \oplus P \leq_{1}^{<\omega} P \nabla_{\infty} P$. Thus, by Theorem 20, $P \oplus P \leq_{<\omega}^{1} P \nabla_{\infty} P$. Recall from Part I [29, Proposition 38] that $Q \equiv_{1}^{1} P$ implies $P \nabla_{\infty} P \equiv_{1}^{1} P \nabla_{\infty} Q$. Hence, $Q \equiv{ }_{1}^{1} P$ implies $P \oplus Q \equiv{ }_{1}^{1} P \oplus P \leq_{<\omega}^{1} P \nabla_{\infty} P \equiv{ }_{1}^{1} P \nabla_{\infty} Q$.

It is natural to ask whether our hierarchy of disjunctive notions for homogeneous Π_{1}^{0} sets also collapses modulo the $(1,1)$-equivalence. The answer is negative. We say that a homogeneous set $\prod_{n} F_{n}$ is computably bounded if there is a computable function $l: \mathbb{N} \rightarrow \mathbb{N}$ such that $F_{n} \subseteq\{0, \ldots, l(n)\}$ for any $n \in \mathbb{N}$. Clearly, every homogeneous subset of Cantor space $2^{\mathbb{N}}$ is computably bounded. Cenzer-Kihara-Weber-Wu [12] introduced the notion of immunity for closed sets. A closed subset P of Cantor space $2^{\mathbb{N}}$ is immune if $T_{P}^{e x t}$ has no infinite computable subset.

Theorem 23. Let $P \subseteq 2^{\mathbb{N}}$ be a non-immune Π_{1}^{0} set, and $S_{0}, S_{1}, \ldots, S_{m} \subseteq \mathbb{N}^{\mathbb{N}}$ be special computably bounded homogeneous Π_{1}^{0} sets. Then $\bigcup_{i \leq m} S_{i} \not_{1}^{1} P$.
Proof. Let V_{0} be an infinite c.e. subtree of $T_{P}^{e x t}$. Assume that $\bigcup_{i \leq m} \prod_{n} F_{n}^{i} \leq_{1}^{1} P$ via a computable functional Φ, where, for each $i<m,\left\{F_{n}^{i}\right\}_{n \in \omega}$ is a uniformly Π_{1}^{0} sequence of subsets of $\left\{0,1, \ldots l_{i}\right\}$. Let $S_{i}^{\text {ext }}$ denotes the corresponding Π_{1}^{0} tree of $\prod_{n} F_{n}^{i}$, and let $L_{i}=\left\{\rho:\left(\exists \tau \in S_{i}^{\text {ext }}\right)(\exists i) \rho=\tau^{\sim}\langle i\rangle \notin S_{i}^{\text {ext }}\right\}$, for each i. Note that L_{i} differs from the set of leaves of the corresponding computable tree of $\prod_{n} F_{n}^{i}$. We first consider the set $L_{i}^{\Phi}=\left\{\rho \in L_{i}:\left(\exists \sigma \in V_{i}\right) \Phi(\sigma) \supseteq \rho\right\}$, where V_{i} for $0<i \leq m$ will be defined in the below construction. Note that L_{0}^{Φ} is computably enumerable. There are three cases:

1. L_{0}^{Φ} is infinite;
2. L_{0}^{Φ} is finite, hence $\Phi\left(\left[V_{0}\right]\right)$ is a subset of $\prod_{n} F_{n}^{0}$;
3. otherwise.
(Case 1): For any n, there exists $\rho \in L_{0}^{\Phi}$ of height $>n+1$, and $\rho(n) \in F_{n}^{0}$. From any computable enumeration of L_{0}^{Φ} we can calculate a computable path of $\prod_{n} F_{n}^{0}$. This contradicts the specialness of $S_{0}=\prod_{n} F_{n}^{0}$.
(Case 2): There exists a finite number k such that, for every string $\sigma \in V_{0}$ of height $>k, \Phi(\sigma)$ belongs to $S_{i}^{e x t}$. This also contradicts the specialness of $S_{0}=\prod_{n} F_{n}^{0}$.
(Case 3): There exists infinitely many strings $\sigma \in V_{0}$ such that $\Phi(\sigma)$ extends some string of L_{0}^{Φ}. Since L_{0}^{Φ} is finite, by the pigeon hole principle, there exists $\rho_{0} \in L_{0}^{\Phi}$ such that $\Phi(\sigma)$ extends ρ for infinitely many $\sigma \in V_{0}$. Fix such ρ_{0}, and let $V_{1}=\left\{\sigma \in V_{0}\right.$: $\Phi(\sigma) \supseteq \rho\}$. Then the downward closure of V_{1} is an infinite c.e. subtree of $T_{P}^{e x t}$, and $\Phi\left(\left[V_{1}\right]\right) \cap S_{0}=\emptyset$.

By iterating this procedure, we win the either of the cases 1 or 2 for some $i \leq m$. The reason is that, if the case 3 occurs for j, then V_{j+1} is defined as an infinite c.e. subtree of $T_{P}^{e x t}$ such that $\Phi\left(\left[V_{1}\right]\right) \cap\left(\bigcup_{i \leq j} S_{i}\right)=\emptyset$. Since $\bigcup_{i \leq m} \prod_{n} F_{n}^{i} \leq_{1}^{1} P \leq\left[V_{m}\right]$, i.e., $\Phi\left(\left[V_{m}\right]\right) \subseteq \bigcup_{i \leq m} S_{i}$, the case 3 does not occur for m.

Corollary 24. Let P, Q be any nonempty Π_{1}^{0} subsets of $2^{\mathbb{N}}$, and S, T be special computably bounded homogeneous Π_{1}^{0} sets. Then $S \cup T \not \AA_{1}^{1} P^{\wedge} Q$.

Proof. Clearly $P^{\wedge} Q$ is not immune. Thus, Theorem 23 implies $S \cup T \not \not_{1}^{1} P^{\wedge} Q$.
To understand degrees of difficulty of disjunctive notions, and to discover new easier (possibly infinitary) disjunctive notions, it is interesting to discuss contiguous degrees.
Definition 25. Let $(\alpha, \beta, \gamma),\left(\alpha^{*}, \beta^{*}, \gamma^{*}\right) \in\{1,<\omega, \omega\}^{3}$, and assume that $\leq_{\beta \mid \gamma}^{\alpha}$ is not finer than $\leq_{\beta^{*} \mid \gamma^{*}}^{\alpha^{*}}$. An $(\alpha, \beta \mid \gamma)$-degree $\mathbf{a}_{\beta \mid \gamma}^{\alpha}$ is $\left(\alpha^{*}, \beta^{*} \mid \gamma^{*}\right)$-contiguous if $\mathbf{a}_{\beta \mid \gamma}^{\alpha}$ contains at most one $\left(\alpha^{*}, \beta^{*} \mid \gamma^{*}\right)$-degree, that is to say, for any representatives $A, B \in \mathbf{a}_{\beta \mid \gamma}^{\alpha}$, we have that A is ($\alpha^{*}, \beta^{*} \mid \gamma^{*}$)-equivalent to B.

Corollary 26.

1. There is a $(1,<\omega)$-contiguous $(<\omega, 1)$-degree of Π_{1}^{0} sets of $2^{\mathbb{N}}$.
2. Every $(1,<\omega)$-degree which contains a homogeneous Π_{1}^{0} set or a Π_{1}^{0} antichain is not $(1,1)$-contiguous.
3. Every $(1, \omega \mid<\omega)$-degree of Π_{1}^{0} antichains is not $(1,<\omega)$-contiguous.
4. Every $(<\omega, 1)$-degree of Π_{1}^{0} antichains is not $(1, \omega)$-contiguous (hence, is not $(1, \omega \mid<\omega)$-contiguous).

Proof. (1) This follows from Theorem 20.
(2) If \mathbf{d} is a $(1,<\omega)$-degree of a homogeneous Π_{1}^{0} set S, then \mathbf{d} contains S and $S \nabla S$, since $S \equiv_{<\omega}^{1} S \nabla S$. However, $S \nabla S \ll_{1}^{1} S \cup S=S$ by Corollary 24. If \mathbf{d} is a $(1,<\omega)$-degree of a Π_{1}^{0} antichain P, then \mathbf{d} contains $\left(P \times 2^{\mathbb{N}}\right) \cup\left(2^{\mathbb{N}} \times P\right)$ and $P \nabla P$, since $P \equiv \equiv_{<\omega}^{1}\left(P \times 2^{\mathbb{N}}\right) \cup\left(2^{\mathbb{N}} \times P\right)$. However, $P \nabla P<_{1}^{1}\left(P \times 2^{\mathbb{N}}\right) \cup\left(2^{\mathbb{N}} \times P\right)$ holds by Lemma 6.
(3) Note that, for any Π_{1}^{0} set P and any clopen set C, it holds that $(P \cap C) \oplus(P \backslash C) \equiv_{1}^{1}$ P. Let \mathbf{d} be a $(1, \omega \mid<\omega)$-degree of a Π_{1}^{0} antichain P. Fix a clopen set C such that $P_{0}=P \cap C \neq \emptyset$, and $P_{1}=P \backslash C \neq \emptyset$. Then d contains $P_{0} \oplus P_{1}$ and $\bigoplus_{n}^{-}\left(P_{0} \nabla_{n} P_{1}\right)$, since $P_{0} \oplus P_{1} \equiv_{\omega \mid<\omega}^{1} \bigoplus_{n}^{-}\left(P_{0} \nabla_{n} P_{1}\right)$. However, $\bigoplus_{n}^{\vec{~}}\left(P_{0} \nabla_{n} P_{1}\right)<{ }_{<\omega}^{1} P_{0} \oplus P_{1}$ holds by Corollary 13.
(4) Let \mathbf{d} be a $(<\omega, 1)$-degree of a Π_{1}^{0} antichain P. Fix a clopen set C such that $P_{0}=P \cap C \neq \emptyset$, and $P_{1}=P \backslash C \neq \emptyset$. Then \mathbf{d} contains $P_{0} \oplus P_{1}$ and $P_{0} \nabla_{\omega} P_{1}$, since $P_{0} \oplus P_{1} \equiv_{1}^{<\omega} P_{0} \nabla_{\omega} P_{1}$. However, $P_{0} \nabla_{\omega} P_{1}<_{l} P_{0} \oplus P_{1}$ holds by Corollary 15.

3.2. Concatenation, Dynamic Disjunctions, and Contiguous Degrees

We next show the non-existence of nonzero $(1,1)$-contiguous $(1,<\omega)$-degree, that is, we will see the LEVEL 4 separation between $\left[\mathfrak{C}_{T}\right]_{1}^{1}$ and $\left[\mathfrak{C}_{T}\right]_{<\omega}^{1}$. Indeed, we show the strong anti-cupping result for $(1,1)$-degrees inside every nonzero $(1,<\omega)$-degree via the concatenation operation. The following theorem is one of the most important and nontrivial results in this paper.

Theorem 27. For any nonempty Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}, Q^{-} P$ does not $(1,1)$-cup to P. That is to say, for any $R \subseteq \mathbb{N}^{\mathbb{N}}$, if $P \leq_{1}^{1}\left(Q^{-} P\right) \otimes R$ then $P \leq_{1}^{1} R$.

Proof. We first note that P and Q may be assumed to be special. If P is not special, the assertion is trivial. If Q has a computable element, then $Q^{-} P$ also has a computable element. In this case, $\left(Q^{\wedge} P\right) \otimes R \equiv{ }_{1}^{1} R$, and then the assertion is obvious. Therefore, we may assume that Q is special. Let T_{P} and T_{Q} be corresponding trees of P and Q, and let L_{P} and L_{Q} denote all leaves of T_{P} and T_{Q}, respectively. Note that T_{Q} is infinite since Q is special. For a tree $T \subseteq 2^{<\mathbb{N}}$ and $g \in \mathbb{N}^{\mathbb{N}}$, we write $T \otimes\{g\}$ for $\{\sigma \oplus \tau: \sigma \in T \& \tau \subset g \&|\sigma|=|\tau|\}$. For computable trees S and T, we also write $S^{\wedge} T$ for $S \cup \bigcup_{\rho \in L_{S}} \rho^{\curvearrowright} T$, where L_{S} denotes the set of all leaves of S.

Assume $P \leq_{1}^{1}\left(Q^{-} P\right) \otimes R$ via a computable functional Φ. We need to construct a computable functional Ψ witnessing $P \leq_{1}^{1} R$. Fix $g \in R$. Then we will find a g-c.e. tree $D^{g} \subseteq T_{P}$ without dead ends. To this end, we inductively construct a uniformly g-computable sequences $\left\{D_{i}^{g}\right\}_{i \epsilon \omega},\left\{E_{i}^{g}\right\}_{i \in \omega}$ of g-computable trees, as follows.

$$
\begin{aligned}
E_{0}^{g} & =T_{Q} \otimes\{g\} ; & D_{0}^{g} & =\Phi\left(E_{0}^{g}\right) \\
E_{i+1}^{g} & =\left(T_{Q}-D_{i}^{g}\right) \otimes\{g\} ; & D_{i+1}^{g} & =\Phi\left(E_{i+1}^{g}\right) .
\end{aligned}
$$

Here $\Phi\left(E_{i}^{g}\right)$ denotes the image of E_{i}^{g} under a functional Φ, namely, $\Phi\left(E_{i}^{g}\right)=\{\tau \subseteq$ $\left.2^{<\mathbb{N}}:\left(\exists \sigma \in E_{i}^{g}\right) \tau \subseteq \Phi(\sigma)\right\}$. Finally, we define a g-c.e. tree $D^{g}=\bigcup_{n} D_{n}^{g}$. Now, we let W be the tree $T_{Q} \wedge T_{P}$, and then we observe $[W]=Q^{\wedge} P$ and $T_{Q} \subseteq W^{e x t}$.

Lemma 28. For any i, $D_{i}^{g} \subseteq T_{P}^{e x t}$ and $E_{i}^{g} \subseteq W^{\text {ext }} \otimes\{g\}$.
Proof. This lemma is proved by induction. First, our assumption $T_{Q} \subseteq W^{\text {ext }}$ ensures $E_{0}^{g}=T_{Q} \otimes\{g\} \subseteq W^{e x t} \otimes\{g\}$, and we also have $D_{0}^{g}=\Phi\left(E_{0}^{g}\right) \subseteq T_{P}^{e x t}$ since $\Phi\left(\left(Q^{-} P\right) \otimes R\right) \subseteq$ $\left[T_{P}\right]$ implies $\Phi\left(W^{\text {ext }} \otimes\{g\}\right) \subseteq T_{P}^{e x t}$ for $g \in R$. Assume the lemma holds for each $j \leq i$. We now show that the lemma also holds for $i+1$. By assumption, $T_{Q}{ }^{\wedge} D_{i}^{g} \subseteq T_{Q}{ }^{\wedge} T_{P}^{e x t}=$ $W^{\text {ext }}$. So by definition of E_{i+1}^{g}, we get $E_{i+1}^{g} \subseteq W^{\text {ext }} \otimes\{g\}$. Furthermore, we observe $D_{i+1}^{g}=\Phi\left(E_{i+1}^{g}\right) \subseteq \Phi\left(W^{e x t} \otimes\{g\}\right) \subseteq T_{P}^{e x t}$.

Lemma 29. There is a computable function Γ mapping each $g \in R$ to a g-computable sequence $\Gamma(g)=\left\{D_{n}^{g}\right\}_{n \in \omega}$ of g-computable trees.

Proof. Clearly E_{0}^{g} is computable in g, and $D_{i}^{g} \mapsto E_{i+1}^{g}$ is uniformly g-computable. Therefore, it suffices to show that we can construct D_{i}^{g} from E_{i}^{g} by a uniformly g computable way. Our proof is essentially an effectivization of the classical fact saying that the continuous image of a compact space is compact (see also [49]).

Assume that $E_{i}^{g} \subseteq 2^{<\mathbb{N}} \otimes\{g\}$ is given. For each $\sigma \in 2^{\mathbb{N}}$, if $\sigma \oplus(g \upharpoonright|\sigma|) \in E_{i}^{g}$, then put $l(\sigma)=|\Phi(\sigma \oplus(g \upharpoonright|\sigma|))|$. If $\sigma \oplus(g \upharpoonright|\sigma|) \notin E_{i}^{g}$, then put $l(\sigma)=\infty$. Note that
$l: 2^{<\mathbb{N}} \rightarrow \mathbb{N} \cup\{\infty\}$ is g-computable, since the notation $\Phi(\sigma)$ just means the computation of Φ restricted to step $|\sigma|$ with the oracle σ. By Lemma $28, \lim _{n} l(f \upharpoonright n)=\infty$ for any $f \in 2^{\mathbb{N}}$. Because, for any f with $f \oplus g \in\left[E_{i}^{g}\right]$, we have $\Phi(f \oplus g) \in\left[\Phi\left(E_{i}^{g}\right)\right] \subseteq$ $\Phi([W] \otimes\{g\}) \subseteq \Phi\left(\left(Q^{-} P\right) \otimes R\right) \subseteq P$, hence, $f \oplus g \in \operatorname{dom}(\Phi)$. Therefore, by compactness, for each $n \in \mathbb{N}$, there is $h_{n} \in \mathbb{N}$ such that $l(\sigma) \geq n$ for each $\sigma \in 2^{<\mathbb{N}}$ of length h_{n}. We can compute $h_{i}^{g}(n)=h_{n}$ with the oracle g, since l is g-computable. Here, we can compute a g-computable index of h_{i}^{g} from an index of E_{i}^{g}, uniformly in $i \in \mathbb{N}$ and $g \in \mathbb{N}^{\mathbb{N}}$. Thus, the relation $\tau \in D_{i}^{g}$ is equivalent to the g-computable condition that $\tau \subseteq \Phi(\sigma)$ for some $\sigma \in E_{i}^{g}$ of length $h_{i}^{g}(|\tau|)$, uniformly in $i \in \mathbb{N}$ and $g \in \mathbb{N}^{\mathbb{N}}$. Formally, the set $\left\{(\tau, i, g) \in 2^{<\mathbb{N}} \times \mathbb{N} \times \mathbb{N}^{\mathbb{N}}: \tau \in D_{i}^{g}\right\}$ is computable.

Define $L_{D_{i}}$ as the set of all leaves of the tree D_{i}^{g}, and define $L_{E_{i}}$ as the set of all leaves of the tree E_{i}^{g} for each i.
Lemma 30. Let X be D or E, and i be any natural number. For any $\rho \in L_{X_{i}}^{g}$, there are infinitely many nodes $\tau \in L_{X_{i+1}}^{g}$ which are extensions of ρ.
Proof. This lemma is proved by induction. First we pick $\rho \in L_{E_{0}}=L_{Q} \otimes\{g\}=\{\sigma \oplus \tau$: $\left.\sigma \in L_{Q} \& \tau \subset g \&|\sigma|=|\tau|\right\}$. We note that T_{P} is an infinite tree since P is special. By using our assumption $P \leq_{1}^{1}\left(Q^{-} P\right) \otimes R$ via Φ and the property $\left[T_{Q}\right] \otimes\{g\} \subseteq\left(Q^{\wedge} P\right) \otimes R$, the tree $D_{0}^{g}=\Phi\left(E_{0}^{g}\right)$ has a path, i.e., it is infinite. By definition, we have $E_{1}^{g}=T_{P} \frown D_{0}^{g} \supseteq$ $\rho^{\sim} D_{0}^{g}$, and so E_{1}^{g} has infinitely many extensions of ρ. Now, we assume this lemma for E and any $j \leq i$. For a given $\rho \in L_{D_{i}^{g}}$, there is a node $\sigma \in E_{i}^{g}$ such that $\Phi(\sigma)=\rho$ by our definition of $D_{i}^{g}=\Phi\left(E_{i}^{g}\right)$. Note that we have $\Phi\left(\sigma^{*}\right)=\rho$ for every $\sigma^{*} \in E_{i}^{g}$ extending such a σ, since $\Phi\left(\sigma^{*}\right) \in D_{i}^{g}$ extends $\Phi(\sigma)=\rho$ while ρ is a leaf of the tree D_{i}^{g}. Therefore, without loss of generality, we can pick σ as a leaf of E_{i}^{g}.

By induction hypothesis, σ has infinitely many extensions in E_{i+1}^{g}. By Lemma 28, we know $E_{i+1}^{g} \subseteq W^{\text {ext }} \otimes\{g\}$. This implies that $\Phi\left(E_{i+1}^{g}(\supseteq \sigma)\right)$ must be infinite whenever $E_{i+1}^{g}(\supseteq \sigma)$ is infinite, where $E(\supseteq \sigma)$ denotes the set of all nodes in a tree E extending σ. We now remark that, for any $\sigma^{\prime} \in \Phi\left(E_{i+1}^{g}(\supseteq \sigma)\right), \Phi\left(\sigma^{\prime}\right) \supseteq \Phi(\sigma)=\rho$. Thus, $\Phi\left(E_{i+1}^{g}(\supseteq \sigma)\right)$ gives infinitely many extensions of ρ, and our definition $D_{i+1}^{g}=\Phi\left(E_{i+1}^{g}\right)$ clearly implies the lemma for D and i. Now, we will show the lemma for E and $i+1$. By our definition of $E_{i+1}^{g}=\left(T_{Q^{\wedge}} D_{i}^{g}\right) \otimes\{g\}$, every $\rho \in L_{E_{i+1}}$ must be of form $\rho=\left(\sigma^{\wedge} \tau\right) \oplus(g \upharpoonright$ $\left.\left|\sigma^{-} \tau\right|\right)$ for some $\sigma \in L_{Q}$ and $\tau \in L_{D_{i}}$. So if $\tau \in L_{D_{i}}$ has infinitely many extensions in $L_{D_{i+1}}$ then $\rho=\left(\sigma^{\sim} \tau\right) \oplus\left(g \upharpoonright\left|\sigma^{-} \tau\right|\right)$ has infinitely many extensions in $L_{E_{i+2}}$. Thus, we have established the lemma for E and $i+1$. Now, the lemma follows by induction.

As a consequence of the previous lemma, D^{g} turns out to be an infinite g-c.e. subtree of T_{P} without dead ends for any $g \in P$. Hence, we can compute a path through D^{g} uniformly in g as follows.

Lemma 31. D^{g} has a g-computable path of T_{P} uniformly in $g \in R$.
Proof. The set of all infinite paths through a c.e. tree of $\mathbb{N}<\mathbb{N}$ without dead ends is also called a c.e. closed or overt ([49]) subset of $\mathbb{N}^{\mathbb{N}}$. If a nonempty set is c.e. closed, then one can easily find its computable element in a uniform way.

Then we define a computable functional Ψ as $\Psi(g)=\Delta\left(\bigcup_{n} \Gamma(g)\right)$ for any $g \in \mathbb{N}^{\mathbb{N}}$. This witnesses $P \leq_{1}^{1} R$ as desired.

Corollary 32. For every special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$, there exists a Π_{1}^{0} set $Q \subseteq 2^{\mathbb{N}}$ such that $Q<{ }_{1}^{1} P$ and $Q \equiv{ }_{<\omega}^{1} P$.
Proof. By Theorem 27, we have $P^{\wedge} P<_{1}^{1} P \equiv_{<\omega}^{1} P$.
Definition 33. Fix $\alpha, \beta, \gamma \in\{1,<\omega, \omega\}$. An $(\alpha, \beta \mid \gamma)$-degree $\mathbf{a} \in \mathcal{P}_{\beta \mid \gamma}^{\alpha}$ has the strong anticupping property if there is a nonzero $(\alpha, \beta \mid \gamma)$-degree $\mathbf{b} \in \mathcal{P}_{\beta \mid \gamma}^{\alpha}$ such that, for any $(\alpha, \beta \mid \gamma)$-degree \mathbf{c}, if $\mathbf{a} \leq \mathbf{b} \vee \mathbf{c}$, then $\mathbf{a} \leq \mathbf{c}$.

Corollary 34. Every nonzero $\mathbf{a} \in \mathcal{P}_{1}^{1}$ has the strong anticupping property.
Proof. Fix $P \in \mathbf{a}$. Let \mathbf{b} be the (1, 1)-degree of $P^{\wedge} P$. Then, by Theorem 27, for any $(1,1)$-degree \mathbf{c}, if $\mathbf{a} \leq \mathbf{b} \vee \mathbf{c}$, then $\mathbf{a} \leq \mathbf{c}$.

For Π_{1}^{0} sets, if P and Q are disjoint, then $P \oplus Q$ is equivalent to $P \cup Q$ modulo the (1,1)-equivalence, since $\mathcal{P}_{1}^{1}=\mathcal{P} / \operatorname{dec}_{\mathrm{p}}^{<\omega}\left[\Pi_{1}^{0}\right]$. However, if P and Q are not Π_{1}^{0}, the above claim is false, in general.

Proposition 35. For any special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$, there exists a $\left(\Pi_{1}^{0}\right)_{2}$ set $Q \subseteq 2^{\mathbb{N}}$ such that $P \cap Q=\emptyset$ but $P \cup Q<{ }_{1}^{1} P \oplus Q$.
Proof. Put $Q=\left(P^{\wedge} P\right) \backslash P$. For any $g \in Q$, there is a leaf $\rho \in L_{P}$ such that $\rho \subset g$. So we wait for such a leaf $\rho \in L_{P}$. Then $g^{\measuredangle|\rho|}$ belongs to P. Hence, $P \leq_{1}^{1} Q$. Thus, we have $P \leq_{1}^{1} P \oplus Q$, while $P \cup Q=P^{\wedge} P<_{1}^{1} P$ by Theorem 27.

Definition 36. The operation $\nabla: \mathcal{P}\left(\mathbb{N}^{\mathbb{N}}\right) \rightarrow \mathcal{P}\left(\mathbb{N}^{\mathbb{N}}\right)$ is defined as the map sending P to $P^{\nabla}=$ CPA $^{-} P$, where CPA denotes the set of all complete consistent extensions of Peano Arithmetic, and it is a $(1,1)$-complete Π_{1}^{0} subset of $2^{\mathbb{N}}$.

By the previous theorem, the derived set P^{∇} does not $(1,1)$-cup to P whenever P is Π_{1}^{0}. In particular, we have $P^{\nabla}<{ }_{1}^{1} P$. Recall from Part I [29, Proposition 38] that the operator $\nabla: \mathcal{P}_{1}^{1} \rightarrow \mathcal{P}_{1}^{1}$ introduced by $\left(\operatorname{deg}_{1}^{1}(P)\right)^{\nabla}=\operatorname{deg}_{1}^{1}\left(P^{\nabla}\right)$ is well-defined. Moreover, $\mathcal{P}_{1}^{1}\left(\leq \mathbf{1}^{\nabla}\right)=\left\{\mathbf{a} \in \mathcal{P}_{1}^{1}: \mathbf{a} \leq \mathbf{1}^{\nabla}\right\}$ is a principal prime ideal consisting of tree-immunefree Medvedev degrees [12]. Here, recall that a Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$ is tree-immune if $T_{P}^{e x t}$ contains no infinite computable subtree. Then, we also observe the following.
Proposition 37. Fix Π_{1}^{0} sets $P_{0}, P_{1}, Q_{0}, Q_{1} \subseteq 2^{\mathbb{N}}$, and assume that $P_{0} \frown P_{1} \leq_{1}^{1} Q_{0} \frown Q_{1}$. Then, either $P_{0} \leq 1 Q_{0}$ or $P_{1} \leq 1 Q_{1}^{1}$ holds. Moreover, if P_{0} is tree-immune and Q_{0} is nonempty, then $P_{1} \leq 1 Q_{1}$.

Proof. Assume that $P_{0} \wedge P_{1} \leq 1 Q_{0}^{1} Q_{1}$ via a computable function Φ. If $\Phi(\rho) \in T_{P_{0}}^{\text {ext }}$ for any leaf $\rho \in L_{Q_{0}}$, then $\Phi(g) \in\left[T_{P_{0}}\right]$ for any $g \in\left[Q_{0}\right]$, i.e., $P_{0} \leq_{1}^{1} Q_{0}$. If $\Phi(\rho) \notin T_{P_{0}}^{\text {ext }}$ for some leaf $\rho \in L_{Q_{0}}$, then there are only finitely many strings of $T_{P_{0}}$ extending $\Phi(\rho)$. Thus, $\left[T_{P_{0}}{ }^{\wedge} T_{P_{1}}\right] \cap[\Phi(\rho)]$ is essentially a sum of finitely many P_{1} 's, hence it is $(1,1)$ equivalent to P_{1}. Since a computable functional Φ maps $\rho^{-} Q_{1}$ to the above class, obviously, $P_{1} \leq_{1}^{1} Q_{1}$. If P_{0} is tree-immune, then $\Phi(\rho) \notin T_{P_{0}}^{\text {ext }}$ for some leaf $\rho \in L_{Q_{0}}$, since otherwise the image of $T_{Q_{0}}$ under Φ is included in $T_{P_{0}}$, and clearly it is infinite and computable. Therefore, we must have $P_{1} \leq 1 Q_{1}^{1}$.

Corollary 38. The operator $\nabla: \mathbf{a} \mapsto \mathbf{a}^{\nabla}$ is injective. Hence, ∇ provides an orderpreserving self-embedding of the (1,1)-degrees \mathcal{P}_{1}^{1} of nonempty Π_{1}^{0} subsets of $2^{\mathbb{N}}$.

Proof. By Cenzer-Kihara-Weber-Wu [12], CPA is tree-immune. Therefore, by Proposition 37, CPA $Q=Q^{\nabla} \leq_{1}^{1} P^{\nabla}=\mathrm{CPA}^{-} P$ implies $Q \leq_{1}^{1} P$.

It is natural to ask whether the image of \mathcal{P}_{1}^{1} under the operator is exactly $\mathcal{P}_{1}^{1}\left(\leq \mathbf{1}^{\nabla}\right)$. Unfortunately, it turns out to be false.

Proposition 39. There exists a non-tree-immune Π_{1}^{0} set $Q \subseteq 2^{\mathbb{N}}$ such that no nonempty Π_{1}^{0} sets $P_{0}, P_{1} \subseteq 2^{\mathbb{N}}$ satisfy $Q \equiv{ }_{1}^{1} P_{0} \frown P_{1}$. In particular, the operator $\nabla: \mathcal{P}_{1}^{1} \rightarrow \mathcal{P}_{1}^{1}\left(\leq \mathbf{1}^{\nabla}\right)$ is not surjective.
Proof. Let $\left\{Q_{n}\right\}_{n \in \mathbb{N}}$ be a computable sequence of nonempty Π_{1}^{0} subsets of $2^{\mathbb{N}}$ such that $\bigoplus_{n \in \mathbb{N}} Q_{n}$ forms a Turing antichain. Define $Q=Q_{0}{ }^{-}\left\{Q_{n+1}\right\}_{n \in \mathbb{N}}$. Suppose that there exist nonempty Π_{1}^{0} sets $P_{0}, P_{1} \subseteq 2^{\mathbb{N}}$ with $Q \equiv_{1}^{1} P_{0} \wedge P_{1}$. Choose computable functions $\Phi: Q \rightarrow P_{0} \wedge P_{1}$ and $\Psi: P_{0} \wedge P_{1} \rightarrow Q$. Since $\left\{Q_{n}\right\}_{n \in \mathbb{N}}$ forms a Turing antichain, $\Psi \circ \Phi$ is an identity function on Q. Consider two cases.

The first case is that $\Phi(Q) \subseteq P_{0}$. In this case, $\Psi\left(P_{0}\right)=Q$ since $\Psi \circ \Phi$ is identity. Thus, every string in $T_{Q}^{\text {ext }}$ is extended by some string in $\Psi\left(T_{P_{0}}\right)$. Moreover, he condition $T_{P_{0}} \subseteq T_{P_{0}-P_{1}}^{e x t}$ implies $\Psi\left(T_{P_{0}}\right) \subseteq T_{Q}^{e x t}$. Therefore, $\Psi\left(T_{P_{0}}\right)=T_{Q}^{e x t}$. Hence $T_{Q}^{e x t}$ is a computable tree without leaves. But this is impossible since Q contains no computable elements.

The second case is that $\Phi(Q) \nsubseteq P_{0}$, that is, there exists $f \in Q$ such that $\Phi(f) \in$ $\rho^{\wedge} P_{1}$, where ρ is a leaf of $T_{P_{0}}$. We have $f \equiv_{T} \Phi(f)$ since $\Psi \circ \Phi$ is identity. Note that we may assume that $f=\rho_{k} \mathcal{} f_{k}$ for some leaf $\rho_{k} \in T_{Q_{0}}$ and $f_{k} \in Q_{k}$, since even if $f \in Q_{0}$ the string $\Phi(f \upharpoonright n)$ extends ρ for sufficiently large n, and replace f with a string extending $f \upharpoonright n$ which is removed from Q_{0}. On the one hand, f is the only element in Q computable in f. On the other hand, every $\sigma \in T_{P_{0}}$ always extends to an element of P which is Turing equivalent to f. Thus, for every $\sigma \in T_{P_{0}}$, the string $\Phi(\sigma)$ must be compatible with ρ_{k}. Hence, $\Psi(P) \subseteq \rho_{k} \wedge Q_{k}$. This contradicts the property that $\Psi \circ \Phi(Q)=Q$.

Let O denote Kleene's system of ordinal notations (see [52]). As usual, this system involves a representation $|\cdot|_{O}: \subseteq \mathbb{N} \rightarrow \omega_{1}^{C K}$ of computable ordinals with a Π_{1}^{1} domain $\operatorname{dom}(|\cdot|)=O$, where $|0|_{O}=0,\left|2^{a}\right|_{O}=|a|_{O}+1$, and $\left|3 \cdot 5^{e}\right|_{O}=\sup _{n}\left|\Phi_{e}(n)\right|_{O}$ if $\Phi_{e}: \mathbb{N} \rightarrow \mathbb{N}$ is total and strictly increasing. Recall from Part I [29, Definition 62] that $P^{(a)}$ is the a-th derivative of P, i.e., the a-th iterated concatenation starting from P, for every $a \in O$.

Proposition 40. For any special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$, if $a, b \in O$ and $a<_{O} b$, then $P^{(b)}$ does not $(1,1)$-cup to $P^{(a)}$, i.e., for any set $R \subseteq \mathbb{N}^{\mathbb{N}}$, if $P^{(a)} \leq_{1}^{1} P^{(b)} \otimes R$ then $P^{(a)} \leq_{1}^{1} R$.
Proof. The assumption $a<_{O} b$ implies $2^{a} \leq_{O} b$. Therefore, we have $P^{(b)} \leq_{1}^{1} P^{\left(2^{a}\right)}$. By Theorem 27, $P^{\left(2^{a}\right)}$ does not $(1,1)$-cup to $P^{(a)}$. Thus, $P^{(b)}$ does not $(1,1)$-cup to $P^{(a)}$.

Fix any notation omega $\in O$ such that $\left|\Phi_{\text {omega }}(n)\right|_{O}=n$ for each $n \in \mathbb{N}$. Note that |omega $\left.\right|_{O}=\omega$.

Proposition 41. Let P be a special Π_{1}^{0} subset of $2^{\mathbb{N}}$. For any Π_{1}^{0} set $R \subseteq 2^{\mathbb{N}}$, if $P \leq_{<\omega}^{1}$ $P^{\text {(omega) }} \otimes R$, then $P \leq{ }_{<\omega}^{1} R$.

Proof. As seen in Part I [29, Section 2.4], for every Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}, P \leq{ }_{<\omega}^{1}$ implies $P \leq_{t t,<\omega}^{1} Q$. Since $P^{(\text {omega) }} \otimes R$ is $\Pi_{1}^{0}, P \leq_{<\omega}^{1} P^{\text {(omega) }} \otimes R$ implies $P \leq_{t t,<\omega}^{1} P^{\text {(omega) }} \otimes R$, and then there is a $(1, n)$-truth-table function $\Gamma: P^{(\text {omega })} \otimes R \rightarrow P$ for some $n \in \mathbb{N}$. In particular, $\Gamma:\left(\rho_{n+1}-P^{\left(\Phi_{\text {onega }}(n+1)\right)}\right) \otimes R \rightarrow P$, where ρ_{n+1} is the $(n+1)$-th leaf of T_{P}. By modifying Γ, we can easily construct a $(1, n)$-truth-table function $\Theta: P^{(n+1)} \otimes R \rightarrow P$.

Assume that Θ is $(1, n)$-truth-table via n many total computable functions $\Theta_{0}, \ldots, \Theta_{n-1}$. We define a computable function $\gamma: n \times 2^{<\mathbb{N}} \rightarrow 2^{<\mathbb{N}}$ as follows. If $\Theta_{m}(\sigma) \in T_{P}$, then put $\gamma(m, \sigma)=\Theta_{m}(\sigma)$. If $\Theta_{m}(\sigma) \supsetneq \rho$ for some $\rho \in L_{P}$, then we define $\gamma(m, \sigma)$ to be such ρ. Let $z(\sigma)=\min \left\{m<n: \Theta_{m}(\sigma) \in T_{P}\right\}$. Then, for $\sigma \in 2^{<\mathbb{N}}$, the value $\Phi(\sigma)$ is defined by $\prod_{m \leq z(\sigma)} \gamma(m, \sigma)$. Then Φ ensures that $P^{(n)} \leq_{1}^{1} P^{(n+1)} \otimes R$. By Theorem 27, we have $P^{(n)} \leq_{1}^{1} R$. Consequently, $P \leq_{<\omega}^{1} R$.

Corollary 42. For every $a \in O$ there exists a computable function g such that, for any Π_{1}^{0} index e, if P_{e} is special then the following properties hold.

1. $P_{g(e, b)}<{ }_{1}^{1} P_{g(e, c)}$ holds for every $c<_{O} b<_{O} a$, indeed, $P_{g(e, b)}$ does not $(1,1)$-cup to $P_{g(e, c)}$.
2. $P_{g(e, b)} \equiv_{\omega}^{1} P_{g(e, c)}$ for every $b, c<_{O} a$.

Proof. Let $g(e, b)$ be an index of $P_{e}^{(b)}$. Then, the desired conditions follow from Proposition 40.

For any reducibility notion r, and any ordered set $\left(I, \leq_{I}\right)$, a sequence $\left\{\mathbf{a}_{i}\right\}_{i \in I}$ of r degrees is r-noncupping if, for any $i<_{I} j$, the condition $\mathbf{a}_{i} \leq_{r} \mathbf{b}$ must be satisfied whenever $\mathbf{a}_{i} \leq_{r} \mathbf{a}_{j} \vee \mathbf{b}$, for any r-degree \mathbf{b}. In particular, any r-noncupping sequence is strictly decreasing, in the sense of r-degrees.

Corollary 43. For any nonzero $(1, \omega)$-degree $\mathbf{a} \in \mathcal{P}_{\omega}^{1}$, there is a (1,1)-noncupping computable sequence of $(1,1)$-degrees inside \mathbf{a} of arbitrary length $\alpha<\omega_{1}^{C K}$.

3.3. Infinitary Disjunctions along the Straight Line

We next see the LEVEL 4 separation between $\left[\mathfrak{C}_{T}\right]_{\omega \mid<\omega}^{1}$ and $\left[\mathfrak{C}_{T}\right]_{\omega}^{1}$. Indeed, we show the non-existence of a $(<\omega, 1)$-contiguous $(1, \omega)$-degree. We introduce the LCM disjunctions of $\left\{P_{i}\right\}_{i \in \mathbb{N}}$ as $\nabla_{n \in \mathbb{N}} P_{n}=\bigcup_{n \in \mathbb{N}}\left(P_{0}{ }^{\wedge} \ldots P_{n}\right)$. This is a straightforward infinitary iteration of the concatenations. If $P_{n}=P$ for all $n \in \mathbb{N}$, we write ∇P instead of $\nabla_{n} P_{n}$.

Proposition 44. Let $\left\{P_{i}\right\}_{i \in \mathbb{N}}$ be a computable collection of nonempty Π_{1}^{0} subsets of $2^{\mathbb{N}}$. Then $\nabla_{n} P_{n}$ is $(1,1)$-equivalent to a dense Σ_{2}^{0} set in Cantor space $2^{\mathbb{N}}$.

Proof. Let S denote the set $\left\{g \in\{0,1, \forall\}^{\mathbb{N}}:(\exists n \in \mathbb{N})\right.$ (count $\left.\left.(g)=n \& \operatorname{tail}(g) \in P_{n}\right)\right\}$, where count $(g)=\#\{n \in \mathbb{N}: g(n)=\sharp\}$. Then, S is clearly a Σ_{2}^{0} subset of $\{0,1, \sharp\}^{\mathbb{N}}$, and it is easy to see $S \equiv_{1}^{1} \nabla_{n} P_{n}$. For any $\sigma \in\{0,1, \sharp\}^{<\mathbb{N}}$, we have $\left.\sigma^{-}\langle\sharp\rangle\right\rangle h \in S$ for any $h \in P_{\text {count }(\sigma)+1}$. Thus, S intersects with any clopen set.

Example 45. Let MLR denote the set of all Martin-Löf random reals. Then MLR \equiv_{1}^{1} ∇P for any nonempty Π_{1}^{0} set $P \subseteq$ MLR, by Kuc̆era-Gács Theorem (see [48]), while MLR $<{ }_{1}^{1} P$ for any Π_{1}^{0} set $P \subseteq$ MLR as follows.

Proposition 46 (Lewis-Shore-Sorbi [39]). No somewhere dense set in Baire space (1,1)-cup to a closed set in Baire space. In other words, for any somewhere dense set $D \subseteq \mathbb{N}^{\mathbb{N}}$, any closed set $C \subseteq \mathbb{N}^{\mathbb{N}}$, and any set $R \subseteq \mathbb{N}^{\mathbb{N}}$, if $C \leq_{1}^{1} D \otimes R$ then $C \leq_{1}^{1} R$.

Proposition 47. For any somewhere dense set $D \subseteq \mathbb{N}^{\mathbb{N}}$ and any special closed set $C \subseteq \mathbb{N}^{\mathbb{N}}$, we have $C \not_{1}^{<\omega} D$.

Proof. If $\left\{D_{i}\right\}_{i<b}$ is a finite partition of D, then $\bigcup_{i<b} \mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}\left(D_{i}\right)=\mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}(D)$, where the topological closure of D, in the standard Baire topology on $\mathbb{N}^{\mathbb{N}}$, is denoted by $\mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}(D)$. To show the claim, for every $x \in \mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}(D)$ we have a sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}} \subseteq D$ converging to x. By pigeonhole principle, there is $i<b$ such that there are infinitely many k such that $x_{k} \in D_{i}$. For such i, clearly $x \in \mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}\left(D_{i}\right)$. However, since the somewhere density of D implies that $\mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}(D)$ contains some clopen set, and hence $\mathrm{Cl}_{\mathbb{N}^{\mathrm{N}}}\left(D_{i}\right)$ contains a computable element r for some i. Additionally, $\mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}(C)=C$ since C is closed. If $C \leq_{1}^{<\omega} D \otimes R$, then there is a finite partition $\left\{D_{i}\right\}_{i<b}$ of D such that $C \leq_{1}^{1} D_{i}$ via a computable function $\Phi_{e(i)}$. Fix i such that $\mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}\left(D_{i}\right)$ contains a computable element. Therefore, $C=\mathrm{Cl}_{\mathbb{N}^{\mathbb{N}}}(C) \leq_{1}^{1} \mathrm{Cl}_{\mathbb{N}^{\mathrm{N}}}\left(D_{i}\right) \supseteq\{r\}$ via $\Phi_{e(i)}^{f}$. Hence, C contains a computable element.

Especially, if P is a special Π_{1}^{0} set, then there is no nonzero $(<\omega, 1)$-degree of Π_{1}^{0} subsets of $2^{\mathbb{N}}$ below the $(<\omega, 1)$-degree of ∇P. We will see that the set ∇P has a stronger property.

Theorem 48. Let P be any Π_{1}^{0} subset of $2^{\mathbb{N}}$. Then, for every special Π_{1}^{0} set $Q \subseteq 2^{\mathbb{N}}$, there exists $a \Pi_{1}^{0}$ set $\widehat{P} \subseteq \nabla P$ such that $Q \not \Varangle_{<\omega}^{1} \widehat{P}$.

The n-th bounded learner will be diagonalized above the n-th leaf of the spine T_{P}, where note that $P=\left[T_{P}\right] \subseteq \nabla P$. To make a desired Π_{1}^{0} set inside the Σ_{2}^{0} set ∇P, we need to specify upper bounds of mind-changes to diagonalize all bounded learners. Unfortunately, we cannot give a computable sequence of such upper bounds. However, our finite injury construction will specify such upper bounds by a left-c.e. way, which will be called a timekeeper.

Definition 49. A sequence $\left\langle t_{n}\right\rangle_{n \in \mathbb{N}}$ of finite strings is a timekeeper if there is a uniformly c.e. collection of finite sets, $\left\{V_{n}\right\}_{n \in \mathbb{N}}$, such that, for any $n \in \mathbb{N},\left|t_{n}\right|=\left|V_{n}\right|$ and $t_{n}(i)$ is given as the stage at which the i-th element is enumerated into V_{n}, for each $i<\left|t_{n}\right|$.

Definition 50. For a finite string $\tau \in \mathbb{N}^{<\mathbb{N}}$, the τ-delayed $(|\tau|+1)$-derivative $P^{(\tau)}$ is inductively defined as follows:

$$
P^{(\tau \mid 0)}=P ; \quad P^{(\tau \mid i+1)}=\bigcup\left\{\sigma^{\prime} P: \sigma \in L_{P(\tau \mid i)} \&|\sigma| \geq \tau(i)\right\} \text { for each } i<|\tau| .
$$

Proposition 51. If $\tau(m)=0$ for each $m<|\tau|$, then $P^{(\tau)}=P^{(|\tau|+1)}$.
Proof. Straightforward from the definition.
Lemma 52. For any timekeeper $\left\langle t_{n}\right\rangle_{n \in \mathbb{N}}$, the following conditions hold.

1. $P^{\left(t_{n}\right)} \subseteq P^{\left(t_{n} \mid+1\right)}$. Hence, $P^{-}\left\{P^{\left(t_{n}\right)}\right\}_{n \in \mathbb{N}} \subset \nabla P$.
2. $P^{\left(t_{n}\right)}$ is Π_{1}^{0}, uniformly in n. Hence, $P^{-}\left\{P^{\left(t_{n}\right)}\right\}_{n \in \mathbb{N}}$ is Π_{1}^{0}.

Proof. (1) Straightforward. (2) We construct a computable tree $T^{\left(t_{n}\right)}$ corresponding to $P^{\left(t_{n}\right)}$. Each $\sigma \in 2^{\mathbb{N}}$ can be represented as $\sigma=\rho_{0}{ }^{\wedge} \rho_{1}{ }^{\wedge} \ldots{ }^{\wedge} \rho_{k}{ }^{\wedge} \tau$, where $\rho_{m} \in L_{P}$ for any $m \leq k$, and $\left\rangle \neq \tau \in T_{P}\right.$. Then $\sigma \in T^{\left(t_{n}\right)}$ if and only if $t_{n}(k)$ holds by stage $\left|\rho_{0} \wedge \rho_{1}{ }^{\wedge} \ldots \rho_{k}\right|$. Then $T^{\left(t_{n}\right)}$ is a computable tree, and clearly $P^{\left(t_{n}\right)}=\left[T^{\left(t_{n}\right)}\right]$.

Remark. The delayed derivative construction is useful to bound the complexity of the set, since the recursive meet $P^{-}\left\{P^{\left(t_{n} \mid+1\right)}\right\}_{n \in \mathbb{N}}$ of the standard derivatives along a timekeeper $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ is only assured to be $\Pi_{1}^{0, n^{\prime}}$.

Proof of Theorem 48. Let Q be a special Π_{1}^{0} set, and P be a given Π_{1}^{0} set. By a uniformly computable procedure, from P, we will construct a timekeeper $\left\{t_{n}\right\}_{n \in \mathbb{N}}$. The desired class \widehat{P} will be given by $\widehat{P}=P^{\sim}\left\{P^{\left(t_{n}\right)}\right\}_{n \in \mathbb{N}}$.

Requirements. We need to ensure, for all $n \in \mathbb{N}$, the following:

$$
R_{n}: Q \leq_{<\omega}^{1} \widehat{P} \text { via } n \rightarrow\left(\exists \Delta_{n}\right) \Delta_{n} \in Q .
$$

Here, Δ_{n} ranges over computable elements of $2^{\mathbb{N}}$.
Action of an R_{n}-strategy. Fix an effective enumeration $\left\{\rho_{n}: n \in \mathbb{N}\right\}$ of all leaves of T_{P}. An R_{n}-strategy uses nodes extending the n-th leaf ρ_{n} of T_{P}, and it constructs a finite sequence $t_{n}[s]$, a sequence $\tau_{n}[s]$ of strings, and a computable function Δ_{n}. For any n, put $t_{n}[0]=\langle \rangle$, and $\tau_{n}[0]=\rho_{n}$ at stage 0 . An R_{n}-strategy acts at stage $s+1$ if the following condition holds:

$$
\left(\exists \rho \in T_{P}^{s}\right)(\exists e<n) \Phi_{e}\left(\tau_{n}[s]^{-} \rho\right) \in T_{Q} \& \Phi_{e}\left(\tau_{n}[s]^{-} \rho\right) \supsetneq \Phi_{e}\left(\tau_{n}[s]\right) .
$$

If an R_{n}-strategy acts at stage $s+1$ then, for a witness $\rho \in T_{P}^{s}$, we pick $\rho^{*} \in L_{P}$ extending ρ. Then let us define $\tau_{n}[s+1]=\tau_{n}[s]^{-} \rho^{*}, t_{n}[s+1]=t_{n}[s]^{-}\langle | \tau_{n}[s+1]| \rangle$, and $\Delta_{e, n} \upharpoonright l=\Phi_{e}\left(\tau_{n}[s+1]\right)$, where l is the length of $\Phi_{e}\left(\tau_{n}[s+1]\right)$. Otherwise, $t_{n}[s+1]=t_{n}[s], \tau_{i}[s+1]=\tau_{i}[s]$. Note that the mapping $(n, m) \mapsto \tau_{n}(m)$ is partial computable. At the end of the construction, set $t_{n}=\bigcup_{s} t_{n}[s]$. As mentioned above, \widehat{P} is defined by $\widehat{P}=P^{-}\left\{P^{\left(t_{n}\right)}\right\}_{n \in \mathbb{N}}$.

Claim. An R_{n}-strategy acts at most finitely often for each n.
Clearly $\tau_{n}=\bigcup_{s} \tau_{n}[s]$ is a computable string. If R_{n} acts infinitely often, then $\Delta_{e, n}=$ $\Phi_{e}\left(\tau_{n}\right) \in Q$ for some $e<n$ by our choice of τ_{n}. Since $\Phi_{e}\left(\tau_{n}\right)$ is computable, Q contains a computable element. However, this contradicts our assumption that Q is special. Therefore, we concludes the claim. As a corollary, $\left\langle t_{n}\right\rangle_{n \in \mathbb{N}}$ is a timekeeper.
Claim. $P \not \nless<\omega_{1} \widehat{P}$.
Let $\tau_{n}=\bigcup_{s} \tau_{n}[s]$. By induction we show that $\tau_{n} \in \rho_{n}{ }^{\wedge} T_{P\left(n_{n}\right.}^{e x t}$. First we have the following observation:

$$
\tau_{n}[0]=\rho_{n} \in \rho_{n}{ }^{\wedge} T_{P}^{e x t}=\rho_{n}{ }^{\wedge} T_{P\left(n_{n} \mid 0\right)}^{e x x} \subseteq \rho_{n}{ }^{\wedge} T_{P\left(t_{n}[0]\right)}^{e x t} .
$$

Assume $\tau_{n}[s] \in \rho_{n}{ }^{\wedge} T_{P(t n s] s}^{e x t}$. If $\tau_{n}[s+1]=\tau_{n}[s]^{-} \rho^{*}$ for $\rho^{*} \in L_{P}$ then $t_{n}[s+1]=$ $t_{n}[s]^{\wedge}\langle | \tau_{n}[s+1]| \rangle$. In particular $\tau_{n}[s+1] \in \rho_{n}{ }^{\wedge} L_{P\left(n_{n}[s+1] \mid t_{n}[s]\right)}$ and $\left|\tau_{n}[s+1]\right| \geq t_{n}[s+$
$1]\left(\left|t_{n}[s]\right|\right)$. Hence, by the definition of $P^{\left(t_{n}[s+1]\right)}$, it is easy to see that $\tau_{n}[s+1]^{-} P \subseteq$ $\rho_{n}{ }^{-} P^{\left(t_{n}[s+1]\right)}$. Thus, $\tau_{n}[s+1] \in \rho_{n}{ }^{\wedge} T_{P(t n[s+1])}^{e x t}$. So we obtain $\tau_{n} \in \rho_{n}{ }^{\wedge} T_{P\left(t_{n}\right)}^{e x t}$ and by our construction of τ_{n} there is no $\rho \in P$ and $e<n$ such that $\Phi_{e}\left(\tau_{n}{ }^{-} \rho\right) \supsetneq \Phi_{e}\left(\tau_{n}\right)$. Since $\Phi_{e}\left(\tau_{n}\right)$ is a finite string, for any $g \in \rho_{n}{ }^{\sim} T_{P\left(t_{n}\right)}^{e x t} \subset \hat{P}$ extending $\tau_{n}, \Phi_{e}(g)$ is also a finite string. Consequently, this g witnesses that $P \not \not_{<\omega}^{1} \widehat{P}$.

Corollary 53. 1. For every special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$, we have $\nabla P<_{1}^{<\omega} P \equiv_{\omega}^{1} \nabla P$.
2. For every special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$ there exists $a \Pi_{1}^{0}$ set $Q \subseteq 2^{\mathbb{N}}$ with $Q<_{1}^{<\omega} P \equiv_{\omega}^{1} Q$.

Proof. By applying Theorem 48 to $Q=P$, we have $P \not_{<\omega}^{1} \widehat{P} \geq_{<\omega}^{1} \nabla P$. Moreover, $P \oplus \widehat{P}<_{1}^{<\omega} P \equiv{ }_{\omega}^{1} P \oplus \widehat{P}$.

3.4. Infinitary Disjunctions along ill-Founded Trees

We next show the LEVEL 4 separation between $\left[\mathfrak{C}_{T}\right]_{\omega}^{1}$ and $\left[\mathfrak{C}_{T}\right]_{\omega}^{<\omega}$. The following theorem concerning the hyperconcatenation $\boldsymbol{\nabla}$ and the $(1, \omega)$-reducibility \leq_{ω}^{1} is a counterpart of Theorem 27 concerning the concatenation ∇ and the (1,1)-reducibility \leq_{1}^{1}.
Theorem 54. For every special Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$, and for any R, if $P \leq_{\omega}^{1}(Q \vee P) \otimes R$ then $P \leq_{\omega}^{1} R$ holds.

Proof. Let $T_{\mathbf{V}}$ denote the corresponding computable tree for $Q \mathbf{\nabla} P$. The heart of $T_{\mathbf{V}}$, $T_{\mathbf{V}}^{\ominus}$, is the set of all strings $\gamma \in T_{\mathbf{V}}$ such that $\gamma \subseteq \prod_{i<n}\left(\sigma_{i}{ }^{`}\langle\tau(i)\rangle\right)$ for some $\left\{\sigma_{i}\right\}_{i<n} \subseteq L_{P}$, and $\tau \in T_{Q}^{e x t}$. If γ is precisely of the form $\prod_{i<n}\left(\sigma_{i}\ulcorner\langle\tau(i)\rangle)\right.$, then γ is called a quasi-root of T_{V}^{\ominus}.

Lemma 55. The heart $T_{\mathbf{V}}^{\ominus}$ is a Π_{1}^{0} subtree of $T_{\mathbf{V}}$. Moreover, the complexity of the set of all quasi-roots of T_{∇}^{\ominus} is also Π_{1}^{0}.

Proof. The first assertion is trivial. For the second assertion, by an effective way, every string $\sigma \in 2^{<\mathbb{N}}$ is uniquely decomposed into $\sigma_{0}, m_{0}, \sigma_{1}, m_{1}, \ldots, \sigma_{n}, m_{n}, \rho$ such that $\sigma=\left(\prod_{i<n}\left(\sigma_{i}^{\sim} m_{i}\right)\right)^{-} \rho$ and $\left\{\sigma_{i}\right\}_{i \leq n} \subseteq L_{P}$. Recall from Part I [29, Definition 70] that $\left\langle\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}, \rho\right\rangle$ is written as $\operatorname{cut}(\sigma),\left\langle m_{0}, m_{1}, \ldots, m_{n}\right\rangle$ is written as walk (σ), and ρ is written as tail ${ }^{\text {cut }}(\sigma)$. Clearly, one can effectively determine whether tail ${ }^{\text {cut }}(\sigma)=\langle \rangle$ or not. Now, σ is a quasi-root of T_{\vee}^{\ominus} if and only if $\sigma \in T_{\vee}^{\ominus}$ and $\operatorname{tail}^{\text {cut }}(\sigma)=\langle \rangle$.

Now we assume $P \leq_{\omega}^{1}(Q \mathbf{v} P) \otimes R$ via a learner Ψ. To show the theorem it is needed to construct a new learner Δ witnessing $P \leq_{\omega}^{1} R$. Fix $g \in R$.

Lemma 56. There exists a string $\rho \in T_{\checkmark}^{\ominus}$ such that, for every $\tau \in T_{\vee}^{\ominus}$ extending ρ, we have $\Psi(\rho \oplus(g \upharpoonright|\rho|))=\Psi(\gamma)$ for any γ with $\rho \oplus(g \upharpoonright|\rho|) \subseteq \gamma \subseteq \tau \oplus(g \upharpoonright|\tau|)$.

Proof. If Lemma 56 were false, we could inductively define an increasing sequence $\left\{\tau_{i}\right\}_{i \epsilon \omega}$ of strings. First let $\tau_{0}=\langle \rangle$, and τ_{i+1} be the least $\tau \supsetneq \tau_{i}$ such that $\tau \in T_{\nabla}^{\ominus}$ and $\Psi(\tau \oplus(g \upharpoonright(|\tau|+i))) \neq \Psi(\rho \oplus(g \upharpoonright(|\rho|+j)))$ for some $i, j<2$. Since $\bigcup_{i} \tau_{i} \in Q \vee P$, clearly $\left(\bigcup_{i} \tau_{i}\right) \oplus g \in(Q \vee P) \otimes R$. However, based on the observation $\left(\bigcup_{i} \tau_{i}\right) \oplus g$, the learner Ψ changes his mind infinitely often. This means that his prediction $\lim _{n} \Psi\left(\left(\bigcup_{i} \tau_{i}\right) \oplus g\right)$ diverges. This contradicts our assumption that $P \leq_{\omega}^{1}(Q \vee P) \otimes R$ via the learner Ψ. Thus, our claim is verified.

Lemma 56 can be seen as an analogy of an observation of Blum-Blum [4] in the theory of inductive inference for total computable functions on \mathbb{N}. Such ρ is sometimes called a locking sequence.

Lemma 57. There exist an effective procedure $\Theta: \mathbb{N}^{\mathbb{N}} \times 2^{<\mathbb{N}} \times 2 \rightarrow \mathbb{N}^{\mathbb{N}}$ and $a \Pi_{1}^{0}$ condition φ such that, for any $g \in Q, \varphi(g, \rho, m)$ holds for some $\rho \in 2^{<\mathbb{N}}$, and $m<2$, and that for any $\rho \in 2^{<\mathbb{N}}$ and $m \in \mathbb{N}$, if $\varphi(g, \rho, m)$ holds, then $\Theta(g, \rho, m) \in P$.

Proof. The desired condition $\varphi(g, \rho, m)$ is given by the conjunction of the following three conditions.

1. ρ is a quasi-root of T_{V}^{\ominus}.
2. $\tau^{\sim}\langle m\rangle \in T_{Q}^{e x t}$.
3. $\Psi(\rho \oplus(g \upharpoonright|\rho|))=\Psi(\gamma)$ for any $\gamma \in\left(\rho^{\wedge} T_{P}{ }^{\wedge}\langle m\rangle \curvearrowright T_{P}\right) \otimes\{g\}$.

By Lemma 55 , the first condition is Π_{1}^{0}. The second condition is clearly Π_{1}^{0}. Since Ψ is total computable, the last condition is also Π_{1}^{0}. Consequently, φ is Π_{1}^{0}. We first show that $\varphi(g, \rho, m)$ holds for some $\rho \in 2^{<\mathbb{N}}$ and $m \in \mathbb{N}$. Let $\rho \in T_{V}^{\ominus}$ be a locking sequence in Lemma 56, which forces Ψ to stop changing the mind. Without loss of generality, we can assume that ρ satisfies the condition (1). Since $\tau \in T_{Q}^{e x t}$, there exists $m \in \omega$ such that $\tau^{\sim}\langle m\rangle \in T_{Q}^{e x t}$, and this m satisfies the condition (2). From conditions (1) and (2), we conclude that $\left.\rho^{\wedge} P^{\wedge}\langle m\rangle^{\wedge} P=\left(\rho^{\wedge} P\right) \cup\left(\rho^{\wedge} \bigcup_{\sigma \in L_{P}} \sigma^{\wedge}\langle m\rangle\right\rangle^{\wedge} P\right) \subseteq T_{\nabla}^{\ominus}$, and so condition (3) is satisfied. Since we assume that $P \leq_{\omega}^{1}(Q \vee P) \otimes\{g\}$ via the learner Ψ, if $\varphi(g, \rho, m)$ is satisfied, then the following holds.

$$
P \leq_{1}^{1}\left(\rho^{\wedge} P^{\wedge}\langle m\rangle^{\wedge} P\right) \otimes\{g\} \text { via } \Phi_{\Psi(g\lceil\rho \mid \oplus \rho)} .
$$

Our proof process in Theorem 27 is effective with respect to g, m, and an index of $\Phi_{\Psi(g\lceil\rho \mid \oplus \rho)}$ which are calculated from g, ρ, and an index of Ψ. To see this, recall our proof in Theorem 27. Define $V_{P}^{m}=T_{P} \cup\left\{\rho^{\curvearrowleft}\langle m\rangle: \rho \in L_{P}\right\}$.

$$
\begin{array}{ll}
E_{0}^{g, \rho, m}=V_{P}^{m} \otimes\{g\} ; & D_{0}^{g, \rho, m}=\Phi_{\Psi(g \uparrow|\rho| \oplus)}\left(E_{0}^{g, \rho, m}\right) . \\
E_{i+1}^{g, \rho, m}=\left(V_{P}^{m}-D_{i}^{g, \rho, m}\right) \otimes\{g\} ; & D_{i+1}^{g, \rho, m}=\Phi_{\Psi(g \upharpoonright \rho \mid \oplus \rho)}\left(E_{i+1}^{g, \rho, m}\right) .
\end{array}
$$

Then, as in the proof of Theorem 27, $D^{g, \rho, m}=\bigcup_{i \in \mathbb{N}} D_{i+1}^{g, \rho, m}$ is a subtree of V_{P}, and it has no dead ends. Moreover, this construction is clearly c.e. uniformly in g, ρ, and m. Therefore, we can effectively choose an element $\Theta(g, \rho, m) \in\left[D^{g, \rho, m}\right] \subseteq P$, uniformly in g, ρ, and m.

Now, a procedure to get $P \leq_{\omega}^{1} R$ is follows. For given $g \in Q$, on the i-th challenge of a learner Δ, the learner Δ chooses the lexicographically i-th least pair $\langle\rho, m\rangle \in 2^{<\mathbb{N}} \times \mathbb{N}$, and Δ calculates an index $e(\rho, m)$ of the computable functional $g \mapsto \Theta(g, \rho, m)$, that is to say, $\Delta(g \upharpoonright s)=e(\rho, m)$ at the current stage s. At each stage in the i-th challenge, the learner Δ tests whether the Π_{1}^{0} condition $\varphi(g, \rho, m)$ is refuted. When $\varphi(g, \rho, m)$ is refuted, Δ changes his mind, and goes to the $(i+1)$-th challenge. Clearly $\lim _{s} \Delta(g \upharpoonright s)$ converges, and $\Phi_{\lim _{s} \Delta(g \upharpoonright s)}(g) \in P$ holds.

Corollary 58. For every special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$ there exists a Π_{1}^{0} set $Q \subseteq 2^{\mathbb{N}}$ with $Q<{ }_{\omega}^{1} P \equiv_{\omega}^{<\omega} Q$.

Proof. By Theorem 54, if $P \leq_{\omega}^{1}(P \vee P) \otimes 2^{\mathbb{N}} \equiv{ }_{1}^{1} P \vee P$, then $P \leq_{\omega}^{1} 2^{\mathbb{N}}$, i.e., P contains a computable element. As P is special, we must have $P \not_{\omega}^{1} P \vee P$. As seen in Part I [29, Section 4], $P \leq_{\omega}^{<\omega} P \vee P$. Therefore, for $Q=P \vee P$, we have $Q<{ }_{\omega}^{1} P \equiv_{\omega}^{<\omega} Q$.

Corollary 59. Every nonzero $\mathbf{a} \in \mathcal{P}_{\omega}^{1}$ has the strong anticupping property.
Proof. Fix $P \in \mathbf{a}$. Let \mathbf{b} be the $(1, \omega)$-degree of $P \vee P$. Then, by Theorem 54, for any $(1, \omega)$-degree \mathbf{c}, if $\mathbf{a} \leq \mathbf{b} \vee \mathbf{c}$, then $\mathbf{a} \leq \mathbf{c}$.

The primary motivation of the second author behind introducing the notions of learnability reduction was to attack an open problem on Π_{1}^{0} subsets of $2^{\mathbb{N}}$. The problem (see Simpson [57]) is whether the Muchnik degrees ($(\omega, 1)$-degrees) of Π_{1}^{0} classes are dense. Cenzer-Hinman [13] showed that the Medvedev degrees ($(1,1)$-degrees) of Π_{1}^{0} classes are dense. One can easily apply their priority construction to prove densities of $(1,<\omega)$-degrees and $(<\omega, 1)$-degrees. The reason is that the arithmetical complexity of $A_{\beta}^{\alpha}=\left\{(i, j) \in \mathbb{N}^{2}: P_{i} \leq_{\beta}^{\alpha} P_{j}\right\}$ is Σ_{3}^{0} for $(\alpha, \beta) \in\{(1,1),(1,<\omega),(<\omega, 1)\}$, where $\left\{P_{e}\right\}_{e \in \mathbb{N}}$ is an effective enumeration of all Π_{1}^{0} subsets of $2^{\mathbb{N}}$. It enables us to use a priority argument directly. However, for other reductions (α, β), the complexity of A_{β}^{α} seems to be Π_{1}^{1}. For instance, Cole-Simpson [17] showed that $\left\{\langle i, j\rangle: P_{i} \leq_{1}^{\omega} P_{j}\right\}$ is Π_{1}^{1}-complete. This observation hinders us from using priority arguments. Hence it seems to be a hard task to prove densities of such (α, β)-degrees. Nevertheless, our disjunctive notions turn out to be useful to obtain some partial results.

Theorem 60 (Weak Density). For nonempty Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$, if $P<_{\omega}^{1} Q$ and $P<_{\omega}^{<\omega} Q$ then there exists a Π_{1}^{0} set $R \subseteq 2^{\mathbb{N}}$ such that $P<_{\omega}^{1} R \ll_{\omega}^{1} Q$.

Proof. Assume $P<_{\omega}^{1} Q$ and $P<_{\omega}^{<\omega} Q$. Let $R=(Q \mathbf{v} Q) \otimes P$. Then $P \leq_{\omega}^{1} R \leq_{\omega}^{1} Q$. Moreover $Q \not \not_{\omega}^{1} P$ implies $Q \not \ddagger_{\omega}^{1} R=(Q \vee Q) \otimes P$, by non-cupping property of $\mathbf{\nabla}$. On the other hand, $R=(Q \vee Q) \otimes P{\nless{ }_{\omega}^{1}}_{1}$ s since $Q \vee Q \equiv_{\omega}^{<\omega} Q \not_{\omega}^{<\omega} P$. Consequently, $P<{ }_{\omega}^{1} R=(Q \vee Q) \otimes P<{ }_{\omega}^{1} Q$.

One can introduce a transfinite iteration $P^{\text {(a) }}$ of hyperconcatenation along $a \in O$ (see also the nested tape model introduced in Part I [29, Section 5.6]).

Proposition 61. For any special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$, if $a, b \in O$ and $a<_{O} b$, then $P^{\mathbf{v}}{ }^{(b)}$ does not $(1, \omega)$-cup to $P^{\mathbf{\nabla}(a)}$, i.e., for any set $R \subseteq \mathbb{N}^{\mathbb{N}}$, if $P^{\mathbf{V}(a)} \leq_{\omega}^{1} P^{\mathbf{\nabla}(b)} \otimes R$ then $P^{\mathbf{\nabla}(a)} \leq_{\omega}^{1} R$.

Proof. The assumption $a<_{O} b$ implies $2^{a} \leq_{O} b$. Therefore, we have $P^{\mathbf{v}(b)} \leq_{\omega}^{1} P^{\mathbf{v}\left(2^{a}\right)}$. By Theorem 54, $P^{\mathbf{V}\left(2^{a}\right)}$ does not $(1, \omega)$-cup to $P^{\mathbf{v}(a)}$. Thus, $P^{\mathbf{v}(b)}$ does not $(1, \omega)$-cup to $P^{\text {(a) }}$.

Fix again any notation omega $\in O$ such that $\left|\Phi_{\text {omega }}(n)\right|_{o}=n$ for each $n \in \mathbb{N}$. Recall from Part I that a learner Ψ is eventually-Popperian if, for every $f \in \mathbb{N}^{\mathbb{N}}, \Phi_{\lim _{s} \Psi(f \upharpoonright s)}(f)$ is total whenever $\lim _{s} \Psi(f \upharpoonright s)$ converges.

Proposition 62. Let P be a special Π_{1}^{0} subset of $2^{\mathbb{N}}$. For any set $R \subseteq \mathbb{N}^{\mathbb{N}}$, if $P \leq_{\omega}^{<\omega}$ $P^{\mathbf{\nabla} \text { (omega) }} \otimes R$ by a team of eventually-Popperian learners, then $P \leq_{\omega}^{<\omega} R$.

Proof. If $P \leq_{\omega}^{<\omega} P^{\mathbf{v} \text { (omega) }} \otimes R$ via a team of eventually-Popperian learners, then this reduction is also witnessed by a team of n eventually-Popperian learners, for some $n \in \mathbb{N}$. In particular, by modifying this reduction, we can easily construct a team of n eventually-Popperian learners witnessing $P \leq_{\omega}^{<\omega} P^{\mathbf{v}(n+1)} \otimes R$. In this case, it is not hard to show $P^{\nabla(n)} \leq_{1}^{1} P^{\mathbf{\nabla}(n+1)} \otimes R$. By Theorem 54, $P^{\mathbf{v}(n)} \leq_{\omega}^{1} R$. Hence, $P \leq_{\omega}^{<\omega} R$ is witnessed by a team of n learners, as seen in Part I [29, Proposition 75].

Corollary 63. For every $a \in O$ there exists a computable function g such that, for any Π_{1}^{0} index e, if P_{e} is special then the following properties hold.

1. $P_{g(e, b)}<{ }_{\omega}^{1} P_{g(e, c)}$ holds for every $c<_{O} b<_{O} a$, indeed, $P_{g(e, b)}$ does not $(1, \omega)$-cup to $P_{g(e, c)}$.
2. $P_{g(e, b)} \equiv_{1}^{\omega} P_{g(e, c)}$ for every $b, c<_{O} a$.

Proof. Let $g(e, b)$ be an index of $P_{e}^{\boldsymbol{\nabla}}{ }^{(b)}$. Then the desired conditions follow from Proposition 61.

Corollary 64. For any nonzero $(\omega, 1)$-degree $\mathbf{a} \in \mathcal{P}_{1}^{\omega}$, there is a $(1, \omega)$-noncupping computable sequence of $(1, \omega)$-degrees inside \mathbf{a} of arbitrary length $\alpha<\omega_{1}^{C K}$.

3.5. Infinitary Disjunctions along Infinite Complete Graphs

The following is the last LEVEL 4 separation result, which reveals a difference between $\left[\mathfrak{C}_{T}\right]_{\omega}^{<\omega}$ and $\left[\mathfrak{C}_{T}\right]_{1}^{\omega}$.

Theorem 65. For every special Π_{1}^{0} set $P, Q \subseteq 2^{\mathbb{N}}$ there exists a Π_{1}^{0} set $\widehat{P} \subseteq 2^{\mathbb{N}}$ such that $Q \not ڭ_{\omega}^{<\omega} \widehat{P}$ and \widehat{P} is $(\omega, 1)$-equivalent to P.

Proof. We construct a Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$ by priority argument with infinitely many requirements $\left\{\mathcal{P}_{e}, \mathcal{G}_{e}\right\}_{e \in \mathbb{N}}$. Each preservation $\left(\mathcal{P}_{e^{-}}\right)$strategy will injure our coding (\mathcal{G}-) strategy of P into \widehat{P} infinitely often. In other words, for each \mathcal{P}_{e}-requirement, \widehat{P} contains an element f_{e}^{\star} which is a counterpart of each $f \in P$, but each f_{e}^{\star} has infinitely many noises. Indeed, to satisfy the \mathcal{P}-requirements, we need to ensure that there is no uniformly team-learnable way to extract the information of $f \in P$ from its code $f_{e}^{\star} \in \widehat{P}$. Nevertheless, the global (\mathcal{G}-)requirement must guarantee that $f \in P$ is computable in $f_{e}^{\star} \in \widehat{P}$ via a non-uniform way. Let $\left\{\Psi_{i}^{e}\right\}_{i<b(e)}$ be the e-th team of learners, where $b=b(e)$ is the number of members of the e-th team.

Requirements. It suffices to construct a Π_{1}^{0} set $\widehat{P} \subseteq 2^{\mathbb{N}}$ satisfying the following requirements.

$$
\begin{aligned}
& \mathcal{P}_{e}:\left(\exists g_{e} \in \widehat{P}\right)(\forall i<b)\left(\lim _{s} \Psi_{i}^{e}\left(g_{e} \upharpoonright s\right) \downarrow \rightarrow \Phi_{\lim _{s} \Psi_{i}^{e}\left(g_{e} \upharpoonright s\right)}\left(g_{e}\right) \notin Q\right) . \\
& \mathcal{G}_{e}:(\forall f \in P) f \leq_{T} f_{e}^{\star} .
\end{aligned}
$$

Here, the desired Π_{1}^{0} set $\widehat{P} \subseteq 2^{\mathbb{N}}$ will be of form $P \cup\left\{f_{e}^{\star}: e \in \mathbb{N} \& f \in P\right\}$.

Construction. We will construct a computable sequence of computable trees $\left\{T_{s}\right\}_{s \in \mathbb{N}}$, and a computable sequence of natural numbers $\left\{h_{s}\right\}_{s \in \mathbb{N}}$. The desired set \widehat{P} is defined as $\left[\cup_{s} T_{s}\right]$, and h_{s} is called active height at stage s. We will ensure that the tree T_{s} consists of strings of length $\leq h_{s}$. The strategy for the \mathcal{P}_{e}-requirement acts on some string extending the e-th leaf ρ_{e} of T_{CPA}.

We will inductively define a string $\gamma_{e}(\alpha, s) \in T_{s}$ extending ρ_{e} for each $s \in \mathbb{N}$ and $\alpha \in T_{P}$ of height $\leq s$. The map $\alpha \mapsto \lim _{s} \gamma_{e}(\alpha, s)$ restricted to $T_{P}^{e x t}$ will provide a treeisomorphism between $T_{P}^{e x t}$ and $\left(\bigcup_{s} T_{s}\right)^{e x t}$, i.e., $\widehat{P} \cap\left[\rho_{e}\right]$ will be constructed as the set of all infinite paths of the tree generated by $\left\{\lim _{s} \gamma_{e}(\alpha, s): \alpha \in T_{P}\right\}$. In other words, f_{e}^{\star} is defined by $\bigcup_{\alpha \subset f} \lim _{s} \gamma_{e}(\alpha, s)$, and each string $\gamma_{e}(\alpha, s)$ is an approximation of $g_{e} \in \widehat{P}$ witnessing to satisfy the \mathcal{P}_{e} requirements.

We will also define a finite set $M_{e}(\alpha, s) \subseteq b$ for each $s \in \mathbb{N}$ and $\alpha \in T_{P}$ of height $\leq s$. Intuitively, $M_{e}(\alpha, s)$ contains any index of the learner who have been already changed his mind $|\alpha|$ times along any string extending α of length s, and the string $\gamma_{e}(\alpha, s)$ also plays the role of an active node for learners in $M_{e}(\alpha, s)$. To satisfy the \mathcal{P}_{e}-requirement, each learner in $M_{e}(\alpha, s)$ can act on $\gamma_{e}(\alpha, s)$ at stage $s+1$, and then he extends $\gamma_{e}(\alpha, s)$ to some new string $\gamma_{e}(\alpha, s+1)$ of length h_{s}, and injures all constructions of $\gamma_{e}(\beta, s+1)$ for $\beta \supsetneq \alpha$. We assume that, for any $\alpha \in T_{P}$ of length $s,\left\{M_{e}(\beta, s)\right\}_{\beta \subseteq \alpha}$ is a partition of $\{i \in \mathbb{N}: i<b\}$.

Stage 0 . At first, put $T_{s}=\{\langle \rangle\}, h_{s}=0, M_{e}(\langle \rangle, 0)=\{i \in \mathbb{N}: i<b\}$, and $\gamma_{e}(\langle \rangle, 0)=\rho_{e}$.
Stage $s+1$. At the beginning of each stage $s+1$, assume that T_{s} and h_{s} are given, and that $M_{e}(\beta, s)$ and $\gamma_{e}(\beta, s)$ have been already defined for each $s \in \mathbb{N}$ and $\beta \in T_{P}$ of height $\leq s$. For each $i, e \in \mathbb{N}$ and each $\tau \in 2^{\mathbb{N}}$, the length-of-agreement function $l_{e}^{i}(\tau)$ is the maximal $l \in \mathbb{N}$ such that $\Phi_{\Psi_{i}^{e}(\tau)}(\tau ; x) \downarrow$ for each $x<l$, and $\Phi_{\Psi_{i}^{e}(\tau)}(\tau) \in T_{Q}$.

Fix a string $\alpha \in T_{P}$ of length s, and then each i belongs to some $M_{e}(\beta, s)$ for $\beta \subseteq \alpha$. In this case, the learner Ψ_{i}^{e} can act on $\gamma_{e}(\beta, s)$. Then, we say that the learner Ψ_{i}^{e} requires attention along α at stage $s+1$ if there exists $\tau \in T_{s}$ of length h_{s} extending $\gamma_{e}(\beta, s)$ such that either of the following conditions are satisfied.

1. Ψ_{i}^{e} changes on $\left(\gamma_{e}(\beta, s), \tau\right]$, i.e., there is a string σ such that $\gamma_{e}(\beta, s) \subsetneq \sigma \subseteq \tau$ and $\Psi_{i}^{e}\left(\sigma^{-}\right) \neq \Psi_{i}^{e}(\sigma)$.
2. or, $l_{e}^{i}(\tau)>\max \left\{l_{e}^{i}(\sigma): \sigma \subseteq \gamma_{e}(\beta, s)\right\}$.

Let R_{s} be the set of all $\alpha \in T_{P}$ of length s such that some learner requires attention along α at stage $s+1$. For $\alpha \in R_{s}$, let $m(\alpha)$ be the least m such that there is a string $\beta \subseteq \alpha$ of length m and an index $i \in M_{e}(\beta, s)$ such that Ψ_{i}^{e} requires attention along α at stage $s+1$. That is to say, some learner Ψ_{i}^{e} who has already changed his mind $m(\alpha)$ times requires attention.

Claim. For any $\alpha, \beta \in R_{s}$, we have that $\alpha \upharpoonright m(\alpha)=\beta \upharpoonright m(\beta)$ holds or $\alpha \upharpoonright m(\alpha)$ is incomparable with $\beta \upharpoonright m(\beta)$.

Put $R_{s}^{*}=\left\{\alpha \upharpoonright m(\alpha): \alpha \in R_{s}\right\}$. Then, for $\beta \in R_{s}^{*}$, let $i(\beta)$ be the least $i \in M(m(\alpha), s)$ such that Ψ_{i}^{e} requires attention along some $\alpha \supseteq \beta$ of length s at stage $s+1$. For $\beta \in R_{s}^{*}$, we say that $\Psi_{i(\beta)}^{e}$ acts at stage $s+1$. Moreover, for $\beta \in R_{s}^{*}$, let $\tau(\beta)$ be the lexicographically least string $\tau \in T_{s}$ of length h_{s} extending $\gamma_{e}(\beta, s)$ such that τ
witnesses that the learner $\Psi_{i(\beta)}^{e}$ requires attention along some $\alpha \supseteq \beta$ of length s at stage $s+1$. Then $R_{s}^{* *} \subseteq R_{s}^{*}$ is defined as the set of all $\beta \in R_{s}^{*}$ such that $\Psi_{i(\beta)}^{e}$ changes on $\left(\gamma_{e}(\beta, s), \tau(\beta)\right]$.

For each $\beta \in R_{s}^{* *}$, put $M_{e}(\beta, s+1)=M_{e}(\beta, s) \backslash\{i(\beta)\}$, and put $M_{e}\left(\beta^{\wedge} i, s+1\right)=$ $M_{e}(\beta, s) \cup\{i(\beta)\}$ for $\beta^{\wedge} i \in T_{P}$. For any $\beta \notin R_{s}^{* *}$, put $M_{e}(\beta, s+1)=M_{e}(\beta, s)$. For each $\beta \in R_{s}^{*}$, if $\beta^{\wedge} \sigma \in T_{P}$ is length $\leq s$ for some $\sigma \in 2^{<\mathbb{N}}$, then put $\gamma_{e}\left(\beta^{\wedge} \sigma, s+1\right)=\tau(\beta)^{\curlyvee} \sigma$. If $\alpha \in T_{P}$ of length $\leq s$ has no substring $\beta \in R_{s}^{*}$, then put $\gamma_{e}(\alpha, s+1)=\gamma_{e}(\alpha, s)$. For each $\alpha \in T_{P}$ of length s, if $\left|\gamma_{e}(\alpha, s+1)\right|<h_{s}$ then pick the lexicographically least node $\gamma_{e}^{*}(\alpha, s+1) \in T_{s}$ such that $\left|\gamma_{e}^{*}(\alpha, s+1)\right|=h_{s}$ and $\gamma_{e}^{*}(\alpha, s+1) \supseteq \gamma_{e}(\alpha, s+1)$. Otherwise put $\gamma_{e}^{*}(\alpha, s+1)=\gamma_{e}(\alpha, s+1)$. Then, for each $\alpha^{\wedge} i \in T_{P}$ of length s, put $\gamma_{e}(\alpha \subsetneq i, s+1)=\gamma_{e}^{*}(\alpha, s+1)^{\wedge} i$. Put $h_{s+1}=\max \left\{\left|\gamma_{e}(\alpha, s+1)\right|: \alpha \in T_{P} \&|\alpha|=s+1\right\}$. Then we define the approximation of \widehat{P} at stage $s+1$ as follows.

$$
T_{s+1}=T_{s} \cup\left\{\sigma \subseteq \gamma_{e}(\alpha, s+1)^{-} 0^{h_{s+1}-\left|\gamma_{e}(\alpha, s+1)\right|}: \alpha \in T_{P} \&|\alpha|=s+1 \& e \in \mathbb{N}\right\} .
$$

Finally, we set $\widehat{P}=\left[\bigcup_{s \in \mathbb{N}} T_{s}\right]$. Clearly, \widehat{P} is a nonempty Π_{1}^{0} subset of $2^{\mathbb{N}}$.
Lemma 66. $\lim _{s} \gamma_{e}(\alpha, s)$ converges for any $e \in \mathbb{N}$ and $\alpha \in T_{P}$.
Proof. Note that $\gamma_{e}(\alpha, s)$ is incomparable with $\gamma_{e}(\beta, s)$ whenever α is incomparable with β. Therefore, $\gamma_{e}(\alpha, s)$ changes only when some learner in $M_{e}(\beta, s)$ acts for some $\beta \subseteq \alpha$. Assume that $\gamma_{e}(\alpha, s)$ changes infinitely often. Then there is $\beta \subseteq \alpha, t \in \mathbb{N}$ and $i \in M_{e}(\beta, t)$ such that $i \in M_{e}(\beta, s)$ for any $s \geq t$, and $\Psi_{i(\beta)}^{e}$ acts infinitely often. However, by our construction, $g_{e}^{\alpha}=\lim _{s} \gamma_{e}(\alpha, s)$ is computable. Additionally, since $i \in M_{e}(\beta, s)$ for any $s \geq t, \lim _{n} \Psi_{i(\beta)}^{e}\left(g_{e}^{\alpha} \upharpoonright n\right)$ exists, and $\Phi_{\lim _{n}} \Psi_{i(\beta)}^{e}\left(g_{e}^{\alpha} \upharpoonright n\right)\left(g_{e}^{\alpha}\right) \in Q$. This contradicts our assumption that Q is special.

For $f \in P$, put $f_{e}^{\star}=\bigcup_{\alpha \subset f} \lim _{s} \gamma_{e}(\alpha, s)$. By this lemma, such f_{e}^{\star} exists, and we observe that \widehat{P} can be represented as $\widehat{P}=P \cup\left\{f_{e}^{\star}: e \in \mathbb{N} \& f \in P\right\}$. For each $e \in \mathbb{N}$ and $\alpha \in T_{P}$, we pick $t(e, \alpha) \in \mathbb{N}$ such that $\gamma_{e}(\alpha, s)=\gamma_{e}(\alpha, t)$ for any $s, t \geq t(e, \alpha)$.
Lemma 67. The \mathcal{P}-requirements are satisfied.
Proof. Assume that $P \leq_{\omega}^{<\omega} \widehat{P}$ via the e-th team $\left\{\Psi_{i}\right\}_{i<b}$ of learners. Then, for any $f \in P$, there is $i<b$ such that $\lim _{n} \Psi_{i}\left(f_{e}^{\star} \upharpoonright n\right)$ exists and $\Phi_{\lim _{n} \Psi_{i}\left(f_{e}^{\star}\lceil n)\right.}\left(f_{e}^{\star}\right) \in Q$. Since $\lim _{n} \Psi_{i}\left(f_{e}^{\star} \upharpoonright n\right)$ exists, there exists $\alpha \subset f$ such that $i \in M_{e}(\alpha, t(e, \alpha))$. However, by the previous claim, no learner in $\bigcup_{\beta \subseteq \alpha} M_{e}(\beta, t(e, \alpha))$ requires attention after stage $t(e, \alpha)$. This implies $\lim _{n} l_{e}^{i}\left(f_{e}^{\star} \upharpoonright n\right)<\infty$. In other words, $\Phi_{\lim _{n} \Psi_{i}\left(f_{e}^{\star}\lceil n)\right.}\left(f_{e}^{\star}\right) \notin Q$. This contradicts our assumption.

Lemma 68. The \mathcal{G}-requirements are satisfied.
Proof. It suffices to show that $f \leq_{T} f_{e}^{\star}$ for any $e \in \mathbb{N}$ and $f \in P$. Assume that $\left\{\Psi_{i}\right\}_{i<b}$ is the e-th team of learners. Let $H_{e}(f)$ denote the set of all $i<b$ such that $\lim _{n} \Psi_{i}\left(f_{e}^{\star} \upharpoonright n\right)$ converges. By our construction and the first claim, if $i \in H_{e}(f)$ then $i \in M_{e}\left(\alpha_{i}, t\left(e, \alpha_{i}\right)\right)$ for some $\alpha_{i} \subset f$. If $i \notin H_{e}(f)$ then for any $\alpha \subset f$ there exists s such that $i \in M_{e}(\alpha, s)$. Set $l=\max _{i \in H_{e}(f)}\left|\alpha_{i}\right|$, and $u=\max _{i \in H_{e}(f)} t\left(e, \alpha_{i}\right)$. For $n>l$, to compute $f(n)$, we wait for stage $v(n)>u$ such that, for every $i \notin H_{e}(f), i \in M_{e}(f \upharpoonright m, v(n))$ for some $m \geq n+1$.

Figure 2: The dynamic proof model for a special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$.

By our construction, it is easy to see that we can extract $f(n)$ from $\gamma_{e}(f \upharpoonright n+1, v(n))$, by a uniformly computable procedure in n.

Thus, we have $Q \not \leq_{\omega}^{<\omega} \widehat{P}$ by Lemma 67, and $P \subseteq \widehat{P} \subseteq \widehat{\operatorname{Deg}}(P)$ by Lemma 68. Thus, \widehat{P} is a Π_{1}^{0} set satisfying $Q \not \not_{\omega}^{<\omega} \widehat{P} \equiv_{1}^{\omega} P$. This concludes the proof.

Corollary 69. For any nonempty Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$, if $Q \leq_{\omega}^{<\omega} \widehat{\operatorname{Deg}}(P)$ then Q contains a computable element.

Proof. Assume that $Q \leq_{\omega}^{<\omega} \widehat{\operatorname{Deg}}(P)$ is satisfied. Suppose that Q has no computable element. Then, for $P, Q \subseteq 2^{\mathbb{N}}$, we obtain $Q \not \not_{\omega}^{<\omega} \widehat{P} \equiv_{1}^{\omega} P$ by Theorem 65. Note that the condition $\widehat{P} \equiv_{1}^{\omega} P$ implies $\widehat{P} \subseteq \widehat{\operatorname{Deg}}(P)$. Then, $Q \leq_{\omega}^{<\omega} \widehat{\operatorname{Deg}}(P) \leq_{1}^{1} \widehat{P}$. It involves a contradiction.

4. Applications and Questions

4.1. Diagonally Noncomputable Functions

A total function $f: \mathbb{N} \rightarrow \mathbb{N}$ is a k-valued diagonally noncomputable function if $f(n)<k$ for any $n \in \mathbb{N}$ and $f(e) \neq \Phi_{e}(e)$ whenever $\Phi_{e}(e)$ converges. Let DNR_{k} denote the set of all k-valued diagonally noncomputable functions. Jockusch [33] showed that every DNR_{k} function computes a DNR_{2} function. However, he also noted that there is no uniformly computable algorithm finding a DNR_{2} function from any DNR_{k} function.

Theorem 70 (Jockusch [33]).

1. $\mathrm{DNR}_{k}>{ }_{1}^{1} \mathrm{DNR}_{k+1}$ for any $k \in \mathbb{N}$.
2. $\mathrm{DNR}_{2} \equiv_{1}^{\omega} \mathrm{DNR}_{k}$ for any $k \in \mathbb{N}$.

Proposition 71.

1. If a $(1, \omega)$-degree \mathbf{d}_{ω}^{1} of subsets of $\mathbb{N}^{\mathbb{N}}$ contains a (1, 1)-degree \mathbf{h}_{1}^{1} of homogeneous sets, then \mathbf{h}_{1}^{1} is the greatest $(1,1)$-degree inside \mathbf{d}_{ω}^{1}.
2. If an $(<\omega, 1)$-degree $\mathbf{d}_{1}^{<\omega}$ of Π_{1}^{0} subsets of $2^{\mathbb{N}}$ contains a $(1,<\omega)$-degree $\mathbf{h}_{<\omega}^{1}$ of homogeneous Π_{1}^{0} sets, then $\mathbf{h}_{<\omega}^{1}$ is the least $(1,<\omega)$-degree inside $\mathbf{d}_{1}^{<\omega}$.
3. Every $(<\omega, 1)$-degree of Π_{1}^{0} subsets of $2^{\mathbb{N}}$ contains at most one $(1,1)$-degree of homogeneous Π_{1}^{0} sets.

Proof. For the item 1, we can see that, for any $P \subseteq \mathbb{N}^{\mathbb{N}}$ and any closed set $Q \subseteq \mathbb{N}^{\mathbb{N}}$, if $P \leq_{\omega}^{1} Q$ then there is a node σ such that $Q \cap[\sigma]$ is nonempty and $P \leq_{1}^{1} Q \cap[\sigma]$. That is, σ is a locking sequence. If Q is homogeneous, then $P \leq_{1}^{1} Q \equiv_{1}^{1} Q \cap[\sigma]$. The item 2 follows from Theorem 20. By combining the item 1 and 2, we see that every $(<\omega, 1)$ degree of Π_{1}^{0} subsets of $2^{\mathbb{N}}$ contains at most one $(1,<\omega)$-degree of homogeneous Π_{1}^{0} sets which contains at most one (1,1)-degree of homogeneous Π_{1}^{0} sets.

Corollary 72. $\mathrm{DNR}_{3}<_{1}^{<\omega} \mathrm{DNR}_{2}$, and $\mathrm{DNR}_{3}<_{\omega}^{1} \mathrm{DNR}_{2}$.
Proof. By Jockusch [33], we have $\mathrm{DNR}_{3}<_{1}^{1} \mathrm{DNR}_{2}$. Thus, Proposition 71 implies the desired condition.

By analyzing Jockusch's proof [33] of the Muchnik equivalence of DNR_{2} and DNR_{k} for any $k \geq 2$, we can directly establish the $(<\omega, \omega)$-equivalence of DNR_{2} and DNR_{k} for any $k \geq 2$. However, one may find that Jockusch's proof [33] is essentially based on the Σ_{2}^{0} law of excluded middle. Therefore, the fine analysis of this proof structure establishes the following theorem.

Theorem 73. $\mathrm{DNR}_{k} \vee \mathrm{DNR}_{k}<{ }_{1}^{1} \mathrm{DNR}_{k^{2}}$ for any k.
Proof. As Jockusch [33], fix a computable function $z: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that $\Phi_{z(v, u)}(z(v, u))$ $=\left\langle\Phi_{v}(v), \Phi_{u}(u)\right\rangle$ for any $v, u \in \mathbb{N}$. Note that every $g \in\left(k^{2}\right)^{\mathbb{N}}$ determines two functions $g_{0} \in k^{\mathbb{N}}$ and $g_{1} \in k^{\mathbb{N}}$ such that $g(n)=\left\langle g_{0}(n), g_{1}(n)\right\rangle$ for any $n \in \mathbb{N}$. We define a uniform sequence $\left\{\Gamma_{\nu}\right\}_{v \in \mathbb{N}}, \Delta$ of computable functions as $\Gamma_{v}(g ; u)=g_{1}(z(v, u))$, and $\Delta(g ; v)=g_{0}\left(z\left(v, u_{v}\right)\right)$, where $u_{v}=\min \left\{u \in \mathbb{N}: g_{1}(z(v, u))=\Phi_{u}(u) \downarrow\right\}$. Fix $g \in \operatorname{DNR}_{k^{2}}$. Since $\left\langle g_{0}(z(v, u)), g_{1}(z(v, u))\right\rangle=g(z(v, u)) \neq\left\langle\Phi_{v}(v), \Phi_{u}(u)\right\rangle$, either $g_{0}(z(v, u)) \neq \Phi_{v}(v)$ or $g_{1}(z(v, u)) \neq \Phi_{u}(u)$ holds for any $v, u \in \mathbb{N}$. We consider the following Σ_{2}^{0} sentence:

$$
(\exists v)(\forall u)\left(\Phi_{u}(u) \downarrow \rightarrow g_{1}(z(v, u)) \neq \Phi_{u}(u)\right) .
$$

Let $\theta(g, v)$ denote the Π_{1}^{0} sentence $(\forall u)\left(\Phi_{u}(u) \downarrow \rightarrow g_{1}(z(v, u)) \neq \Phi_{u}(u)\right)$. If $\theta(g, v)$ holds, then $\Gamma_{v}(g ; u)=g_{1}(z(v, u)) \neq \Phi_{u}(u)$ for any $u \in \mathbb{N}$. Hence, $\Gamma_{v}(g) \in \operatorname{DNR}_{k}$. If $\neg \theta(g, v)$ holds, then u_{v} is defined. Therefore, $\Delta(g ; v)=g_{0}\left(z\left(v, u_{v}\right)\right) \downarrow \neq \Phi_{v}(v)$, since $\left.g_{1}\left(z\left(v, u_{v}\right)\right)=\Phi_{u_{v}}\left(u_{v}\right)\right) \downarrow$. Thus, $\Delta(g ; v)$ is extendible to a function in DNR_{k}. This procedure shows that there is a function $\Gamma: \mathrm{DNR}_{k^{2}} \rightarrow \mathrm{DNR}_{k}$ that is computable strictly along Π_{1}^{0} sets $\left\{S_{v}\right\}_{v \in \mathbb{N}}$ via Δ and $\left\{\Gamma_{v}\right\}_{v \in \mathbb{N}}$, where $S_{v}=\{g: \theta(g, v)\}$. Consequently, $\mathrm{DNR}_{k} \vee \mathrm{DNR}_{k} \leq{ }_{1}^{1} \mathrm{DNR}_{k^{2}}$ by Part I [29, Theorem 46].

To see $\mathrm{DNR}_{k} \vee \mathrm{DNR}_{k} \not ¥_{1}^{1} \mathrm{DNR}_{k^{2}}$, we note that $\mathrm{DNR}_{k} \boldsymbol{\nabla} \mathrm{DNR}_{k}$ is not tree-immune. By Cenzer-Kihara-Weber-Wu [12], $\mathrm{DNR}_{k} \vee \mathrm{DNR}_{k}$ does not cup to the generalized separating class $\mathrm{DNR}_{k^{2}}$.

Corollary 74. $\mathrm{DNR}_{k} \equiv_{\omega}^{<\omega} \mathrm{DNR}_{2}$ for any $k \geq 2$. Indeed, for any $k \in \mathbb{N}$, the direction $\mathrm{DNR}_{k} \leq_{\omega}^{<\omega} \mathrm{DNR}_{k^{2}}$ is witnessed by a team of a confident learner and a eventuallyPopperian learner. In particular, $\mathrm{DNR}_{k} \equiv_{1}^{\omega} \mathrm{DNR}_{2}$ for any $k \geq 2$.

Proof. As seen in Part I [29, Proposition 75], $P \leq_{\omega}^{<\omega} P \vee P$ is witnessed by a team of a confident learner and a eventually-Popperian learner. Thus, Theorem 73 implies the desired condition.

Corollary 75. There is an $(<\omega, \omega)$-degree which contains infinitely many $(1,1)$-degrees of homogeneous Π_{1}^{0} sets.

Proof. By Corollary 74, the $(<\omega, \omega)$-degree of DNR_{2} contains DNR_{k} for any $k \in \mathbb{N}$, while $\mathrm{DNR}_{k} \not \equiv_{1}^{1} \mathrm{DNR}_{l}$ for $k \neq l$.

4.2. Simpson's Embedding Lemma

For a pointclass Γ in a space X, we say that $\operatorname{SEL}(\Gamma, X)$ holds for (α, β)-degrees holds for (α, β)-degrees if, for every Γ set $S \subseteq X$ and for every nonempty Π_{1}^{0} set $Q \subseteq 2^{\mathbb{N}}$, there exists a Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$ such that $P \equiv_{\beta}^{\alpha} S \cup Q$. Jockusch-Soare [34] indicates that $\operatorname{SEL}\left(\Pi_{2}^{0}, \mathbb{N}^{\mathbb{N}}\right)$ holds for $(\omega, 1)$-degrees, and points out that $\operatorname{SEL}\left(\Pi_{3}^{0}, 2^{\mathbb{N}}\right)$ does not hold for ($\omega, 1$)-degrees, since the set of all noncomputable elements in $2^{\mathbb{N}}$ is Π_{3}^{0}. Simpson's Embedding Lemma [58] determines the limit of $\operatorname{SEL}(\Gamma, X)$ for $(\omega, 1)$-degrees.

Theorem 76 (Simpson [58]). $\operatorname{SEL}\left(\Sigma_{3}^{0}, \mathbb{N}^{\mathbb{N}}\right)$ holds for ($\omega, 1$)-degrees.
Theorem 77 (Simpson's Embedding Lemma for other degree structures).

1. $\operatorname{SEL}\left(\Sigma_{2}^{0}, 2^{\mathbb{N}}\right)$ does not hold for $(<\omega, 1)$-degrees.
2. $\operatorname{SEL}\left(\Sigma_{2}^{0}, 2^{\mathbb{N}}\right)$ holds for $(1, \omega)$-degrees.
3. $\operatorname{SEL}\left(\Pi_{2}^{0}, 2^{\mathbb{N}}\right)$ does not hold for $(1, \omega)$-degrees.
4. $\operatorname{SEL}\left(\Pi_{2}^{0}, \mathbb{N}^{\mathbb{N}}\right)$ holds for $(<\omega, \omega)$-degrees.
5. $\operatorname{SEL}\left(\Sigma_{3}^{0}, 2^{\mathbb{N}}\right)$ does not hold for $(<\omega, \omega)$-degrees.

Proof. (1) For any Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$, we note that $\nabla P \subseteq 2^{\mathbb{N}}$ is Σ_{2}^{0}. By Theorem 48, there is no Π_{1}^{0} set $2^{\mathbb{N}}$ which is $(<\omega, 1)$-below ∇P. In particular, there is no Π_{1}^{0} set $2^{\mathbb{N}}$ which is $(<\omega, 1)$-equivalent to $P \cup \nabla P=\nabla P$.
(2) For a given Σ_{2}^{0} set $S \subseteq 2^{\mathbb{N}}$, there is a computable increasing sequence $\left\{P_{i}\right\}_{i \in \mathbb{N}}$ of Π_{1}^{0} classes such that $S=\bigcup_{i \in \mathbb{N}} P_{i}$. We need to show $\bigcup_{i \in \mathbb{N}} P_{i} \equiv{ }_{\omega}^{1} \bigoplus_{i \in \mathbb{N}} P_{i}$, since $\bigoplus_{i \in \mathbb{N}} P_{i}$ is $(1,<\omega)$-equivalent to the Π_{1}^{0} class $\bigoplus_{i} \rightarrow P_{i}$. Then, it is easy to see $\bigcup_{i} P_{i} \leq_{1}^{1}$ $\bigoplus_{i} P_{i}$. For given $f \in \bigcup_{i} P_{i}$, from each initial segment $f \upharpoonright n$, a learner Ψ guesses an index of a computable function $\Phi_{\Psi(f \mid n)}(g)=i^{\curlyvee} g$ for the least number i such that $f \upharpoonright n \in T_{P_{i}}$ but $f \upharpoonright n \notin T_{P_{i-1}}$. For any $f \in \bigcup_{i} P_{i}$, for the least i such that $f \in P_{i} \backslash P_{i-1}$, $\lim _{n} \Psi(f \upharpoonright n)$ converges to an index of $\Phi_{\lim _{n} \Psi(f \upharpoonright n)}(g)=i^{\imath} g$. Thus, $\Phi_{\lim _{n} \Psi(f \upharpoonright n)}(g) \in$ $i^{\wedge} P_{i}$. Consequently, $S=\bigcup_{i} P_{i} \leq_{\omega}^{1} \bigoplus_{i} \rightarrow P_{i}$.
(3) Fix any special Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$. By Jockusch-Soare [34], there is a noncomputable Σ_{1}^{0} set $A \subseteq \mathbb{N}$ such that P has no A-computable element. Then $\{A\} \subseteq 2^{\mathbb{N}}$ is a Π_{2}^{0} singleton, since A is Σ_{1}^{0}. Therefore, $P \oplus\{A\}$ is Π_{2}^{0}. It suffices to show that there is no Π_{1}^{0} set $Q \subseteq 2^{\mathbb{N}}$ such that $Q \equiv_{\omega}^{1} P \oplus\{A\}$. Assume that $Q \equiv_{\omega}^{1} P \oplus\{A\}$ is satisfied for some Π_{1}^{0} set $Q \subseteq 2^{\mathbb{N}}$. Then Q must have an A-computable element $\alpha \in Q$. Fix a learner Ψ witnessing $P \oplus\{A\} \leq_{\omega}^{1} Q$. Then, we have $\Phi_{\lim _{n} \Psi(\alpha \uparrow n)}(\alpha)=1^{-} A$, since P has no element computable in $\alpha \leq_{T} A$. We wait for $s \in \mathbb{N}$ such that $\Psi(\alpha \upharpoonright t)=\Psi(\alpha \upharpoonright s)$ for any $t \geq s$. Then, fix $u \geq s$ with $\Phi_{\Psi(\alpha \upharpoonright u)}(\alpha \upharpoonright u ; 0) \downarrow=1$. Consider the Π_{1}^{0} set
$Q^{*}=\{f \in Q \cap[\alpha \upharpoonright u]:(\forall v \geq u) \Psi(f \upharpoonright v)=\Psi(f \upharpoonright u)\}$. Then, for any $f \in Q^{*}$, $\Phi_{\lim _{s} \Psi(f \upharpoonright s)}(f)=\Phi_{\Psi(\alpha \upharpoonright u)}(f)$ must extends $\langle 1\rangle$. Thus, $\left\{1^{\wedge} A\right\} \leq_{1}^{1} Q^{*}$ via the computable function $\Phi_{\Psi(\alpha \upharpoonright u)}$. Since Q^{*} is special Π_{1}^{0} subset of $2^{\mathbb{N}}$, this implies the computability of $1^{\wedge} A$ which contradicts our choice of A.
(4) Fix a Π_{2}^{0} set $S \subseteq \mathbb{N}^{\mathbb{N}}$. As Simpson's proof, there is a Π_{1}^{0} set $\widehat{S} \subseteq \mathbb{N}^{\mathbb{N}}$ such that $S \equiv \equiv_{1}^{1} \widehat{S}$. We can find a Π_{1}^{0} set $\widehat{P} \subseteq \widehat{S} \vee Q$ such that $\widehat{P} \leq_{1}^{1} S \cup Q$, and \widehat{P} is computably homeomorphic to a Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$. Since $S \cup Q \leq_{\omega}^{<\omega} \widehat{S} \vee Q$, we have $S \cup Q \equiv_{\omega}^{<\omega} P$.
(5) For every Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$, the Turing upward closure $\widehat{\operatorname{Deg}}(P)=\left\{g \in 2^{\mathbb{N}}:(\exists f \in\right.$ P) $\left.f \leq_{T} g\right\}$ of P is Σ_{3}^{0}, and $\widehat{\operatorname{Deg}}(P)$ has the least $(<\omega, \omega)$-degree inside $\operatorname{deg}_{1}^{\omega}(P)$. By Theorem 65, there is no Π_{1}^{0} subset of $2^{\mathbb{N}}$ which is $(<\omega, \omega)$-equivalent to $\widehat{\operatorname{Deg}}(P)$.

4.3. Weihrauch Degrees

The notion of piecewise computability could be interpreted as the computability relative to the principle of excluded middle in a certain sense. Indeed, in Part I [29, Section 6], we have characterized the notions of piecewise computability as the computability relative to nonconstructive principles in the context of Weihrauch degrees. Thus, one can rephrase our separation results in the context of Weihrauch degrees as follows.

Theorem 78. The symbols P, Q, and R range over all special Π_{1}^{0} subset of $2^{\mathbb{N}}$, and X ranges over all subsets of $\mathbb{N}^{\mathbb{N}}$.

2. There are P and $Q \leq_{1}^{1} P$ such that $P \leq_{\Sigma_{1}^{0}-\mathrm{LEM}} Q$ but $P \not_{\Sigma_{1}^{0}-\text { LLPO }} Q$.
3. For every P, there exists $Q \leq_{1}^{1} P$ such that $P \leq_{\Sigma_{1}^{0}-\text { LEM }} Q$, whereas, for every X, if $P \leq_{\Sigma_{1}^{0} \text {-DNE }} Q \otimes X$ then $P \leq_{1}^{1} X$.
4. There are P and $Q \leq_{1}^{1} P$ such that $P \leq_{\Delta_{2}^{0} \text {-LEM }} Q$ but $P \not_{\Sigma_{1}^{0}}$ LEM Q.
5. There are P and $Q \leq_{1}^{1} P$ such that $P \leq_{\Sigma_{2}^{0} \text {-LLPo }} Q$ but $P{\not \coprod_{\Delta_{2}^{0}} \text {-LEM }} Q$.
6. There is P such that, for every Q, if $P \leq_{\Sigma_{2}^{0}-\text { LLPO }} Q$, then $P \leq_{\Sigma_{1}^{0}-\text { LEM }} Q$.
7. For every P and R, there exists $Q \leq_{1}^{1} P$ such that $P \leq_{\Sigma_{2}^{0} \text {-DNE }} Q$ but $R \not \leq_{\Sigma_{2}^{0}-L L P O} Q$.
8. For every P, there exists $Q \leq_{1}^{1} P$ such that $P \leq_{\Sigma_{2}^{0} \text {-LEM }} Q$, whereas, for every X, if $P \leq_{\Sigma_{2}^{0} \text {-DNE }} Q \otimes X$ then $P \leq_{\Sigma_{2}^{0}-\mathrm{DNE}} X$.
9. For every P and R, there exists $Q \leq P$ such that $P \leq_{\Sigma_{3}^{0} \text {-DNE }} Q$ but $R \leq_{\Sigma_{2}^{0}-\text { LEM }} Q$.

Proof. See Part I [29, Section 6] for the definitions of partial multivalued functions and their characterizations.
(1) By Corollary 5. (2) By Corollary 9. (3) By Corollary 32. (4) By Corollary 13 (2). (5) By Corollary 15 (1). (6) By Theorem 20. (7) By Corollary 53 (2). (8) By Corollary 58. (9) By Theorem 65.

Definition 79 (Mylatz [47]). The Σ_{1}^{0} lessor limited principle of omniscience with (m / k) wrong answers, $\Sigma_{1}^{0}-\mathrm{LLPO}_{m / k}$, is the following multi-valued function.

$$
\Sigma_{1}^{0}-\mathrm{LLPO}_{m / k}: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows k, \quad x \mapsto\{l<k:(\forall n \in \mathbb{N}) x(k n+l)=0\}
$$

Here, $\operatorname{dom}\left(\Sigma_{1}^{0}-\mathrm{LLPO}_{m / k}\right)=\left\{x \in \mathbb{N}^{\mathbb{N}}: x(n) \neq 0\right.$, for at most m many $\left.n \in \mathbb{N}\right\}$.

Remark. It is well-known that the parallelization of $\Sigma_{1}^{0}-\operatorname{LLPO}_{1 / 2}$ is equivalent to Weak König's Lemma, WKL (hence, is Weihrauch equivalent to the closed choice for Cantor space, $\mathrm{C}_{2^{\mathrm{N}}}$).

Definition 80.

1. (Cenzer-Hinman [14]) A set $P \subseteq k^{\mathbb{N}}$ is (m, k)-separating if $P=\prod_{n \in \mathbb{N}} F_{n}$ for some uniform sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ of Π_{1}^{0} sets $F_{n} \subseteq k$, where $\#\left(k \backslash F_{n}\right) \leq m$ for any $n \in \mathbb{N}$.
2. A function $f: \mathbb{N}^{m} \rightarrow k$ is k-valued m-diagonally noncomputable in $\alpha \in \mathbb{N}^{\mathbb{N}}$ if the value $f\left(\left\langle e_{0}, \ldots, e_{m-1}\right\rangle\right)$ does not belong to $\left\{\Phi_{e_{i}}\left(\alpha ;\left\langle e_{0}, \ldots, e_{m-1}\right\rangle\right): i<m\right\}$ for each argument $\left\langle e_{0}, \ldots, e_{m-1}\right\rangle \in \mathbb{N}^{m}$. By $\operatorname{DNR}_{m / k}(\alpha)$, we denote the set of all k-valued functions which are m-diagonally noncomputable in α.
3. The (m / k) diagonally noncomputable operation $\mathrm{DNR}_{m / k}: \mathbb{N}^{\mathbb{N}} \rightrightarrows k^{\mathbb{N}}$ is the multivalued function mapping $\alpha \in \mathbb{N}^{\mathbb{N}}$ to $\mathrm{DNR}_{m / k}(\alpha)$.

Remark. Clearly $\mathrm{DNR}_{m / k}(\emptyset)$ is (m, k)-separating. The structure of Medvedev degrees of (m, k)-separating sets have been studied by Cenzer-Hinman [14]. Diagonally noncomputable functions are extensively studied in connection with algorithmic randomness, for example, see Greenberg-Miller [25].

Proposition 81. $\mathrm{DNR}_{m / k}$ is Weihrauch equivalent to $\Sigma_{1}^{0}-\widehat{\mathrm{LPPO}}_{m / k}$.
Proof. To see $\Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{m / k} \leq_{W} \mathrm{DNR}_{m / k}$, for given $\left(x_{i}: i \in \mathbb{N}\right)$, let e_{t}^{i} be an $\bigoplus_{i \in \mathbb{N}} x_{i-}$ computable index of an algorithm, for any argument, which returns l at stage s if $l \in$ $L_{s+1} \backslash L_{s}$ and $\# L_{s}=t$, where $L_{s}=\left\{l^{*}<k:(\exists n) k n+l^{*}<s \& x_{i}\left(k n+l^{*}\right) \neq\right.$ 0\}. Clearly, $\left\{e_{t}^{i}: i \in \mathbb{N} \& t<m\right\}$ is computable uniformly in $\bigoplus_{i \in \mathbb{N}} x_{i}$. For any $f \in \mathrm{DNR}_{m / k}\left(\bigoplus_{i \in \mathbb{N}} x_{i}\right)$, the function $i \mapsto f\left(\left\langle e_{0}^{i}, \ldots, e_{m-1}^{i}\right\rangle\right)$ belongs to $\Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{m / k}\left(\left\langle x_{i}\right.\right.$: $i \in \mathbb{N}\rangle$). Conversely, for given $x \in \mathbb{N}^{\mathbb{N}}$, for the i-th m-tuple $\left\langle e_{0}, \ldots, e_{m-1}\right\rangle \in \mathbb{N}^{m}$, we set $x_{i}(k s+l)=1$ if $\Phi_{e_{t}}\left(\left\langle e_{0}, \ldots, e_{m-1}\right\rangle\right)$ converges to $l<k$ at stage $s \in \mathbb{N}$ for some $t<m$, and otherwise we set $x_{i}(k s+l)=0$. Clearly $\left\{x_{i}: i \in \mathbb{N}\right\}$ is uniformly computable in x. Then, for any $\left\langle l_{i}: i \in \mathbb{N}\right\rangle \in \Sigma_{1}^{0}-\widehat{\mathrm{LPP}}_{m / k}\left(\left\langle x_{i}: i \in \mathbb{N}\right\rangle\right) \subseteq k^{\mathbb{N}}$, we have $l_{i} \notin\left\{\Phi_{e_{t}}\left(\left\langle e_{0}, \ldots, e_{m-1}\right\rangle\right): t<m\right\}$ by our construction. Hence, the k-valued function $i \mapsto l_{i}$ is m-diagonally noncomputable in x.

Recall from Part I [29, Section 6] that \star is the operation on Weihrauch degrees such that is defined by $F \star G=\max \left\{F^{*} \circ G^{*}: F^{*} \leq_{W} F \& G^{*} \leq_{W} G\right\}$. See [53] for more information on \star.

Corollary 82. Let $k \geq 2$ be any natural number.

1. $\Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{1 / k} \not \mathrm{Z}_{W} \Sigma_{2}^{0}-\mathrm{DNE} \star \Sigma_{1}^{0}-\mathrm{LLPO}_{1 / k+1}$.
2. $\Sigma_{1}^{0}-\widehat{\mathrm{LCPO}}_{1 / k} \not 女_{W} \Sigma_{2}^{0}$-LLPO $\star \Sigma_{1}^{0}-\mathrm{LLPO}_{1 / k+1}$.
3. $\Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{1 / k} \leq_{W} \Sigma_{2}^{0}$-LEM $\star \Sigma_{1}^{0}-\mathrm{LLPO}_{1 / k+1}$.

Proof. By Corollary 72 and Proposition 81, the item (1) and (2) are satisfied. It is not hard to show the item (3) by analyzing Theorem 73.

Remark. By combining the results from Cenzer-Hinman [14] and our previous results, we can actually show the following.

1. $\Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{n / l} \not \mathbb{Z}_{W} \Sigma_{2}^{0}$-DNE $\star \Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{m / k}$, whenever $0<n<l<\lceil k / m\rceil$.
2. $\Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{n / l} \not \mathbb{Z}_{W} \Sigma_{2}^{0}$-LLPO $\star \Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{m / k}$, whenever $0<n<l<\lceil k / m\rceil$.
3. $\Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{n / l} \leq{ }_{W} \Sigma_{2}^{0}$-LEM $\star \Sigma_{1}^{0}-\widehat{\mathrm{LLPO}}_{m / k}$, whenever $0<n<l$ and $0<m<k$.

These results suggest, within some constructive setting, that the Σ_{2}^{0} law of excluded middle is sufficient to show the formula $\Sigma_{1}^{0}-\widehat{L L P O}_{m / k} \rightarrow \Sigma_{1}^{0}$ - $\widehat{\mathrm{LLPO}}_{n / l}$, whereas neither the Σ_{2}^{0} double negation elimination nor the Σ_{2}^{0} lessor limited principle of omniscience is sufficient.
 $\mathrm{MLR} \leq_{\Sigma_{2}^{0}-\mathrm{LEM}} \mathrm{DNR}_{3}$; and MLR $\ddagger_{\Sigma_{2}^{0}} \mathrm{DNE} \mathrm{DNR}_{3}$. Here, MLR denotes the set of all Martin-Löf random reals.

Proof. For the first three statements, see Corollary 72 and Theorem 73. It is easy to see that MLR $\leq_{1}^{1} \mathrm{DNR}_{2} \leq_{\Sigma^{0} \text {-LEM }} \mathrm{DNR}_{3}$. It is shown by Downey-Greenberg-JockuschMillans [20] that MLR $\not \ddagger_{1}^{1} \mathrm{DNR}_{3}$. By homogeneity of DNR_{3} and Proposition 71, we have MLR $\not_{\Sigma_{2}^{0} \text {-DNE }} \mathrm{DNR}_{3}$.

4.4. Some Intermediate Lattices are Not Brouwerian

Recall from Medvedev's Theorem [41], Muchnik's Theorem [46], and Part I [29, Proposition 16] that the degree structures $\mathcal{D}_{1}^{1}, \mathcal{D}_{\omega}^{1}$, and \mathcal{D}_{1}^{ω} are Browerian. Indeed, we have already observed that one can generate \mathcal{D}_{ω}^{1} from a logical principle so called the Σ_{2}^{0}-double negation elimination. Though $\mathcal{D}_{<\omega}^{1}, \mathcal{D}_{\omega \mid<\omega}^{1}$ and $\mathcal{D}_{1}^{<\omega}$ are also generated from certain logical principles over \mathcal{D}_{1}^{1} as seen before, surprisingly, these degree structures are not Brouwerian.

Theorem 84. The degree structures $\mathcal{D}_{<\omega}^{1}, \mathcal{D}_{\omega \mid<\omega}^{1}, \mathcal{D}_{1}^{<\omega}, \mathcal{P}_{<\omega}^{1}, \mathcal{P}_{\omega \mid<\omega}^{1}$, and $\mathcal{P}_{1}^{<\omega}$ are not Brouwerian.

Put $\mathcal{A}(P, Q)=\left\{R \subseteq \mathbb{N}^{\mathbb{N}}: Q \leq_{<\omega}^{1} P \otimes R\right\}$, and $\mathcal{B}(P, Q)=\left\{R \subseteq \mathbb{N}^{\mathbb{N}}: Q \leq_{1}^{<\omega} P \otimes R\right\}$. Note that $\mathcal{A}(P, Q) \subseteq \mathcal{B}(P, Q)$. Then we show the following lemma.

Lemma 85. There are Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$, and a collection $\left\{Z_{e}\right\}_{e \in \mathbb{N}}$ of Π_{1}^{0} subsets of $2^{\mathbb{N}}$ such that $Z_{e} \in \mathcal{A}(P, Q)$, and that, for every $R \in \mathcal{B}(P, Q)$, we have $R \not \not_{1}^{\omega} Z_{e}$ for some $e \in \mathbb{N}$.

Proof. By Theorem 17, we have a collection $\left\{S_{i}\right\}_{i \in \mathbb{N}}$ of nonempty Π_{1}^{0} subsets of $2^{\mathbb{N}}$ such that $x_{k} \not 女_{T} \bigoplus_{j \neq k} x_{j}$ for any choice $x_{i} \in S_{i}, i \in \mathbb{N}$. Consider the following sets.

$$
\begin{aligned}
& P=\operatorname{CPA}^{\wedge}\left\{S_{\langle e, 0\rangle} S_{\langle e, 1\rangle} \ldots^{\wedge} S_{\langle e, e\rangle}\right\}_{e \in \mathbb{N}}, \quad Z_{e}=S_{\langle e, e+1\rangle}, \\
& Q
\end{aligned} \operatorname{CPA}^{\wedge}\left\{Q_{n}\right\}_{n \in \mathbb{N}}, \quad \text { where } Q_{\langle e, i\rangle}=\left\{\begin{array}{ll}
S_{\langle e, i\rangle} \otimes Z_{e}, & \text { if } i \leq e, \\
\left(P \backslash\left[\rho_{e}\right]\right) \otimes Z_{e}, & \text { if } i=e+1, \\
\emptyset, & \text { otherwise. }
\end{array} .\right.
$$

Here, ρ_{e} is the e-th leaf of the corresponding computable tree $T_{\text {CPA }}$ for CPA. To see $Z_{e} \in \mathcal{A}(P, Q)$, choose an element $f \oplus g \in P \otimes Z_{e}$. If $f \upharpoonright n \in T_{\text {CPA }}$ or $f \upharpoonright n$ extends a leaf except ρ_{e}, our learner $\Psi((f \upharpoonright n) \oplus g)$ guesses an index of the identity function. If $f \upharpoonright n$ extends ρ_{e}, then Ψ first guesses $\Phi_{\Psi((f\lceil n) \oplus g)}(f \oplus g)=\left(f^{\left\llcorner\rho_{e} \ell\right.}\right) \oplus g$. By continuing this guessing procedure, if $f \upharpoonright n$ is of the form $\rho_{e}{ }^{-} \tau^{0 ॰} \tau^{1-} \ldots{ }^{i}{ }^{i} \tau$ such that τ^{j} is a leaf of $S_{\langle e, j\rangle}$ for each $j \leq i$, and τ does not extend a leaf of $S_{\langle e, j+1\rangle}$, then Ψ guesses $\Phi_{\Psi((f \upharpoonright n) \oplus g)}(f \oplus g)=\left(f^{\left\llcorner\left(\left|\rho_{e}\right|+\left|\tau^{0}\right|+\cdots+\left|\tau^{i}\right|\right)\right.}\right) \oplus g$. Note that $i<e$, since $f \in P$. It is easy to see that $Q \leq \leq_{<\omega}^{1} P \otimes Z_{e}$ via the learner Ψ, where $\#\{n \in \mathbb{N}: \Psi((f \oplus g) \upharpoonright n+1) \neq \Psi((f \oplus g) \upharpoonright$ $n)\} \leq e+1$. Therefore, $Z_{e} \in \mathcal{A}(P, Q)$.

Fix $R \in \mathcal{B}(P, Q)$. As $Q \leq_{1}^{<\omega} P \otimes R$, there is $b \in \mathbb{N}$ such that, for every $f \oplus g \in P \otimes R$, we must have $\Phi_{e}(f \oplus g) \in Q$ for some $e<b$. Suppose for the sake of contradiction that $R \leq_{1}^{\omega} Z_{b+1}$. Then, for any $h \in Z_{b+1}$, we have $g \in R$ with $g \leq_{T} h$. Pick $f_{0} \in$ $\rho_{b+1}{ }^{\wedge} S_{\langle b+1,0\rangle} \subset P \cap\left[\rho_{b+1}\right]$. Since $R \in \mathcal{B}(P, Q)$, there is $e_{0}<b$ such that $\Phi_{e_{0}}\left(f_{0} \oplus g\right) \in Q$. By our choice of $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ and the property $g \leq_{T} h \in Z_{b+1}=S_{\langle b+1, b+2\rangle}$, if $e \neq b+1$ or $i \neq 0$, then $Q_{\langle e, i\rangle}$ has no $\left(f_{0} \oplus g\right)$-computable element. Therefore, $\Phi_{e_{0}}\left(f_{0} \oplus g\right)$ have to extend $\rho_{\langle b+1,0\rangle}$. Take an initial segment $\sigma_{0} \subset f_{0}$ determining $\Phi_{e_{0}}\left(\sigma_{0} \oplus g\right) \supseteq \rho_{\langle b+1,0\rangle}$. Extend σ_{0} to a leaf τ^{0} of $S_{b+1,0}$, and choose $f_{1} \in \rho^{-} \tau^{0-} S_{b+1,1} \subset P$. Again we have $e_{1}<b$ such that $\Phi_{e_{1}}\left(f_{1} \oplus g\right) \in Q$. As before, $\Phi_{e_{1}}\left(f_{1} \oplus g\right)$ have to extend $\rho_{\langle b+1,1\rangle}$. However, $\rho_{\langle b+1,1\rangle}$ is incomparable with $\rho_{\langle b+1,0\rangle}$. Hence, we have $e_{1} \neq e_{0}$. Again take an initial segment $\sigma_{1} \subset f_{1}$ extending σ_{0} and determining $\Phi_{e_{1}}\left(\sigma_{1} \oplus g\right) \supseteq \rho_{\langle b+1,1\rangle}$. By iterating this procedure, we see that R requires at least $b+1$ many indices e_{i}. This contradicts our assumption. Therefore, $R \not \not_{1}^{<\omega} Z_{b+1}$.

Proof of Theorem 84. Let P, Q, and $\left\{Z_{e}\right\}_{e \in \mathbb{N}}$ be Π_{1}^{0} sets in 85. Fix $(\alpha, \beta) \in\{(1,<$ $\omega),(1, \omega \mid<\omega),(<\omega, 1)\}$. To see $\mathcal{D}_{\beta}^{\alpha}$ is not Brouwerian, it suffices to show that there is no (α, β)-least R satisfying $Q \leq_{\beta}^{\alpha} P \otimes R$. If R satisfies $Q \leq_{\beta}^{\alpha} P \otimes R$, then clearly $R \in \mathcal{B}(P, Q)$ since \leq_{β}^{α} is stronger than or equals to $\leq_{1}^{<\omega}$. Then, $R \not \not_{\beta}^{\alpha} Z_{e}$ for some $e \in \mathbb{N}$. Moreover, $Z_{e} \in \mathcal{A}(P, Q)$ implies $Q \leq_{\beta}^{\alpha} P \otimes Z_{e}$, since \leq_{β}^{α} is weaker than or equals to $\leq_{<\omega}^{1}$. Hence R is not such a smallest set. By the same argument, it is easy to see that $\mathcal{P}_{\beta}^{\alpha}$ is not Brouwerian, since Z_{e} is Π_{1}^{0}.

Theorem 86. $\mathcal{D}_{\omega}^{<\omega}$ and $\mathcal{P}_{\omega}^{<\omega}$ are not Brouwrian. Moreover, the order structures induced by $\left(\mathcal{P}\left(\mathbb{N}^{\mathbb{N}}\right), \leq_{\Sigma_{2}^{0}-\mathrm{LEM}}\right)$ and (the set of all nonempty Π_{1}^{0} subsets of $2^{\mathbb{N}}, \leq_{\Sigma_{2}^{0} \text { LEM }}$) are not Brouwrian.

Lemma 87. Let $\left\{S_{i}\right\}_{i \leq n}$ be a collection of Π_{1}^{0} subsets of $2^{\mathbb{N}}$ with the property for each $i \leq n$ that $\bigcup_{k \neq i} S_{k}$ has no element computable in $x_{i} \in S_{i}$. Then, there is no (n, ω) computable function from $\nabla_{i \leq n} S_{i}$ to $\bigoplus_{i \leq n} S_{i}$.

Proof. Assume the existence of an (n, ω)-computable function from $\nabla_{i \leq n} S_{i}$ to $\bigoplus_{i \leq n} S_{i}$ which is identified by n many learners $\left\{\Psi_{i}\right\}_{i<n}$. Let F_{i} be a partial (n, ω)-computable function identified by Ψ, i.e., $F_{i}(x)=\Phi_{\lim _{n} \Psi(x \upharpoonright n)}(x)$. Note that $\nabla_{i \leq n} S_{i} \subseteq \bigcup_{i<n} \operatorname{dom}\left(F_{i}\right)$. For each $i<n$, put $D_{i}=\operatorname{dom}\left(F_{i}\right) \cap F_{i}^{-1}\left(\bigoplus_{i \leq n} S_{i}\right)$. Let $T_{S_{i}}$ denote the corresponding tree for S_{i}, for each $i \leq n$. Define S_{E}^{\ominus} for each $E \subseteq n+1$ to be the set of all infinite
paths through the following tree T_{E}.

$$
\begin{aligned}
& T_{E}=\boldsymbol{\nabla}_{\sigma \in T_{0}^{E}}\left(\boldsymbol{\nabla}_{\sigma \in T_{1}^{E}}\left(\ldots\left(\boldsymbol{\nabla}_{\sigma \in T_{n-1}^{E}}\left[T_{n}^{E}\right]\right) \ldots\right)\right) . \\
& \text { Here, } T_{i}^{E}= \begin{cases}T_{S_{i}}^{e x t}, & \text { if } i \in E, \\
\text { some finite subtree of } T_{S_{i}}^{e x t}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Here, the choice of "some finite subtree of $T_{S_{i}}^{e x t}$ " depends on the context, and is implicitly determined when E is defined. For each $E \subseteq n+1$, clearly S_{E}^{\ominus} is a closed subset of $\nabla_{i \leq n} S_{i}$. Divide S_{n+1}^{\diamond} into $n+1$ many parts $\left\{S_{i}^{*}\right\}_{i \leq n}$, where S_{n+1}^{\diamond} is equal to $\bigcup_{i \leq n} S_{i}^{*}$, and each S_{i}^{*} is degree-isomorphic to S_{i}.

For each $i \leq n$, check whether there is a string σ extendible in S_{n+1}^{\ominus} such that $S_{n+1}^{\ominus} \cap D_{i} \cap[\sigma]$ is contained in S_{j}^{*} for some $j \leq n$. If yes, for such a least $i \leq n$, choose a witness $\sigma_{0}=\sigma$, and put $A_{0}=\{i\}$, and $B_{0}=\{j\}$. Then, for such $j \in B_{0}$, "some finite subtree of $T_{S_{j}}^{e x t}$ " is choosen as the set of all strings η used in σ_{0} as a part of $T_{S_{j}}^{e x t}$ in the sense of the definition of $\nabla_{i \leq n} S_{i}$, or successors of such η in $T_{S_{j}}^{e x t}$. Note that σ_{0} is also extendible in $S_{(n+1) \backslash\{j\}}^{\odot}$. Inductively, for some $s<n$ assume that σ_{s}, A_{s}, and B_{s} has been already defined. For each $i \notin A_{s}$, check whether there is a string $\sigma \supseteq \sigma_{s}$ extendible in $S_{(n+1) \backslash B_{s}}^{\odot}$ such that $S_{(n+1) \backslash B_{s}}^{\ominus} \cap D_{i} \cap[\sigma]$ is contained in S_{j}^{*} for some $j \notin B_{s}$. If yes, for such a least $i \notin A_{s}$, choose a witness $\sigma_{0}=\sigma$, and put $A_{s+1}=A_{s} \cup\{i\}$, and $B_{s+1}=B_{s} \cup\{j\}$. As before, for such $j \in B_{s+1}$, "some finite subtree of $T_{S_{j}}^{e x t}$ " is choosen as the set of all strings η used in σ_{s+1} as a part of $T_{S_{j}}^{e x t}$, or successors of such η in $T_{S_{j}}^{e x t}$. Note that σ_{s+1} is also extendible in $S_{(n+1) \backslash B_{s+1}}^{\odot}$. If no such $i \notin A_{s}$ exists, finish our construction of σ, A, and B. Then, put $A=A_{s}, B=B_{s}$, and define σ^{*} to be the last witness σ_{s}.

Put $A^{-}=n \backslash A$ and $B^{-}=(n+1) \backslash B$. Note that $\# A^{-}+1=\# B^{-}$, since $\# A=\# B$. Therefore, B contains at least one element. By our assumption, for any $x \in S_{B^{-}}^{\ominus} \cap\left[\sigma^{*}\right] \neq$ \emptyset, we must have $F_{i}(x) \in \bigoplus_{i \leq n} S_{i}$ for some $i \in A^{-}$. Thus, A^{-}is nonempty.

Fix a sequence $\alpha \in\left(A^{-}\right)^{\mathbb{N}}$ such that, for each $i \in A^{-}$, there are infinitely many $n \in \mathbb{N}$ such that $\alpha(n)=i$. First set $\tau_{0}=\sigma^{*}$. Inductively assume that $\tau_{s} \supseteq \sigma^{*}$ has been already defined. By our definition of σ^{*}, A and B, if ξ extends σ^{*}, then the set $S_{B^{-}}^{\ominus} \cap D_{\alpha(s)} \cap[\xi]$ intersects with S_{j}^{*} for at least two $j \in B^{-}$. Therefore, we can choose $x \in S_{B^{-}}^{\ominus} \cap D_{\alpha(s)} \cap\left[\tau_{s}\right] \cap S_{j}^{*} \neq \emptyset$ for some $j \in B^{-}$. Then, $F_{\alpha(s)}(x ; 0)=j$, by our assumption of $\left\{S_{i}\right\}_{i \leq n}$. Find a string τ_{s}^{*} such that $\tau_{s} \subseteq \tau_{s}^{*} \subset x$ and $F_{\alpha(s)}\left(\tau_{s}^{*} ; 0\right)=j$. Again, we can choose $x^{*} \in S_{B^{-}}^{\ominus} \cap D_{\alpha(s)} \cap\left[\tau_{s}^{*}\right] \cap S_{k}^{*} \neq \emptyset$ for some $k \in B^{-} \backslash\{j\}$. Then, we must have $F_{\alpha(s)}\left(x^{*} ; 0\right)=k \neq j$. Let τ_{s+1} be a string such that $\tau_{s}^{*} \subseteq \tau_{s+1} \subset x^{*}$ and $F_{\alpha(s)}\left(\tau_{s+1} ; 0\right)=k$. Therefore, between τ_{s} and τ_{s+1}, the learner $\Psi_{\alpha(s)}$ changes his mind.

Define $y=\bigcup_{s} \tau_{s}$. Then y is contained in $S_{B^{-}}^{\odot}$, since $S_{B^{-}}^{\ominus}$ is closed. However, for each $i \in A^{-}$, by our construction of y, the value $F_{i}(y)$ does not converge. Moreover, for each $i \notin A^{-}$, by our definition of A, B, and $\sigma^{*} \subset y$, even if $F_{i}(y)$ converges, $F_{i}(y) \notin$ $\bigoplus_{i \leq n} S_{i}$. Consequently, there is no (n, ω)-computable function from $\nabla_{i \leq n} S_{i} \supset S_{B^{-}}^{\ominus}$ to $\bigoplus_{i \leq n} S_{i}$ as desired.

Put $\mathcal{J}(P, Q)=\left\{R \subseteq \mathbb{N}^{\mathbb{N}}: Q \leq_{\Sigma_{2}^{0}-\text { LEM }} P \otimes R\right\}$, and $\mathcal{K}(P, Q)=\left\{R \subseteq \mathbb{N}^{\mathbb{N}}: Q \leq_{\omega}^{<\omega} P \otimes R\right\}$. Note that $\mathcal{J}(P, Q) \subseteq \mathcal{K}(P, Q)$. Then we show the following lemma.

Lemma 88. There are Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$, and a collection $\left\{Z_{e}\right\}_{e \in \mathbb{N}}$ of Π_{1}^{0} subsets of $2^{\mathbb{N}}$ such that $Z_{e} \in \mathcal{J}(P, Q)$, and that, for every $R \in \mathcal{K}(P, Q)$, we have $R \not \not_{1}^{\omega} Z_{e}$ for some $e \in \mathbb{N}$.

Proof. By Theorem 17, we have a collection $\left\{S_{i}\right\}_{i \in \mathbb{N}}$ of nonempty Π_{1}^{0} subsets of $2^{\mathbb{N}}$ such that $x_{k} \not 女_{T} \bigoplus_{j \neq k} x_{j}$ for any choice $x_{i} \in S_{i}, i \in \mathbb{N}$. Consider the following sets.

$$
\begin{aligned}
& P=\operatorname{CPA}^{-}\left\{S_{\langle e, 0\rangle} \nabla S_{\langle e, 1\rangle} \nabla \ldots S_{\langle e, e\rangle}\right\}_{e \in \mathbb{N}}, \quad Z_{e}=S_{\langle e, e+1\rangle}, \\
& Q=\operatorname{CPA}^{-}\left\{Q_{n}\right\}_{n \in \mathbb{N}}, \quad \text { where } Q_{\langle e, i\rangle}= \begin{cases}S_{\langle e, i} \otimes Z_{e}, & \text { if } i \leq e, \\
\left(P \backslash\left[\rho_{e}\right]\right) \otimes Z_{e}, & \text { if } i=e+1, \\
\emptyset, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Here, ρ_{e} is the e-th leaf of the corresponding computable tree $T_{\text {CPA }}$ for CPA. To see $Z_{e} \in \mathcal{J}(P, Q)$, for $f \oplus g \in P \otimes Z_{e}$, by using Σ_{1}^{0}-LEM, check whether f does no extend ρ_{e}. If no, outputs $\rho_{e, e+1}^{-}(f \oplus g)$. If f extends ρ_{e}, it is not hard to see that an finite iteration of Σ_{2}^{0}-LEM can divide $\left(\rho_{e}-S_{\langle e, 0\rangle} \nabla S_{\langle e, 1\rangle} \nabla \ldots \nabla S_{\langle e, e\rangle}\right) \otimes Z_{e}$ into $\left\{S_{\langle e, i\rangle} \otimes Z_{e}\right\}_{i \leq e}$.

Fix $R \in \mathcal{K}(P, Q)$. As $Q \leq_{<\omega}^{\omega} P \otimes R$, some ($\left.b, \omega\right)$-computable function F maps $P \otimes R$ into Q. Suppose for the sake of contradiction that $R \leq_{1}^{\omega} Z_{b}$. Then, for any $h \in Z_{b}$, we have $g \in R$ with $g \leq_{T} h$. Then, F maps $\left(P \cap\left[\rho_{b}\right]\right) \otimes\{g\}$ into $Q \cap\left(\bigcup_{i \leq b} \rho_{\langle b, i\rangle}\right)$ by our choice of $\left\{S_{n}\right\}_{n \in \mathbb{N}}$. Note that $\left(P \cap\left[\rho_{b}\right]\right) \otimes\{g\} \equiv_{1}^{1}\left(\nabla_{i \leq b} S_{\langle e, i\rangle}\right) \otimes\{g\}$, and $Q \cap\left(\bigcup_{i \leq b} \rho_{\langle b, i\rangle}\right) \equiv_{1}^{1}$ $\left(\bigoplus_{i \leq b} S_{\langle e, i\rangle}\right) \otimes Z_{e}$. Therefore, by Lemma 87, F is not (b, ω)-computable.

Proof of Theorem 86. Let P, Q, and $\left\{Z_{e}\right\}_{e \in \mathbb{N}}$ be Π_{1}^{0} sets in 88 . Then, by the same argument as in the proof of Theorem 84, it is not hard to show the desired statement.

Corollary 89. If $(\alpha, \beta) \in\{(1,1),(1, \omega),(\omega, 1)\}$, and $(\gamma, \delta) \in\{(1,<\omega),(1, \omega \mid<\omega),(<$ $\omega, 1),(<\omega, \omega)\}$, then, there is an elementary difference between $\mathcal{D}_{\beta}^{\alpha}$ and $\mathcal{D}_{\delta}^{\gamma}$, in the language of partial orderings $\{\leq\}$.

Proof. Recall that the degree structures $\mathcal{D}_{1}^{1}, \mathcal{D}_{\omega}^{1}$, and \mathcal{D}_{1}^{ω} are Browerian, i.e., they satisfy the following elementary formula ψ in the language of partial orders.

$$
\psi \equiv(\forall p, q)(\exists r)(\forall s)(p \leq q \vee r \&(p \leq q \vee s \rightarrow r \leq s)) .
$$

Here, the supremum \vee is first-order definable in the language of partial orders. On the other hand, by Theorem 84 and $86, \mathcal{D}_{<\omega}^{1}, \mathcal{D}_{\omega \mid<\omega}, \mathcal{D}_{1}^{<\omega}$, and $\mathcal{D}_{\omega}^{<\omega}$ are not Brouwerian, i.e., they satisfy $\neg \psi$.

4.5. Open Questions

Question 90 (Small Questions).

1. Determine the intermediate logic corresponding the degree structure \mathcal{D}_{ω}^{1}, where recall that \mathcal{D}_{1}^{1} and \mathcal{D}_{1}^{ω} are exactly Jankov's Logic.
2. Does there exist Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ with $P \leq_{\omega}^{1} Q$ such that there is no $|a|$-bounded learnable function $\Gamma: Q \rightarrow P$ for any $a \in O$? For $a \Pi_{1}^{0}$ set \widehat{P} in Theorem 48, does there exist a function $\Gamma: \widehat{P} \rightarrow P(1, \omega)$-computable via an $|a|$-bounded learner for some notation $a \in O$?
3. Does there exist a pair of special Π_{1}^{0} sets $P, Q \subseteq 2^{\mathbb{N}}$ with a function $\Gamma: Q \vee P \rightarrow$ $Q \oplus P\left(\right.$ or $\left.\Gamma: Q \nabla_{\infty} \nabla P \rightarrow Q \oplus P\right)$ which is learnable by a team of confident learners (or a team of eventually-Popperian learners)?
4. Let P_{0}, P_{1}, Q_{0}, and Q_{1} be Π_{1}^{0} subsets of $2^{\mathbb{N}}$ with $Q_{0} \leq_{\omega}^{1} Q_{1}$ and $P_{0} \leq_{\omega}^{1} P_{1}$. Then, does $\llbracket P_{0} \vee Q_{0} \rrbracket_{\Sigma_{2}^{0}} \leq_{\omega}^{1} \llbracket P_{1} \vee Q_{1} \rrbracket_{\Sigma_{2}^{0}}$ hold? Moreover, if $Q_{0} \leq_{\omega}^{1} Q_{1}$ is witnessed by an eventually Lipschitz learner, then does $P_{0} \vee Q_{0} \leq_{\omega}^{1} P_{1} \vee Q_{1}$ hold?
5. Compare the reducibility $\leq_{t t, 1}^{\omega}$ and other reducibility notions (e.g., $\leq_{t t, 1}^{<\omega}, \leq_{<\omega}^{1}$, $\leq_{\omega \mid<\omega}^{1}, \leq_{1}^{<\omega}$ and \leq_{ω}^{1}) for Π_{1}^{0} subsets of Cantor space $2^{\mathbb{N}}$.

Question 91 (Big Questions).

1. Are there elementary differences between any two different degree structures $\mathcal{D}_{\beta \mid \gamma}^{\alpha}$ and $\mathcal{D}_{\beta^{\prime} \mid \gamma^{\prime}}^{\alpha^{\prime}}\left(\mathcal{P}_{\beta \mid \gamma}^{\alpha}\right.$ and $\left.\mathcal{P}_{\beta^{\prime} \mid \gamma^{\prime}}^{\alpha^{\prime}}\right)$?
2. Is the commutative concatenation ∇ first-order definable in the structure \mathcal{D}_{1}^{1} or \mathcal{P}_{1}^{1} ?
3. Is each local degree structure $\mathcal{P}_{\beta \mid \gamma}^{\alpha}$ first-order definable in the global degree structure $\mathcal{D}_{\beta \mid \gamma}^{\alpha}$?
4. Is the structure \mathcal{P}_{ω}^{1} dense?
5. Investigate properties of $(\alpha, \beta \mid \gamma)$-degrees \mathbf{a} assuring the existence of $\mathbf{b}>\mathbf{a}$ with the same $\left(\alpha^{\prime}, \beta^{\prime} \mid \gamma^{\prime}\right)$-degree as \mathbf{a}.
6. Investigate the nested nested model, the nested nested nested model, and so on.
7. Does there exist a natural intermediate notion between $(<\omega, \omega)$-computability (team-learnability) and ($\omega, 1$)-computability (nonuniform computability) on Π_{1}^{0} sets?
8. (Ishihara) Define a uniform (non-adhoc) interpretation (such as the Kleene realizability interpretation) translating each intuitionistic arithmetical sentence $($ e.g., $(\neg \neg \exists n \forall m A(n, m)) \rightarrow(\exists n \forall m A(n, m)))$ into a partial multi-valued function (e.g., Σ_{2}^{0}-DNE : $\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$).

Acknowledgements. The authors were partially supported by Grant-in-Aid for JSPS fellows. The second author (Kihara) would like to thank Douglas Cenzer, Hajime Ishihara, Dick de Jongh, Arno Pauly, and Albert Visser, for valuable comments and helpful discussion, and the second author also would like to thank Makoto Tatsuta and Yoriyuki Yamagata for introducing him to the syntactical study on Limit Computable Mathematics. The second author is also grateful to Sam Sanders who helped his English writing. Finally, the authors would like to thank the anonymous referees for their valuable comments and suggestions.

References

[1] Alfeld, C. P., 2007. Non-branching degrees in the Medvedev lattice of Π_{1}^{0} classes. J. Symb. Log. 72 (1), 81-97.
[2] Binns, S., 2003. A splitting theorem for the Medvedev and Muchnik lattices. Math. Log. Q. 49 (4), 327-335.
[3] Binns, S., Simpson, S. G., 2004. Embeddings into the Medvedev and Muchnik lattices of Π_{1}^{0} classes. Arch. Math. Log. 43 (3), 399-414.
[4] Blum, L., Blum, M., 1975. Toward a mathematical theory of inductive inference. Information and Control 28 (2), 125-155.
[5] Brattka, V., 2005. Effective Borel measurability and reducibility of functions. Math. Log. Q. 51 (1), 19-44.
[6] Brattka, V., de Brecht, M., Pauly, A., 2012. Closed choice and a uniform low basis theorem. Ann. Pure Appl. Logic 163 (8), 986-1008.
[7] Brattka, V., Gherardi, G., 2011. Effective choice and boundedness principles in computable analysis. Bulletin of Symbolic Logic 17 (1), 73-117.
[8] Brattka, V., Gherardi, G., 2011. Weihrauch degrees, omniscience principles and weak computability. J. Symb. Log. 76 (1), 143-176.
[9] Brattka, V., Gherardi, G., Marcone, A., 2012. The Bolzano-Weierstrass theorem is the jump of weak König's lemma. Ann. Pure Appl. Logic 163 (6), 623-655.
[10] Brattka, V., Le Roux, S., Pauly, A., 2012. On the computational content of the Brouwer fixed point theorem. In: [18], pp. 56-67.
[11] Case, J., Ngo-Manguelle, S., 1979. Refinements of inductive inference by Popperian machines. Tech. Rep. 152, SUNY Buffalo, Dept. of Computer Science.
[12] Cenzer, D., Kihara, T., Weber, R., Wu, G., 2009. Immunity and non-cupping for closed sets. Tbilisi Math. J. 2, 77-94.
[13] Cenzer, D. A., Hinman, P. G., 2003. Density of the Medvedev lattice of Π_{1}^{0} classes. Arch. Math. Log. 42 (6), 583-600.
[14] Cenzer, D. A., Hinman, P. G., 2008. Degrees of difficulty of generalized r.e. separating classes. Arch. Math. Log. 46 (7-8), 629-647.
[15] Cenzer, D. A., Remmel, J. B., 1998. Π_{1}^{0} classes in mathematics. In: Handbook of Recursive Mathematics, vol 2. Stud. Logic Found. Math. Elsevier, pp. 623-821.
[16] Cole, J. A., Kihara, T., 2010. The $\forall \exists$-theory of the effectively closed Medvedev degrees is decidable. Arch. Math. Log. 49 (1), 1-16.
[17] Cole, J. A., Simpson, S. G., 2007. Mass problems and hyperarithmeticity. J. Math. Log. 7 (2), 125-143.
[18] Cooper, S. B., Dawar, A., Löwe, B. (Eds.), 2012. How the World Computes Turing Centenary Conference and 8th Conference on Computability in Europe, CiE 2012, Cambridge, UK, June 18-23, 2012. Proceedings. Vol. 7318 of Lecture Notes in Computer Science. Springer.
[19] de Brecht, M., 2013. Levels of discontinuity, limit-computability, and jump operators, preprint.
[20] Downey, R. G., Greenberg, N., Jr., C. G. J., Milans, K. G., 2011. Binary subtrees with few labeled paths. Combinatorica 31 (3), 285-303.
[21] Downey, R. G., Hirschfeldt, D. R., 2010. Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, 883 pages.
[22] Duparc, J., 2001. Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank. J. Symb. Log. 66 (1), 56-86.
[23] Ershov, Y. L., Goncharov, S. S., Nerode, A., Remmel, J. B., Marek, V. W. (Eds.), 1998. Handbook of Recursive Mathematics, Volume 2: Recursive Algebra, Analysis and Combinatorics. Studies in Logic and the Foundations of Mathematics. North Holland, 798 pages.
[24] Gold, E. M., 1965. Limiting recursion. J. Symb. Log. 30 (1), 28-48.
[25] Greenberg, N., Miller, J. S., 2011. Diagonally non-recursive functions and effective Hausdorff dimension. Bull. London Math. Soc. 43 (4), 636-654.
[26] Hemmerling, A., 2008. Hierarchies of function classes defined by the first-value operator. Theor. Inform. Appl. 42 (2), 253-270.
[27] Hertling, P., 1996. Topological complexity with continuous operations. J. Complexity 12 (4), 315-338.
[28] Higuchi, K., 2012. Effectively closed mass problems and intuitionism. Ann. Pure Appl. Logic 163 (6), 693-697.
[29] Higuchi, K., Kihara, T., 2013. Inside the Muchnik degrees I: Discontinuity, learnability and constructivism, preprint.
[30] Hinman, P. G., 2012. A survey of Mucnik and Medvedev degrees. Bulletin of Symbolic Logic 18 (2), 161-229.
[31] Jain, S., Osherson, D. N., Royer, J. S., Sharma, A., 1999. Systems That Learn: An Introduction to Learning Theory. MIT Press, 329 pages.
[32] Jayne, J. E., Rogers, C. A., 1982. First level Borel functions and isomorphism. J. Math. Pure Appl. 61, 177-205.
[33] Jockusch, C. G., 1989. Degrees of functions with no fixed points. In: Logic, methodology and philosophy of science, VIII (Moscow, 1987). Stud. Logic Found. Math. North-Holland, Amsterdam, pp. 191-201.
[34] Jockusch, C. G., Soare, R. I., 1972. Degrees of members of Π_{1}^{0} classes. Pacific J. Math. 40 (3), 605-616.
[35] Jockusch, C. G., Soare, R. I., 1972. Π_{1}^{0} classes and degrees of theories. Trans. Amer. Math. Soc. 173, 33-56.
[36] Kačena, M., Motto Ros, L., Semmes, B., 2012/2013. Some observations on "a new proof of a theorem of Jayne and Rogers". Real Anal. Exchange 38 (1), 121132.
[37] Kihara, T., 2012. A hierarchy of immunity and density for sets of reals. In: [18], pp. 384-394.
[38] Kihara, T., 2013. Decomposing Borel functions using the Shore-Slaman join theorem, submitted.
[39] Lewis, A. E. M., Shore, R. A., Sorbi, A., 2011. Topological aspects of the Medvedev lattice. Arch. Math. Log. 50 (3-4), 319-340.
[40] Małek, A., 2006. A classification of Baire one star functions. Real Anal. Exchange 32, 205-212.
[41] Medvedev, Y. T., 1955. Degrees of difficulty of the mass problems. Dokl. Akad. Nauk SSSR 104, 501-504, (In Russian).
[42] Moschovakis, Y. N., 2009. Descriptive Set Theory. Mathematical Surveys and Monographs. American Mathematical Society, 502 pages.
[43] Motto Ros, L., 2011. Game representations of classes of piecewise definable functions. Math. Log. Q. 57 (1), 95-112.
[44] Motto Ros, L., 2013. On the structure of finite levels and ω-decomposable Borel functions. to appear in Journal of Symbolic Logic.
[45] Motto Ros, L., Semmes, B., 2010. A new proof of a theorem of Jayne and Rogers. Real Anal. Exchange 35 (1), 195-203.
[46] Muchnik, A. A., 1963. On strong and weak reducibility of algorithmic problems. Sibirskii Math. Zh. 4, 1328-1341, (In Russian).
[47] Mylatz, U., 2006. Vergleich unstetiger funktionen: "principle of omniscience" und vollstandigkeit in der c-hierarchie. Ph.D. thesis, Fernuniversität, Gesamthochschule in Hagen.
[48] Nies, A., 2009. Computability and Randomness. Oxford Logic Guides. Oxford University Press, 433 pages.
[49] Pauly, A., ???? An introduction to the theory of represented spaces, preprint.
[50] Pauly, A., de Brecht, M., 2012. Non-deterministic computation and the Jayne Rogers Theorem, to appear in Electronic Proceedings in Theoretical Computer Science.
[51] Pawlikowski, J., Sabok, M., 2012. Decomposing Borel functions and structure at finite levels of the Baire hierarchy. Ann. Pure Appl. Log. 163 (12), 1748-1764.
[52] Rogers, H., 1987. The Theory of Recursive Functions and Effective Computability. MIT Press, 504 pages.
[53] Roux, S. L., Pauly, A., 2013. Closed choice for finite and for convex sets. In: CiE. pp. 294-305.
[54] Sabok, M., 2009. σ-continuity and related forcings. Arch. Math. Log. 48 (5), 449-464.
[55] Semmes, B., 2009. A game for the Borel functions. Ph.D. thesis, Universiteit van Amsterdam.
[56] Shafer, P., 2011. Coding true arithmetic in the Medvedev and Muchnik degrees. J. Symb. Log. 76 (1), 267-288.
[57] Simpson, S. G., 2005. Mass problems and randomness. Bull. Symb. Log. 11 (1), $1-27$.
[58] Simpson, S. G., 2007. An extension of the recursively enumerable Turing degrees. J. London Math. Soc. 75, 287-297.
[59] Simpson, S. G., 2007. Some fundamental issues concerning degrees of unsolvability. In: Computational prospects of infinity Part II. Presented talks. Vol. 15 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. World Sci. Publ., Hackensack, NJ, pp. 313-332.
[60] Simpson, S. G., 2009. Subsystems of Second Order Arithmetic. Perspectives in Logic. Cambridge University Press, 464 pages.
[61] Simpson, S. G., 2011. Mass problems associated with effectively closed sets. Tohoku Math. J. 63 (4), 489-517.
[62] Simpson, S. G., Slaman, T., 2001. Medvedev degrees of Π_{1}^{0} subsets of 2^{ω}, unpublished.
[63] Soare, R. I., 1987. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer, Heidelberg, xVIII+437 pages.
[64] Solecki, S., 1998. Decomposing Borel sets and functions and the structure of Baire class 1 functions. J. Amer. Math. Soc. 11, 521-550.
[65] Weihrauch, K., 2000. Computable Analysis: An Introduction. Texts in Theoretical Computer Science. Springer, 285 pages.

Index

$\left[\mathfrak{C}_{T}\right]_{\beta \mid \gamma}^{\alpha}, 8$
$\left[\mathfrak{C}_{T}\right]_{\beta}^{\alpha}, 8$
$\left[\mathfrak{C}_{T}\right]_{1}^{\omega}, 4$
$\left[\mathbb{C}_{T}\right]_{\omega}^{<\omega}, 4$
$\left[\mathbb{C}_{T}\right]_{1}^{<\omega}, 4$
$\left[\mathfrak{C}_{T}\right]_{<\omega}^{1}, 4$
$\left[\mathfrak{C}_{T}\right]_{\omega \mid<\omega}^{1}, 4$
$\left[\mathfrak{C}_{T}\right]_{\omega}^{1}, 4$
$\left[\mathfrak{C}_{T}\right]_{1}^{1}, 4$
[σ], 7
[T], 7
$\# m l_{\Psi}, 8$
$\llbracket \bigvee_{i \in I} P_{i} \rrbracket_{\mathrm{CL}}, 10$
$\llbracket \bigvee_{i \in I} P_{i} \rrbracket_{\mathrm{lnt}}, 9$
$\llbracket \bigvee_{i \in I} P_{i} \mathbb{\|}_{\mathrm{LCM}[\mathrm{n}]}, 10$
П, 7
$\nabla P, 28$
$\nabla_{n \in \mathbb{N}} P_{n}, 28$
$\bigoplus_{i \in \mathbb{N}}^{\longrightarrow} Q_{i}, 10$
-, 7
$\left[\nabla_{\infty}\right]_{i \in I} P_{i}, 10$
$\left[\nabla_{n}\right]_{i \in I} P_{i}, 10$
$\leq_{\beta \mid \gamma}^{\alpha}, 8$
$\mathcal{D} / \mathcal{F}, 8$
$\mathcal{D}_{\beta \mid \gamma}^{\alpha}, 8$
$\mathcal{P} / \mathcal{F}, 3,8$
$\mathcal{P}_{\beta \mid \gamma}^{\alpha}, 4,8$
$\Phi(\sigma ; n), 7$
$\sigma^{-}, 7$
$\Sigma_{1}^{0}-\mathrm{LLPO}_{m / k}, 40$
$\nabla_{\infty}, 5$
$\nabla_{\omega}, 5$
$\nabla_{n}, 5$
$\mathrm{AP}_{\Psi}, 15$
$\operatorname{Con}\left(T_{i}\right)_{i \in I}, 10$
$\operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{1}^{0}\right], 3$
$\operatorname{dec}_{\mathrm{d}}^{<\omega}\left[\Pi_{2}^{0}\right], 4$
$\operatorname{dec}_{d}^{<\omega}\left[\Pi_{2}^{0}\right] \operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Delta_{2}^{0}\right], 4$
$\operatorname{dec}_{\mathrm{p}}^{<\omega}\left[\Pi_{1}^{0}\right], 3$
$\operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Delta_{2}^{0}\right], 4$
$\operatorname{dec}_{\mathrm{p}}^{\omega}\left[\Pi_{2}^{0}\right], 4$
SEL(Г, X), 39

CPA, 11
$\mathrm{DNR}_{m / k}, 41$
$\mathrm{DNR}_{m / k}(\alpha), 41$
$\mathrm{DNR}_{k}, 37$
MLR, 28
$\operatorname{indx}_{\Psi}, 8$
$\mathrm{mc}, 9$
$\mathrm{mC}_{\Psi}(\geq m), 15$
$\mathrm{mcl}_{\Psi}, 8$
$\operatorname{pr}_{i}(\sigma), 9$
write, 10
$f \oplus g, 7$
$P \leq_{\mathcal{F}} Q, 8$
$P \oplus Q, 7$
$P \otimes Q, 7$
$P^{\wedge} Q, 10$
$P^{\wedge}\left\{Q_{i}\right\}_{i \in \mathbb{N}}, 10$
$P \nabla Q, 10$
$P^{\nabla}, 26$
$P^{(\tau)}, 29$
$P^{(a)}, 27$
$P^{\text {va }}, 33$
$P^{\leq T g}, 12$
$P \rightarrow Q, 14$
$P^{\sqcap} Q, 14$
$P_{0} \dagger P_{1}, 13$
$P_{0} \nabla_{\infty} P_{1}, 10$
$P_{0} \nabla_{\omega} P_{1}, 10$
$P_{0} \nabla_{n} P_{1}, 10$
$Q \vee P, 11$
$T^{e x t}, 7$
$T_{*}^{\ominus}, 10$
$T_{\vee}^{\ominus}, 31$
$T_{P} \frown T_{Q}, 10$
$X^{<\mathbb{N}}, 7$
Cantor tartan, 13
complete $(\alpha, \beta \mid \gamma)-, 22$
computability ($\alpha, \beta \mid \gamma$)-, 8
computably bounded, 22
concatenation, 7, 10
commutative, 10
hyper-, 11
infinitary, 10
non-commutative, 10
consistency set, 10
contiguous
$\left(\alpha^{*}, \beta^{*} \mid \gamma^{*}\right)-, 23$
degree, 8
derivative, 27
delayed, 29
diagonally noncomputable, 22
(m / k)-operation, 41
k-valued, 37
k-valued m-, 41
heart, 10
of $T_{\mathbf{V}}, 31$
hyperconcatenation, 11
i-th projection, 9
immune, 14,22
LCM disjunction, 28
leaner
m-changing point of, 15
learner, 8
anti-Popperian point of, 15
eventually-Popperian, 33
mind-change location of, 8
lessor limited principle of omniscience
with (m / k) wrong answers, 40
LEVEL 1 separation, 5
LEVEL 2 separation, 5
LEVEL 3 separation, 5
LEVEL 4 separation, 5
locking sequence, 32
noncupping, 28
number of times of mind-changes, 9
pairwise everywhere independent, 17
Π_{1}^{0} set, 7
(m, k)-separating, 41
antichain, 12
computable sequence of, 7
corresponding tree of, 7
degree-isomorphic everywhere, 20
effective enumeration of, 7
everywhere ($\omega, 1$)-incomparable, 15
homogeneous, 20
independent, 12
perfect, 12
special, 5, 7, 13 uniform sequence of, 7
recursive meet, 10
strong anticupping property, 6, 26
timekeeper, 29
tree, 7
dead end of, 7
extendible in, 7
immediate predecessor in, 7
leaf of, 7
tree-immune, 26
Turing independent, 17

[^0]: *Corresponding author
 Email addresses: khiguchi@g.math.s.chiba-u.ac.jp (K. Higuchi), kihara@jaist.ac.jp (T. Kihara)

[^1]: ${ }^{1}$ In some contexts, a function Φ is called partial computable if it can be extended to some Φ_{e}. In this paper, we identify each partial computable function with such a Φ_{e}.

[^2]: ${ }^{2}$ The set of m-changing points is closedly related to the m-th derived set obtained from the notion of discontinuity levels ([19, 26, 27, 40]). See also Part I [29, Section 5.3] for more information on the relationship between the notion of mind-changes and the level of discontinuity.
 ${ }^{3}$ In the sense of the identification in the limit [24], the learner Ψ is said to be Popperian if $\Phi_{\Psi(\sigma)}(\emptyset)$ is total for every $\sigma \in \mathbb{N}^{<\mathbb{N}}$ such that $\Psi(\sigma)$ is defined. This definition indicates that, given any sequence $\alpha \in \mathbb{N}^{\mathbb{N}}$, if the learner makes an incorrect guess $\Phi_{\Psi(\alpha \uparrow s)}(\emptyset) \neq \alpha$ at stage s, the leaner will eventually find his mistake $\Phi_{\Psi(\alpha \uparrow s)}(\emptyset ; n) \downarrow \neq \alpha(n)$. In our context, the learner shall be called Popperian if given any falsifiable (i.e., $\left.\Pi_{1}^{0}\right)$ mass problem Q and any sequence $\alpha \in \mathbb{N}^{\mathbb{N}}$, the incorrectness $\Phi_{\Psi(\alpha \uparrow s)}(\alpha) \notin Q$ implies $\Phi_{\Psi(\alpha \uparrow s)}(\alpha) \upharpoonright n \downarrow \notin T_{Q}$ for some $n \in \mathbb{N}$. Every anti-Popperial point of Ψ witnesses that Ψ is not Popperian.

[^3]: ${ }^{4} \mathrm{An}$ anonymous referee pointed out that the notion of degree-isomorphic everywhere is related to the notion of fractal in the study of Weihrauch degrees [9,53]. The (reverse) lattice embedding d of the Medvedev degrees into the Weihrauch degrees has the property that a subset P of Baire space is degree-isomorphic everywhere if and only if $d(P)$ is a fractal.

