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Abstract. Le Roux and Ziegler asked whether every simply connected
compact nonempty planar IT? set always contains a computable point. In
this paper, we solve the problem of le Roux and Ziegler by showing that
there exists a planar IT9 dendroid without computable points. We also
provide several pathological examples of tree-like IT? continua fulfilling
certain global incomputability properties: there is a computable dendrite
which does not #-include a II? tree; there is a IT¥ dendrite which does
not *-include a computable dendrite; there is a computable dendroid
which does not #-include a IT? dendrite. Here, a continuum A *-includes
a member of a class P of continua if, for every positive real e, A includes
a continuum B € P such that the Hausdorff distance between A and B
is smaller than €.
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1 Background

Every nonempty open set in a computable metric space (such as Euclidean n-
space R™) contains a computable point. In contrast, the Non-Basis Theorem
asserts that a nonempty co-c.e. closed set (also called a ITY set) in Cantor space
(hence, even in Euclidean 1-space) can avoid any computable points. Non-Basis
Theorems can shed new light on connections between local and global properties
by incorporating the notions of measure and category. For instance, Kreisel-
Lacombe [6] and Tanaka [17] showed that there is a II{ set with positive mea-
sure that contains no computable point. Recent exciting progress in Computable
Analysis [18] naturally raises the question whether Non-Basis Theorems exist
for connected IIY sets. However, we observe that, if a nonempty I1{ subset of
R! contains no computable points, then it must be totally disconnected. Then,
in higher dimensional Euclidean space, can there exist a connected I1{ set con-
taining no computable points? It is easy to construct a nonempty connected T}
subset of [0,1]? without computable points, and a nonempty simply connected
IIY subset of [0,1]® without computable points. An open problem, formulated
by Le Roux and Ziegler [13] was whether every nonempty simply connected
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compact planar IT{ set contains a computable point. As mentioned in Penrose’s
book “Emperor’s New Mind’ [12], the Mandelbrot set is an example of a simply
connected compact planar IT) set which contains a computable point, and he
conjectured that the Mandelbrot set is not computable as a closed set. Hertling
[5] observed that the Penrose conjecture has an implication for a famous open
problem on local connectivity of the Mandelbrot set. Our interest is which topo-
logical assumption (especially, connectivity assumption) on a I1{ set can force
it to possess a given computability property. Miller [10] showed that every IT¢
sphere in R™ is computable, and so it contains a dense c.e. subset of computable
points. He also showed that every ITY ball in R™ contains a dense subset of
computable points. Iljazovié [7] showed that chainable continua (e.g., arcs) in
certain metric spaces are almost computable, and hence there always is a dense
subset of computable points. In this paper, we show that not every II{ dendrite
is almost computable, by using a tree-immune IT) class in Cantor space. This
notion of immunity was introduced by Cenzer, Weber, Wu, and the author [4].
We also provide pathological examples of tree-like IT{ continua fulfilling certain
global incomputability properties: there is a computable dendrite which does not
*-include a IT) tree; there is a computable dendroid which does not *-include a
IIY dendrite. Finally, we solve the problem of Le Roux and Ziegler [13] by show-
ing that there exists a planar IIY dendroid without computable points. Indeed,
our planar dendroid is contractible. Hence, our dendroid is also the first example
of a contractible Euclidean IT{ set without computable points.

2 Preliminaries

Basic Notation: 2<V denotes the set of all finite binary strings. Let X be a
topological space. For a subset Y C X, cl(Y') (int(Y"), resp.) denotes the closure
(the interior, resp.) of Y. Let (X;d) be a metric space. For any z € X and r € R,
B(z;r) denotes the open ball B(z;r) = {y € X : d(z,y) < r}. Then z is called
the center of B(x;r), and r is called the radius of B(x;7). For a given open ball
B = B(x;r), B denotes the corresponding closed ball B = {ye X :d(z,y) <r}.
For a,b € R, [a,b] denotes the closed interval [a,b] = {x € R:a <z < b}, (a,b)
denotes the open interval (a,b) = {z € R: a < z < b}, and (a, b) denotes a point
of Euclidean plane R?. For X C R", diam(X) denotes max{d(z,y) : z,y € X }.

Continuum Theory: A continuum is a compact connected metric space. For
basic terminology concerning Continuum Theory, see Nadler [11] and Illanes-
Nadler (8].

Let X be a topological space. The set X is a Peano continuum if it is a
locally connected continuum. The set X is a dendrite if it is a Peano continuum
which contains no Jordan curve. The set X is unicoherent if AN B is connected
for every connected closed subsets A, B C X with AU B = X. The set X is
hereditarily unicoherent if every subcontinuum of X is unicoherent. The set X
is a dendroid if it is an arcwise connected hereditarily unicoherent continuum.
For a point « of a dendroid X, rx(z) denotes the cardinality of the set of arc-
components of X\{z}. If rx (z) > 3 then z is said to be a ramification point of X .
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Fig. 1. The basic dendrite Fjg, 2. The harmonic comb
Fig. 3. The Cantor fan

The set X is a tree if it is dendrite with finitely many ramification points. Note
that a topological space X is a dendrite if and only if it is a locally connected
dendroid. Hahn-Mazurkiewicz’s Theorem states that a Hausdorff space X is a
Peano continuum if and only if X is an image of a continuous curve.

Ezample 1 (Planar Dendroids).
1. Put B; = {27%} x [0,27%]. Then the following set B C R? is dendrite.

B=JBu([-1,1] x {0}).

teN

We call B the basic dendrite. The set B, is called the t-th rising of B. See
Fig. 1.

2. The set H = cl(({1/n:n € N} x [0,1]) U ([0,1] x {0})) is called a harmonic
comb. Then H is a dendroid, but not a dendrite. The set {1/n} x [0,1] is
called the n-th rising of the comb H, and the set [0, 1] x {0} is called the grip
of H. See Fig. 2.

3. Let C C R! be the middle third Cantor set. Then the one-point compactifi-
cation of C x (0, 1] is called the Cantor fan. (Equivalently, it is the quotient
space Cone(C) = (C x [0,1])/(C x {0}).) The Cantor fan is a dendroid, but
not a dendrite. See Fig. 3.

Let X be a topological space. X is n-connected if it is path-connected and
m;(X) =0 for any 1 < i < n, where m;(X) is the i-th homotopy group of X. X
is simply connected if X is 1-connected. X is contractible if the identity map on
X is null-homotopic. Note that, if X is contractible, then X is n-connected for
each n > 1. It is easy to see that the dendroids in Example 1 are contractible.

Computability Theory: We assume that the reader is familiar with Com-
putability Theory on the natural numbers N, Cantor space 2V, and Baire space
NY (see also Soare [16]). For basic terminology concerning Computable Analysis,
see Weihrauch [18], Brattka-Weihrauch [3], and Brattka-Presser [2].

Hereafter, we fix a countable base for the Euclidean n-space R™ by p =
{B(z;r): 2 € Q" & r € QT }, where Q7 denotes the set of all positive rationals.
Let {pn}neny be an effective enumeration of p. We say that a point x € R”
is computable if the code of its principal filter F(z) = {i € N : z € p;} is
computably enumerable (hereafter c.e.) A closed subset F' C R™ is IV if there



is a c.e. set W C N such that F' = X \ [J,cy pe- A closed subset F' C R" is
computably enumerable (hereafter c.e.) if {e € N: F'Np. # 0} is c.e. A closed
subset F' C R"™ is computable if it is II) and c.e. on R™.

Almost Computability: Let Ag, A; be nonempty closed subsets of a metric
space (X, d). Then the Hausdorff distance between Ay and A; is defined by

di(Aog, A1) = r???XzSélE, yeilllf,f, d(z,y).

Let P be a class of continua. We say that a continuum A *-includes a member
of P if inf{dy(A,B): AD BeP}=0.

Proposition 1. FEvery Fuclidean dendroid x-includes a tree.

Proof. Fix a Euclidean dendroid D C R", and a positive rational ¢ € Q. Then
D is covered by finitely many open rational balls {B;};<, of radius £/2. Choose
d; € DN B; for each i < n if B; intersects with D. Note that {B(d;; €)}i<n covers
D. Since D is a dendroid, there is a unique arc 7; ; € D connecting d; and d; for
each i, < n. Then, F = U{M}gn 7i,; is connected and locally connected, since
E is a union of finitely many arcs (i.e., it is a graph, in the sense of Continuum
Theory; see also Nadler [11]). It is easy to see that F has no Jordan curve, since
FE is a subset of the dendroid D. Consequently, E is a tree. Moreover, clearly
dy(FE,D) < g, since d; € E for each i < n. O

The class P has the almost computability property if every A € P x-includes
a computable member of P as a closed set. In this case, we simply say that
every A € P is almost computable. Tljazovié [7] showed that every IT9 chainable
continuum is almost computable, hence every I1{ arc is almost computable.

3 Incomputability of Dendrites

3.1 A Computable Dendrite Approximable by No Hf Trees

By Proposition 1, topologically, every planar dendrite *-includes a tree. However,
if we try to effectivize this fact, we will find a counterexample.

Theorem 1. Not every computable planar dendrite x-includes a II) tree.

Proof. Let A C N be an incomputable c.e. set. Thus, there is a total computable
function f4 : N — N such that range(fa) = A. We may assume f4(s) < s for
every s € N. Let A, denote the finite set {fa(u) : u < s}. Then st : N — N
is defined as st(n) = min{s € N : n € A,}. Note that st*(n) > n by our
assumption fa(s) < s.

Construction. Recall the definition of the basic dendrite from Example 1. We
construct a computable dendrite by modifying the basic dendrite 5. For every
t € N, we introduce the width of the t-rising w(t) as follows:

2=+t (™) ifte A
w(t) = ’ N
0, otherwise.
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Fig. 4. The dendrite D for 0,2,4 ¢ A and 1,3 € A.

Let I; be the closed interval [27t —w(t), 27 +w(t)]. Since st*(n) > n, we have
I;NI; = ) whenever t # s. We observe that {w(¢)}+cy is a uniformly computable
sequence of real numbers. Now we define a computable dendrite D C R? by:

= ({27 —w®Iu{27" +w(t)}) x [0,271]
= 27" —w(t), 27" +w(t)] x {27}
=27 —w(t), 27 +w(t)) x (—1 27

D:(Uw?w%))u(([ < {0\ U D2 )-

teN teN

We call D; = D) U D} the t-th rising of D. See Fig. 4.

Claim. The set D is a dendrite.

To prove D is a Peano continuum, by the Hahn-Mazurkiewicz Theorem, it
suffices to show that D = Im(h) for some continuous curve h : [—1,1] — R2.
We divide the unit interval [0, 1] into infinitely many parts I, = [2~(¢+1) 27
Furthermore, we also divide each interval I5; into three parts IS,, I3, and I3,
where I3, = [(5 —i) -3~ .27 (6 — ). 371 . 2= D] for each i < 3. Then
we define a desired curve h as follows.

{27 +w(t)} x [0,271] if z € I9,,
2 —w(), 2w x 27 ifre
h(z) moves in < {27t —w(t)} x [0,2 ] if z € I3,
270D fap(t +1),27F —w(t)] x {0} if x € Ioqq,
[—1,0] x {0} if z € [-1,0].

Clearly, h can be continuous, and indeed computable, since the map w : N —
R is computable. It is easy to see that D = Im(h). Moreover, Im(h) contains no
Jordan curve since m(h(z)) < mo(h(y)) whenever z < y, where mo(p) denotes
the first coordinate of p € R2. Consequently, D is a dendrite.

Moreover, by construction, it is easy to see that D is computable.



Claim. The computable dendrite D does not #-include a I1{ tree.

Suppose that D contains a I1{ subtree ' C D. We consider a rational open
ball B; with center (27%,27%) and radius 2~(**2), for each t € N. Note that
B,ND C D, for every t € N. Since T is II? in R, B={t e N: B,nT = ()}
is c.e. If w(t) > 0 (i.e., t € A) then D\ (D; N By) is disconnected. Therefore,
cither T C [-1,27"] x R or T C [27%,1] x R holds whenever B, N T = 0 (i.e.,
t € B), since T is connected. Thus, if the condition #(A N B) = R is satisfied,
then either T'C [—1,0] x R or T C [0, 1] x R holds. Consequently, we must have
dg(T,D) > 1.

Therefore, we may assume #ANB < V. Since A is coinfinite, D has infinitely
many ramification points (27%,0) for ¢t ¢ A. However, by the definition of tree,
T has only finitely many ramification points. Thus we must have (DY N T) \
{(27,0)} = 0 for almost all t ¢ A. Since B, NT C (DY NT)\ {(27%,0)}, we
have ¢ € B for almost all ¢ € N\ A. Consequently, we have #((N\ A)AB) < No.
This implies that N\ A is also c.e., since B is c.e. This contradicts that A is
incomputable. a

Note that a Hausdorff space (hence every metric space) is (locally) arcwise
connected if and only if it is (locally) pathwise connected. However, Miller [10]
pointed out that the effective versions of arcwise connectivity and pathwise con-
nectivity do not coincide. Theorem 1 could give a result on effective connectivity
properties. Note that effectively pathwise connectivity is defined by Brattka [1].
Clearly, the dendrite D is effectively pathwise connected. We now introduce a
new effective version of arcwise connectivity property by thinking arcs as closed
sets. Let A_(X) denote the hyperspace of closed subsets of X with negative
information (see also Brattka [1]).

Definition 1. A computable metric space (X,d,a) is semi-effectively arcwise
connected if there exists a total computable multi-valued function P : X? =
A_(X) such that P(x,y) is the set of all arcs A whose two end points are x and
y, for any x,y € X.

Obviously D is not semi-effectively arcwise connected. Indeed, for every € > 0
there exists xg, 21 € [0,1] with d(zo,x1) < € such that (xg,0), (x1,0) € D cannot
be connected by any I1{ arc. Thus, we have the following corollary.

Corollary 1. There exists an effectively pathwise connected Euclidean contin-
uum D such that D is not semi-effectively arcwise connected.

3.2 Plotting Binary Trees on Euclid Plane

For a string o € 2<N, let Ih(o) denote the length of o. Then

Y(o) = <21 37042 > 3=+, 2lh<">> € R%

i<lh(o) & o(i)=1



Fig. 5. The plotted tree ¥(2<%).

For two points ,y € R?, the closed line segment L(x,y) from x to y is defined
by L(z,y) = {(1 —t)x +ty : t € [0,1]}. For a (possibly infinite) tree 7' C 2<N,
we plot an embedded tree ¥(T') C R? by

w(T) =l (| J{L((0),0(r) : 0.7 € T & Ih(o) = Ih(r) + 1}) .

Then ¥(T) is a dendrite (but not necessarily a tree, in the sense of Continuum
Theory), for any (possibly infinite) tree T C 2V. See Fig. 5.
We can easily prove the following lemmata.

Lemma 1. Let T be a subtree of 2<N, and D be a planar subset such that 1({)) €
D C ¥U(T) for the root () € 2<N. Then D is a dendrite if and only if D is
homeomorphic to W(S) for a subtree S CT.

Proof. The “if” part is obvious. Let D be a dendrite. For a binary string o
which is not a root, let ¢~ be an immediate predecessor of . We consider the

set S={()}U{oc €20 # () &DN(L(¥(07),%(0)) \ {(c7)}) # 0} Since

D is connected, S is a subtree of T'. It is easy to see that D is homeomorphic to
w(S). a

Lemma 2. Let T be a subtree of 2<N. Then T is IIY (c.e., computable, resp.)
if and only if W(T) is a IIY (c.e., computable, resp.) dendrite in R2.

Proof. With our definition of ¥, the dendrite ¥(2<Y) is clearly a computable
closed subset of R?. So, if T'is II?, then it is easy to prove that ¥(T) is also II?.
Assume that T is a c.e. tree. At stage s, we compute whether L(¢(c7), 9 (0))
intersects with the e-th open rational ball p., for any e < s and any string o
which is already enumerated into T" by stage s. If so, we enumerate e into Wrp
at stage s. Then {e e N: ¥ (T)Np. # 0} = Wr is c.e.

Assume that ¥(T') is I19. Then, we consider an open rational ball B_ (o) =
B(p(c); 2742 for cach o € 2<N. Note that B_(6) N B_(7) = 0 for o # 7.
Since W(T) is 110, T* = {0 € 2<N . ¥(T) N B_(0) = 0} is ce., and it is
easy to see that T = 2<N\ T*. Thus, T is a II? tree of 2<N. We next assume
that ¥(T') is c.e. We can assume that ¥(T) contains the root (()), otherwise
T = (), and clearly it is c.e. For a binary string o which is not a root, let
o~ be an immediate predecessor of o. Pick an open rational ball B4 (o) such



that ¥(2<N) N B, (o) C L(y(c7),1 (o)) for each o. Since ¥(T) is c.e., T* =
{o € 2N . ¥(T) N By(o) # 0} is c.e. If o is not a root and o € T then
L(y(o7),9¥(0)) CW(T), so ¥(T)N Bi(o) # 0. We observe that if o ¢ T then
L(Y(c7),¥(0)) N¥(T) =0, so (T) N By(c) = 0. Thus, we have T = T*. In
the case that ¥(T') is computable, ¥(T') is c.e. and II?, hence T is c.e. and 119,
i.e., T is computable. ad

Lemma 3. Let D be a computable subdendrite of W(2<N) with ¢ (()) € D. Then
there exist computable subtrees T, T+ C 2<N such that W(T~) C D C ¥(T™)

and ([0,1] x {0}) N D = ([0,1] x {0}) N¥(T~) = ([0,1] x {0}) N¥(TT).

Proof. Again we consider an open ball B_(0) = B(z/J( ) 2= (h(@)+2)) "and an
open rational ball B, (o ) such that ¥(2<N) N B, (0) € L(¢(07),4(0)) for each
o€ 2N Since Dis IV, U* = {oc € 2N : DN B_(o )—@} is c.e. Since D is
ce., T* = {o € 2<N : DﬂB+( ) # 0} is c.e., and it is a tree by Lemma 1.
For every o € 2<N, either DN B_(c) = 0 or D N B4 (o) # 0 holds. Therefore,
we have T* U U* = 2<N. Moreover, for the set of leaves of T*, Ly = {p €

: (Vi < 2) p7(i) ¢ T*}, we observe that T* N U* C L%. Recall that the
pomtclabs X9 has the reduction property, that is, for two c.e. sets T* and U*,
there exist c.e. subsets T C T* and U C U* such that TUU = T* UU*
and T NU = (. This is because, for ¢ € T* N U*, o is enumerated into T
when ¢ is enumerated into 7™ before it is enumerated into U*; ¢ is enumerated
into U otherwise. Since T* N U* C L}, T must be a tree. Furthermore, T is
ce., and U = 2<N\ T is also c.e. Thus, T is a computable tree. Therefore,
T-={o-€2N:0ecT & Vi<2) o (i) gT}and Tt = {07 (i) : 0 €
T & i < 2} are also computable trees. Then, ¥(T~) C D C ¥(T"), and we have
(0,1] x {0})ND = ([0,1] x {0}) N (T~) = ([0,1] x {0}) N (T") since the sets
of all infinite paths of T, 7~ and Tt coincide. O

Lemma 4. There is an infinite IIY tree P C 2<N which has no infinite com-
putable subtree T C P.

Proof. Let (A, B) be a computably inseparable pair of pairwise disjoint c.e. sub-
sets of N, i.e., there is no set S satisfyingn € A - n € S — n ¢ B for any
n € N. Define P as follows:

P={cec2N:(Vn<ih(o))n€c A—o(n)=1—n¢gB}.

Assume that P has an infinite computable subtree T'. Then, for each n € N,
choose the leftmost string S(n) € T of length n. Clearly S is computable, and
separates A and B. This contradicts our choice of (A, B). For more details on
such trees, see also Cenzer-Kihara-Weber-Wu [4]. O

Lemma 5. Let P C 2<N be an infinite IIY tree without infinite computable
subtrees, and let D C W(P) be any computable subdendrite. Then ([0,1] x {0})N
D =0 holds.



Proof. We can assume ¢(()) € D, otherwise we connect 1(()) and the root of D
by a subarc of ¥(2<N). By Lemma 3, there exist computable trees 7—, T+ C 2<N
such that ¥(T~) C D C ¥(T") and both ¥(T~) and ¥(T™") agree with D on
[0,1] x {0}. Since ¥(T~) C D, we have T~ C P. By our assumption of P, the
tree T~ must be finite. Hence, T is also finite. By using weak Konig’s lemma
(or, equivalently, compactness of Cantor space), 7T C 2! holds for some [ € N.
Thus, D C ¥(T+) C[0,1] x [27%,1] as desired. O

Note that if 7" is an infinite binary subtree of 2<N, then for every § > 0 it
holds that ((0,1) x (0,0)) N¥(T) # 0.

3.3 A H? Dendrite Approximable by No Computable Dendrite
Theorem 2. Not every IIY planar dendrite is almost computable.*

Proof. Again, we adapt the construction in the proof of Theorem 1. We fix an
infinite 179 tree P C 2<N with no infinite computable subtree, as in Lemma 4.
For o € 2<N put E(0) = {r € 2<N: 7 D ¢}. For each IT¢{ tree P C 2<N| there
exists a computable function fp : N — 2<N such that P = 2<N\ |, E(fr(n))
and such that for each o € 2<% and s € N we have o € |J,_, E(fp(t)) whenever
070,071 € U,., E(fp(t)). For such a computable function fp : N — 2<N,
we let Py denote 2<N\ J,_, E(fp(t)). Then P; is a tree, and {P, : s € N} is
computable uniformly in s.

Construction. Let e; denote (1,0) € R2. For a tree T C 2<N and w € Q, we
define ¥ (T;w), the edge of the fat approzimation of the tree T of width w, by

W(T;w) = cl (U {L (w(a) + (37171 w)eq, v(r) £ (37171 ~w)el>
cte{—,+}t&o,TeT &lh(o) —lh(7)+1}>.

If lim, ws = 0 then we have lim, ¥ (T; wy) = ¥(T'). Moreover, if {w, : s € N}
is a uniformly computable sequence of rational numbers, then {¥(T;w;) : s € N}
is also a uniformly computable sequence of computable closed sets. Additionally,

! The author is grateful to an anonymous referee for suggesting an alternative proof
using a computably inseparable pair (A4, B), which does not use our lemmata con-
cerning plotting of binary trees into Euclidean plane. We sketch out the proof
of the referee: Let P C R? be the union of [0,2] x {0} and vertical lines L, =
{1-27"} x [-27",27"]. Define Q from P as follows. If n enters A at stage s, then
remove the bottom half of L,,, and the open segment (1—-27",1—-27"427%)x{0}. To
keep @ connected, add the diagonal line segment connecting the points (1—-27",27")
and (1 —27"+427°,0). If n € D, do likewise but remove the top half of L,, and use
the bottom half to keep @@ connected. As in the proof of Theorem 1, we can show
that the resulting set Q is a IT? dendrite, and if Q *-includes a computable dendrite,
then we could compute a separator for A and B.
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Fig. 6. The fat approximation ¥ (T w). Fig. 7. The basic object ¥(T;w, ¢, t, q).

the set U(T;w, ¢, t,q), for atree T C 2<N for w, ¢, q € Q, and for ¢ € N, is defined
by

U(T;w,ct,q) = {<c—|—q~ (x— ;) 22t+1y> cR?: (z,7) ELI/(T;w)}.

Note that ¥ (T;w,c,t,q) C [c —q/2, ¢+ q/2] x [2~*D 2] as in Fig. 7. For
t € N, and for st?(t) = min{s : t € A;} in the proof of Theorem 1, let I(t) € 2
be the leftmost path of Pya(y). If st*(t) is undefined (i.e., t ¢ A) then I(t) is
also undefined. For each t € N we define F(t) = {0 € 2<N : ¢ C ()} if I(t) is
defined; F'(t) = P otherwise. Then {F(t) : t € N} is a computable sequence of
II) subsets of 2<N. Furthermore, we have ¥ (F(t)) N ([0,1] x {0}) # 0, since F(¢)
has a path for every ¢ € N. For each ¢ € N, w(t) is defined again as in the proof
of Theorem 1. Now we define a H{) dendrite H C R? as follows:

Hf = w(F(t);w(t), 27t ¢,27(1+2)
HY = ({27 —w()} U {27 +w(®)}) x 0,27 )]
Hi* = (27— w(t), 27 +w(t) x {2704}
H?2 = (278 —w(t), 27t +w(t)) x (—1,27 D)
# = (| (H7 0B\ (7 OintHp) ) U (21,1 % 00\ | HE).

teN teN

Put H, = H; \ (H;* UintH}) (see Fig. 8). We can also show that H is a II}
dendrite in the same way as for Theorem 1.

Claim. The IT9 dendrite H does not *-include a computable dendrite.

Let J be a computable subdendrite of H. Put S(t) = [3-27(#+2) 5.2-(t42)]
[2=(+1) 271] Then, we note that J(t) = JN.S(t) is also a computable dendrite,
since Hy C S(t) and it is a dendrite. However, by Lemma 5, if ¢ ¢ A then we
have J(t) N (R x {27%}) = 0. So we consider the following set:

C={teN:Jt)n ([3 27 (142 5 o= ()] 5 271, 1]) =0}.
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Fig. 8. The dendrite H for 0,2,4 ¢ A and 1,3 € A.

Since J(t) is uniformly computable in ¢, the set C' is clearly c.e., and we have
N\ A C C. However, if N\ A = C, then this contradicts the incomputability of
A. Thus, there must be infinitely many ¢ € A such that ¢ is enumerated into C.
However, if t € A is enumerated into C, it cuts the dendrite H. In other words,
since J C H is connected, either J C [~1,5-2-¢+2]xRor J C [3-2(¢+2) 1] xR.
Hence we must have dg(J, H) > 1. O

Corollary 2. There exists a nonempty IIY subset of [0, 1] which is contractible,
locally contractible, and *-includes no connected computable closed subset.

4 Incomputability of Dendroids

4.1 A Computable Dendroid Approximable by No Hf Dendrites

By Proposition 1, topologically, every planar dendroid #-includes a dendrite.
However, we have no effectivization of this proposition.

Theorem 3. Not every computable planar dendroid *-includes a IIY dendrite.

Lemma 6. There is a limit computable function f such that, for every uniformly
c.e. sequence {U, : n € N} of nonempty c.e. sets, we have f(n) € U, for
infinitely many n € N.

Proof. Let {V. : e € N} be an effective enumeration of all uniformly c.e. se-
quences {U,, : n € N} of c.e. sets, where (V¢), =U, = {z € N: (n,z) € V.}. We
construct a partial computable function g as follows: For each (e, k) € N, wait
for enumerating some element y € N into (V) xy. Then, define g({e, k)) to be
the first such y. If (Ve), # 0 for each n € N, then g(n) is contained in (V¢),
for infinitely many n € N. Then, let f be a limit computable total extension of
g. O

Proof (Theorem 3). Pick a limit computable function f = limg fs in Lemma
6. For every t,u € N, put v(t,u) = 27° for the least s such that fs(t) = w if
such s exists; v(t,u) = 0 otherwise. Since {f; : s € N} is uniformly computable,
v : N2 — R is computable.
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Fig.10. The harmonic comb K; for
fo(t) =0, f1(t) =0, f2(t) =2, ...

Construction. For each t € N, the center position of the u-th rising of the
t-th comb is defined as c,(t,u) = 271 4 2=Ct+utl) “and the width of the
u-th rising of the t-th comb is defined as v, (t,u) = v(t,u) - 2~ *+4+3) Then, we
define the t-th harmonic comb K; for each ¢t € N as follows:
K; = {271} (0,271

Kgu = {C* (tv u) — Uk (t7 u)a Cx (t7 U) =+ U (ta u)} X [03 27t]

K}, = lea(tu) — vt u), e (t,u) + v (tu)] x {27}

Kﬁu = (ca(t,u) — vi(t, ), cu(t,u) + vi(t,u)) x (—=1,27F)

K, = (K: vU U K;u) U (([2@”1),2”] < {on\ U Kf,u> :

1<2 ueN ueN

Note that K; is homeomorphic to the harmonic comb H for each ¢t € N. This is
because, for fixed ¢t € N, since lim, f,(¢) exists we have v(t,u) = 0 for almost all
u € N. Then the desired computable dendroid is defined as follows.

K = ([-1,0] x {opu | (([2*@”2),2*(2“1)] x {0}) UKt) .
teN

Claim. The set K is a computable dendroid.

Clearly K is a computable closed set. To show that K is pathwise connected,
we consider the following subcontinuum K, , the grip of the comb K; ,,, for each
teN.

K= U K.u(@ @22 x{oh\ |J K.

1<2v(t,u)>0 v(t,u)>0

Then K~ = ([-1,0] x {0}) U U,ey (2732, 27CHD] x {0}) U K, ) has no
ramification points. We claim that K~ is connected and K~ is even an arc. To
show this claim, we first observe that K, is an arc for any ¢ € N, since v(t, u) > 0



occurs for finitely many v € N. Moreover K, C S(t), and lim; diam(S(t)) = 0
holds. Therefore, we see that K~ is locally connected and, hence, an arc. For
points p,q € K, if p,g € K~ then p and ¢ are connected by a subarc of K. In
the case p € K\ K, the point p lies on K7, for some ¢,u such that v(t,u) = 0.
If ¢ € K~ then there is a subarc A C K~ (one of whose endpoints must be
(c(t,u),0)) such that AU KP, is an arc containing p and ¢. In the case g €
K\ K~ similarly we can connect p and ¢ by an arc in K. Hence, K is pathwise
connected. K is hereditarily unicoherent, since the harmonic comb is hereditarily
unicoherent. Thus, K is a dendroid.

Claim. The computable dendroid K does not *-include a II{ dendrite.

What remains to show is that every IT {J subdendrite R C K satisfies the con-
dition dg (R, K) > 1. Let R C K be a IT{ dendrite. Put S(t) = [2~ (1D 272 x
[0,27"]. Since R is locally connected, R N S(t) = RN K; is also locally con-
nected for each t € N and m < 2°. Thus, for fixed ¢t € N, let K% = [e.(t,u) —
2~ (RtHut3) e (t,u) + 2~ CtHutd)] 5 {271} For any continuum R* C Ky, if R* N
Ktl’; # () for infinitely many u € N, then R* must be homeomorphic to the har-
monic comb H. Hence, R* is not locally connected. Therefore, we have RNK};, =
0 for almost all u € N. Since K/}, and K% is disjoint whenever (t,u) # (s,v),
and since R is 117, we can effectively enumerate Uy = {u € N: RN K}%, = 0},
ie, {U; : t € N} is uniformly c.e. Moreover, U; is cofinite for every ¢ € N.
Then, by our definition of f = lim; f; in Lemma 6, we have f(t) € U; for in-
finitely many ¢ € N. Note that v(¢, f(¢)) > 0 and thus the condition f(t) € U,
(i.e., RN Ktl:;(t) = ) implies that either R C [—1,c.(t,u) + vi(t,u)] x [0,1] or
R C [cu(t,u) — vi(t,u), 1] x [0,1] holds. Thus we obtain the desired condition

dy(R,K) > 1. O

Remark 1. It is easy to see that the dendroid constructed in the proof of Theorem
3 is contractible.

Corollary 3. There exists a nonempty contractible planar computable closed
subset of [0,1]2 which *-includes no IIY subset which is connected and locally
connected.

4.2 A H? Dendroid without Computable Points

Theorem 4. Not every nonempty IIY planar dendroid contains a computable
point.

Proof. One can easily construct a II) Cantor fan F' containing at most one com-
putable point p € F', and such p is the unique ramification point of F. Our basic
idea is to construct a topological copy of the Cantor fan F' along a pathological
located arc A constructed by Miller [10, Example 4.1]. We can guarantee that
moving the fan F' along the arc A cannot introduce new computable points.
Additionally, this moving will make a ramification point p* in a copy of F in-
computable.



Fat Approximation. To archive this construction, we consider a fat approx-
imation of a subset P of the middle third Cantor set ¢ C R!, by modify-
ing the standard construction of C. For a tree T C 2<N, put m(o) = 371 +
2> i cih(o) & o(i)=1 370+2) for ¢ € T, and J(0) = [x(0) — 3=+ 7(g) +
2 - 3_(lh(‘7)+1)]. If a binary string ¢ is incomparable with a binary string 7
then J(o) N J(r) = (. We extend 7 to a homeomorphism 7, between Can-
tor space 2" and C'N[1/3,2/3] by defining m.(f) = 37"+ 23, 3-(42) for
f € 2. Let P* C 2N be a nonempty II) set without computable elements.
Then there exists a computable tree Tp such that P* is the set of all paths
of Tp, since P* is I19. A fat approzimation {Ps : s € N} of P = m.(P*) is
defined as Py, = |J{J(0) : Ih(c) = s & 0 € Tp}. Then {P; : s € N} is a com-
putable decreasing sequence of computable closed sets, and we have P = (), P.
Since P is a nonempty bounded closed subset of a real line R!, both min P
and max P exist. By the same reason, both I = min P; and r] = max P;
also exist, for each s € N, and lim,l; = min P and lim, 7} = max P, where
{l : s € N} is increasing, and {r; : s € N} is decreasing. Let [, = IJ + 3~ (1
and 7, = r =36+, We also set I¥ = 17 +376+2) and r, = rF =372, Note
that Iy < rg, limg [y, = min P, and limg ¢ = max P. Since min P,max P € P and
P contains no computable points, min P and max P are non-computable, and
S0 Iy < min P < max P < rg holds for any s € N. The fat approximation of P
has the following remarkable property:
[15,1s] C P, [I5,0s]NP =10, [rs,rF] C Ps, and [rs,r] NP =0.

S

To simplify the construction, we may also assume that P has the following
property:

P={l-zeR:zecP}
Because, for any 1) subset A C C, the I1{ set A* = {z/3: 2 € A}U{l —x/3:
x € A} C C has that property.

Basic Notation. For each i, j < 2, for each a,b € R?, and for each ¢, € R, the
2-cube Ajj(a,b;q,7) C [a,a+ q] x [b,b+ r] is defined as the smallest convex set
containing the three points {(a,b), (a +¢,b), (a,b+7),(a+q,b+7)} \{(a+ (1 —
i)q,b+ (1 — j)r)}. Namely,

Aij(a,biq,r) = {{(=1)x + a+ig,(=1)’y + b+ jr) € R?
cx,y > 0& e+ qy < gr}.

For a set R C R! and real numbers r,y € R, put O(R;r,y) = {rz +y €
R : € R}. Clearly O(R;r,y) is computably homeomorphic to R. Let four
symbols ., 7, 1, and " denote (10, 01), (01, 10), (00,11}, and (11, 00), respectively.
For v € {L,7, 1,7} and for any R C [0,1], a,b € R?, and ¢,r € R, we define
[v](R;a,b;q,7) C a,a+ q] x [b,b+ r] as follows:

[W](R;a,b;q,7) = (([a,a+ q] X O(R;,b)) N Ayo)(a,b;q,7))
U((@(R; q,a) X [b,b+7]) N Ayqy(a,b;q, r))
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Fig.11. The cubes A;;(a,b,q, 7).

Sublemma 1 [v](P;a,b;q,r) is computably homeomorphic to P x [0,1]. In par-
ticular, [v](P;a,b;q,r) contains no computable points. O

To simplify our argument, we use the normalization Pf of P, for t > s,
that is defined by Py = {(z —I7)/(rf —17) € R : & € P}, for each s € N,
Note that Py C [0,1] for t > s, and 0,1 € P? holds for each s € N. Put
)i ([a,a + q] x [b,b+ 7)) = [0](Pf;a,b;q,7) for t > s. We also introduce the
following two notions:

(=12 (la,a +q] x [b,b+7]) = [a,a + ¢ x O(FF;7,b);

[1]i([a,a+q] x [b,b+1]) = O(FP;q,a) x [b,b+7].
Here we code two symbols — and | as 0 and 1 respectively.

Sublemma 2 [v];([a,a+ ¢q] x [b,b+7]) C [a,a+ q] X [b,b+ 7], and [v];([a,a +

q] X [b,b+ r]) intersects with the boundary of [a,a + q] X [b,b+ r].

Sublemma 3 There is a computable homeomorphism between [v](a, b; q,r) and
P, x[0,1] for any t € N. Therefore, (,[v](a,b; q,r) is computably homeomorphic
to P x [0, 1]. 0

Blocks. A blockis aset Z C R? with a bounding box Box(Z) = [a, a+q] x[b, b+7].
Each § € 22 is called a direction, and directions (00), (01), (10), and (11) are also
denoted by [«], [—], [1], and [1], respectively. For § € 22, §° = (5(0),1—§(0)) is
called the reverse direction of . Put Line(Z; [«]) = {a} x[b, b+r]; Line(Z; [—]) =
{a+q} x[b,b+7]; Line(Z; [l]) = [a,a+q] x {b}; Line(Z; [1]) = [a,a+q] x {b+7}.
Assume that a class Z of blocks is given. We introduce a relation 2 on Z
for each direction §. Fix a block Zg,st € Z, and we call it the first block. Then
we declare that L(?‘])Zﬁrst holds. We inductively define the relation —§+ on Z.
If Z—§+ZO (resp. Z0—§->Z) for some Z and J, then we also write it as —éeZo

(resp. Zo—éa). For any two blocks Zy and Zp, the relation Zo—§->Z1 holds if the
following three conditions are satisfied:

1. Zo N Zl = Line(ZO; 5) N ZO = Line(Zl; (SO) N Zl 7é @
2. —E+Z0 has been already satisfied for some direction ¢.



Fig. 13. Szt 2,

3. Z1—E+Z0 does not satisfied for any direction e

5
If Zy--+Z; for some 0, then we say that Z1 is a successor of Zy (Zy is a prede-
cessor of Z), and we also write it as Zy--+7;.

We will construct a partial computable function Z : N3 — A(R?) with a
computable function k : N — N and dom(Z) = {(u,i,t) e N3 :u <t & i < k(u)}
such that Z(u,i,t) is a block with a bounding box for any (u,i,¢) € dom(Z),
and the block Z(u,i,t) is computably homeomorphic to P; x [0, 1] uniformly in
(u,i,t). Here A(R?) is the hyperspace of all closed subsets in R? with positive
and negative information. For each stage ¢, Zi(u) = {Z(¢,u,4) : i < k(u)} for
each u < t is defined. Let Z(u) denote the finite set {At.Z(t,u,i) : i < k(u)}
of functions, for each u € N. The relation --» induces a pre-ordering < on
Uuen Z2(u) as follows: Zy < Z; if there is a finite path from Zy(t) to Z(t) on
the finite directed graph (|J,«, Z¢(u), --+) at some stage t € N. We will assure
that < is a well-ordering of order type w, and Zy < Z; whenever Zy € Z(u),
Z1 € Z(v), and u < v. In particular, for every Z € |,y Z(u), the predecessor
Zpre of Z and the successor Zg,. of Z under < are uniquely determined. If

Zpre(t)—(—;aZ(t)—:Zsuc(t)7 then we say that Z mowves from § to e, and that (0, )
is the direction of Z.

Destination Point. Basically, our construction is similar to the construction
by Miller [10]. Pick the standard homeomorphism p between 2V and the middle
third Cantor set, i.e., p(M) = 2>,.,,(1/3)"*! for M C N, and pick a non-
computable c.e. set B C N and put v = p(B). We will construct a Cantor fan so
that the first coordinate of the unique ramification point is =y, hence the fan will
have a non-computable ramification point. Let {Bs : s € N} be a computable
enumeration of B, and let ngy denote the element enumerated into B at stage
s, where we may assume just one element is enumerated into B at each stage.
Put y™" = p(B,) and v = p(B, U {i € N : i > n,}). Note that v is not
computable, and so Y™ # v and Y™ #£ 5 for any s € N. This means that
for every s € N there exists ¢ > s such that 4™t £ 4t apd ymax £ ymax By
this observation, without loss of generality, we can assume that v 2 ymin and
max £ ymax whenever s # t. We can also assume 1/3 <yt < ymax < 9 /3 for

any s € N.
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Fig. 14. The active block Z5' U Z? at stage s.

Stage 0. We now start to construct a I Cantor fan Q = Nsen @s- At the first
stage 0, and for each ¢ > 0, we define the following sets:

Zgy = =1 (0™ 6] < g rg 1)s 28" = [ = 1/3,76™) x [lg . ).

Moreover, we set Qp = Z(S)fo U Zs*d. By our choice of Py, actually Qo = [y3i® —
1/3,y5e] x Iy, rd ] Z3' is called the straight block from 2/3 to 1/3 at stage
0, and Z§" is called the end boz at stage 0. The bounding box of the block
73t is defined by [yi® ygnaxX] x (I, r¢]. The collection of 0-blocks at stage t is

Z,(0) = {Z5"}. We declare that Zg" is the first block, and that EtlZSt.

Stage s+ 1. Inductively assume that we have already constructed the collection
of u-blocks Z;(u) at stage t > w is already defined for every u < s. For any u,
we think of the collection Z(u) = {Z;(u) : t > u} as a finite set {Z}'}ic 4z, (u)
of computable functions Z} : {t € N : ¢t > u} — |J, Z¢(u) such that Z(u) =
{Z¥(t) : i < #2,(u)} for each t > u. We inductively assume that the collection
Z(u) = {Z¢(u) : t > u} satisfies the following conditions:

(IH1) For each Z € Z(u) and for each t > v > u, Z(t) C Z(v).

(IH2) There is a computable function f :R?* — R? such that f | U, <, Z¢(u) is
a homeomorphism between |JU, <, Z:(v) and P, x [0,1] for any ¢ > s.

(IH3) There are y, z,¢ € Q such that the blocks Z5', and 74 are constructed as
follows:

Z3, = =15 (e Am] x [y + 215,y + 2rd));
Z8 = [y — () x [y + 217,y + 2]

Here, a computable closed set Qg, an approzimation of our IIY Cantor fan
Q at stage s, is defined by Qs = Z"M U YU, <, Zs(u).
Non-injured Case. First we consider the case [y, y1aX] C [ymin ymax] e
this is the case that our construction is not injured at stage s+ 1. In this case, we
construct (s -+ 1)-blocks in the active block Z5* U Z¢*d. We will define Z;(s, 1, j)
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Fig. 15. The first two corner blocks Z,(s,0) and Z,(s, 1).

and Box(s, 4, j) = Box(Z:(s,i,7)) for each j < 6. The first two corner blocks at
stage t > s + 1 are defined by:

Box(s,0) =[1i"" — ¢, 75" x [y + 215,y + 2],
Zi(5,0) =[5 ([y™" — &, y™m) x [y + 217,y + 2r]) N Box(s, 0),
Box(s, 1) =[y™" — ¢, /™) x [y + 21}, y + 2rT],
Zy(s,1) =["];(Box(s, 1)).
Sublemma 4 Z;(s,0) U Z;(s,1) C Z¢" for any t > s + 1. O

Sublemma 5 tht—[i])Zt(s, O)—[ILZt(s, 1), for any t > s+ 1. O

The next block is a straight block from y™* to o which is defined as
follows:
Box(s, 2) =[y"™", 7] x [y + 215,y + 2rf].
Zy(s,2) =[=](Box(s, 2)).

For given a,b,a, 3 € Q, we can calculate Ny s(a,b;a,3) and Ny s(a,b;a, ()
satisfying No s(a,b;a, 3) + N1 s(a,b;a,0) - 17 = a + ba, and Ny s(a,b; o, 8) +
Nis(a, by, B) - rf = a+ bB. Then, we put y* NO)S(y,z,rs,rs ), and z* =
Nl,s(yazvraa’r:—)'

Sublemma 6 Box(s,2) = [y2in ymax] x [y* + 2%, y* + 2*r}]. 0

Put ¢* = (7" — y8%)/3°. Note that ¢* > 0 since 7" > v, We then
again define corner blocks.

Box(s, 3) =[5 veit + I x [y" + 2710 y" + 2],

Z4(5,3) =[J7 (v v + ¢ < [y* + 2715, y* + 2*rT]) N Box(s, 3),
Box(s,4) =[vi, vey + 1 x [y + 275, vt 4 2T

Z(s,4) =[7; (Box(s,4)).
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Next, a straight block from y™* to Yoy is defined as follows:
Box(s,5) = [q/;{‘ﬁrll, VI < [yt + 2yt + 2l
Zt(s7 5) = [—]f[BOX(S, 5)]
Put y** = Nos(y*, 2% 75, rh), and 2** = Ny 4(y*, 2% 0k, r)).

Sublemma 7 Box(s,5) = [y, ymaX] x [y** + 2**I7, y*™* + 2**r}]. O

Put (** = (721 — ymin) /3%, Note that (** > 0 since v > ™. The end
boz at stage s + 1 is:

Z(5,6) = [yff — ¢yl < [y + 20y + 2L
Then put Z5%, , = Zi(s,5), 254, = Z5%, .41, and Z2 = Z(s,6). The active
block at stage s+1 is the set Zﬁj_LsH uzg_“;}, and the collection of (s+ 1)-blocks

at stage t is defined by Zi(s + 1) = {Z(s,4) : i < 5}. Clearly, our definition
satisfies the induction hypothesis (IH3) at stage s + 1.

Sublemma 8 Z;(s,i) C Z,(s,4) for eacht > v >s+1 and i < 5. |

Sublemma 9 For anyt > s+1,

732,500 5 2,5, 1)1 3 2,05, 2) T 24(5.3) D 245, ) T 245, 5).

Proof. It follows straightforwardly from the definition of these blocks Z,(s, 1),
and Sublemma 6 and 7. a

Sublemma 10 J, ;¢ Zi(s,7) C Z5' N[y, 78] x (y + 275,y + 2rf]. Hence,
(UQSiSG Zt(57 Z)) N szs-i-l = @ o

Consequently, we can show the following extension property.
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Fig. 18. The block Z;.

Sublemma 11 Assume that we have a computable function f, : R2 — R? such
that fo [ UU,<s Zt(u) is a computable homeomorphism between \JJ,, <, Z¢(u)
and P, x [1/(s +2),1] for any t > s. Then we can effectively find a computable
function fsi1 @ R? — R? extending fs | UU,<, Zs41(u) such that fsiq |
UUu<si1 Zt(u) is a computable homeomorphism between \JU, <1 Z¢(u) and

P, x [1/(s+3),1] for any t > s+ 1.
Proof. By Sublemma 5, 9, and 10. a

By Sublemma 8 and 11, induction hypothesis (IH1) and (IH2) are satisfied.
Since Z&9 U Zo41(s+1) C Z5'UZe by Sublemma 4 and 10, and |J 2,41 (u) C
J Zs(u) for each u < s, by induction hypothesis (IH1), we have the following:

Q=230 U 2w cziuzroJU 2w ce.

u<s+1 u<s

Injured Case. Secondly we consider the case that our construction is in-
jured. This means that [y%, 2] ¢ [y 4maX] In this case, indeed, we
have [ymin ymax] 0 [ymin ymax] — () Fix the greatest stage p < s such that
[ymin, i) © [y, ex] occurs. We again, inside the end box Z&" at stage
s, define corner blocks Z;(s,0) and Z;(s,1) as non-injuring stage, whereas the
construction of Z;(s,#) for i > 2 differs from non-injuring stage. The end box of
our construction at stage s + 1 will turn back along all blocks belonging Z,(u)
for p < u < s in the reverse ordering of <. Let {Z; : i < ks11} be an enumeration
of all blocks in Z(u) for p < u < s, under the reverse ordering of <. In other
words, Z; is the successor block of Z;,1 under --», for each i < k511 — 1. There
are two kind of blocks; one is a straight block, and another is a corner block. We
will define blocks Z;(s,1,j) for i < ks1 and j < 3. Now we check the direction

(0;,€;) of Z;. Here, we may consistently assume that the condition Zolf-l holds.

Subcase 1. If §,(0) = ¢;(0) then Z; is a straight block. In this case, we only
construct Z:(s,4,0). Since Z; is straight, there are y;,z;, 0,8 € Q and u <
s such that, for B;(0) = [, 8] and B;(1) = [y; + 2il,,,y; + zir)}] such that



Box(Z;) = B;(0:(0)) x B;(1—6;(0)). If §;(1) = 0, then set v = No s (vi, zi; 15 ,1})
and 2} = Ny s(yi, 2305, 0%). If 6;(1) = 1, then set y} = Nos(yi, 2375 ,74) and

2F = Ni1.s(yi, zi;75,rF). Then, we define Z,(s, i,0) as the following straight block:
B;(0) = Bi(0);  Bf(1) = [y; + 215,y + 2] );

S

Zy(s,1,0) = [6:(0)]7 (B (6:(0)) x Bi (1 = 6;(0))).
Here, Box(Z:(s,1,0)) is defined by B} (;(0)) x Bf (1 — ;(0)).
Sublemma 12 Z,(s,i,0) C Z;.

Proof. By our definition of Ny s and Ny s, we have B (1) = [y; + 2l , yi + 2:l%]
or Bf(1) = [y; + zir¥,yi + zird]. -

Subcase 2. If 6;(0) # §;(2) then Z; is a corner block. We will construct
three blocks; one corner block Z;(s,4,0), and two straight blocks Z;(s,4,1) and
Z(s,1,2). We may assume that Z; is of the following form:

Zi = [e]*([wi + Gly i + Grd ] X [yi + 2zl yi + 2t ),
or Z; = [e]t([i + Gly i + Grit] x [yi + 2l yi + ziry])
N ([zi 4+ Gly @i + G < yi + 2y, yi + 2ir)))

Set z = 0 if the former case occurs; otherwise, set z = 1. Let {p,, : n < 6} be an
enumeration of {l,,l;, %, r*,r} r!} in increasing order, and let pg be r}. First

we compute the value rot = 2|¢;(0) — [0;(1) —&;(1)|| + 1. Note that rot € {1,3},

and, if Z; rotates clockwise then rot = 1; and if Z; rotates counterclockwise
then rot = 3. If ETlZi or Zi—[j-]), then put D(0) = 1; otherwise put D(0) = 3. If

—[£]+Zi or Zi—[ﬂ, then put D(1) = 1; otherwise put D(1) = 3. If —[tiZi or ZZ-—[Tl,

then put E(0) = 0; otherwise put E(0) = 5 — rot. If —[I]-)Zi or Zi—[f]e, then put

E(1) = 0; otherwise put E(1) = 5 —rot. Then we now define Z;(s, 1, ) for j < 3
as follows:

Intuitively, D(0) = 1 (resp. D(0) = 3) indicates that Z;(s,,0) passes the
west (resp. the east) of Z;; D(1) = 1 (resp. D(1) = 3) indicates that Z;(s,,0)
passes the south (resp. the north) of Z;; E(0) = 0 (resp. E(0) = 5—rot) indicates
that Z;(s,1,1) passes the west (resp. the east) border of the bounding box of Z;;
and E(1) =0 (resp. E(1) = 5 — rot) indicates that Z;(s,4,2) passes the south
(resp. the north) border of the bounding box of Z;. Note that the corner block
Z4(s,1,0) leaves Z; on his right, and Z(s,4,0) has the reverse direction to Z;.



Z5(8,1,2) Z5(8,1,2)

Zs(s,1,0)
"
Zs(s,1,1) A
. ZS(S,i7O) \Zs(s,i,l)
N . — . T .
Zo(5,4,2) 25 Zo(5,4,0) - Za(s,,1) Zs(8,,1)--+Zs(s,1,0)--2Z5(s,1,2)
Fig. 20. rot = 1. Fig. 21. rot = 3.
Sublemma 13 Z(s,4,2 — 0:(0))--»Zy(s,1,0)~-» Z(s, £, 1 + 6,(0)). 0
Sublemma 14 Z(s,i,j) C Z;. O

For each i < k41, we have already constructed Z;(s+1;¢) = {Zi(s,4,5) 1 j <
3}. All of these blocks constructed at the current stage are included in Z¢d U
UUp<u<s Zs(u). Let Z°[i] (resp. Z'[i]) be the <-least (resp. the <-greatest)
element of {\t.Z;(s,4,j) : j < 3}. It is not hard to see that our construction
ensures the following condition.

Sublemma 15 Z}![i]--+Z[i + 1]. i

Thus, |, <hor
formly in ¢t > s+1. Therefore, we can connect blocks Z(s, i) for i < ks41, and we
succeed to return back on the current approximation of the <-greatest p-block
Zs(p) = Z3's € Z4(p). Then we construct blocks Z;(s, k) for 2 < k < 6 on the
block Zs(p). The construction is essentially similar as the non-injuring case. By
induction hypothesis (IH3), we note that Zs;(p) must be of the following form
for some y,, 2z, € Q:

. Zt(s + 1;1) is computably homeomorphic to P; x [0, 1], uni-

Zs(p) = [=1(p™, ™) [yp + 2l 9p + 275 ).

max

On Z(p), we define a straight block from %ﬁf‘i“ to v as follows:

Zy(s,2) = [_]g(['ygr;mna’)’;nff] X [Yp + 2pT5, yp + Zprj])-

Here, by our assumption, v < 7" holds since ¥ < 7,"**. The blocks
Zy(s, k) for 3 < k < 6 are defined as in the same method as non-injuring case.
The active block at stage s + 1 is Zs41(s,5), and the end box at stage s + 1
is Zs11(s,6). (s + 1)-blocks at stage t are Zy(s,i) for i < 6, and Z(s,i,5) for
i < ksy1 and j < 3 if it is constructed. Zi(s + 1) denotes the collection of
(s + 1)-blocks at stage t.



Overview of the upside of the frontier p-block.

II Do ;  The active block Z5 ;.

min . max max

Vs Vs ’yﬁi_;)ls +1

min max

’Yp ’YP

Fig. 22. Outline of our construction of the injured case.

Sublemma 16 Z&4 UJ Z.41(s+1) €z Uy Up<ucs Zs(u)- O

Thus we again have the following:

Q=230 U Zenw cztuzuJU 2w C Q..

u<s+1 u<s

Sublemma 17 Assume that we have a computable function fs : R2 — R? such
that fo [ UU,<s Zt(u) is a computable homeomorphism between |JJ,, <, Z¢(u)
and Py x [1/(s +2),1] for any t > s. Then we can effectively find a computable
function fey1 @ R?2 — R? extending fs | UU,<q Zo41(u) such that fsiq |
UUu<ss1 Zi(u) is a computable homeomorphism between \JU, <, 1 Z¢(u) and
P, x [1/(s+3),1] for any t > s+ 1. B O

Finally we put Q = [\,cy@s and 2% = |J,cy Z£(u). The construction is
completed.

Verification. Now we start to verify our construction.
Lemma 7. Q is II}. O

Sublemma 18 (,.yUzcz- Zt = Uzez- Nien Zt- O

Sublemma 19 UZEZ(u) Nien Zt is computably homeomorphic to [0,1] x P, for
each u € N.

Proof. By the induction hypothesis (IH2). d
Sublemma 20 ;. ey 2t s homeomorphic to (0,1] x P.

Proof. By Sublemma 11 and 17. O



Lemma 8. @ is homeomorphic to a Cantor fan.

Proof. By Sublemma 18, there exists a real yy € R such that the following holds:

o= ( U N zt> ().

ZezZ* teN

Therefore, by Sublemma 20, @ is homeomorphic to the one-point compactifica-
tion of (0,1] x P. O

Lemma 9. @ contains no computable point.
Proof. By Sublemma 19, | J,¢ z. [;cy Z¢ contains no computable point. O
By Lemmata 7, 8, and 9, @ is the desired dendroid. ad

Remark 2. Since dendroids are compact and simply connected, Theorem 4 is
the solution to the question of Le Roux and Ziegler [13]. Indeed, the dendroid
constructed in the proof of Theorem 4 is contractible.

Corollary 4. Not every nonempty contractible II? subset of [0,1]? contains a
computable point.

Table 1 expresses that which topological property determines which com-
putability property. Here the symbols (C), (C™), (B) denote the following ques-
tions:

(C) Computability: Whenever it is 1Y, is it always computable?
C™) Almost Computability: Whenever it is IT?, is it always almost computable?
1
(B) Basis Theorem: Whenever it is 119, does it always contain a computable
point?

Table 1. Does Topology determine Computability?

Topology  (C) (C7) (B)

Sphere YES YES YES
Ball NO ? YES
Jordan curve YES YES YES
Simple curve NO YES YES
Dendrite NO NO 7
Dendroid NO NO NO

Question 1. Does every locally connected planar IT9 set contain a computable
point?



5 Immediate Consequences

5.1 Effective Hausdorff Dimension

For basic definition and properties of the the effective Hausdorff dimension of a
point of Euclidean plane, see Lutz-Weihrauch [9]. For any I C [0,2], let DIM’
denote the set of all points in R? whose effective Hausdorff dimensions lie in
I. Lutz-Weihrauch [9] showed that DIM™?) is path-connected, but DIM®?! is
totally disconnected. In particular, DIM™? has no nondegenerate connected
subset. It is easy to see that DIM(®? has no nonempty II{ simple curve, since
every I1{ simple curve contains a computable point, and the effective Hausdorff
dimension of each computable point is zero.

Theorem 5. DIM™?) has nondegenerate contractible II9 subset.

Proof. For any strictly increasing computable function f : N — N with f(0) =0
and any infinite binary sequence o € 2<N, we define a function ¢y : 2<% — 2<N
as follows:

a(), ifn=f(i)+i
vp(a)(n) = . e L : :
an—i—1) iffO)+i<n<fl@+1)+i+1
Intuitively, the function ¢y inserts the extra bit (i) between «(f(i) —1) and
a(f(i)). For each n € N, put f~1(n) = min{s € N : f(s) > n}. By removing
extra bits, we can compute the value a [ n from tf(a) | n+ f~'(n). Then,
r:2¥ — R is defined as r(a) = 3,y (a(i) - 270FD),

Claim. 7oy : 28 — R is injective.

Note that o # § and r(a) = r(8) hold if and only if there is a common
initial segment o € 2<N of & and 3 such that ¢0 and o1 are initial segments of o
and (3 respectively, and that a(m) = 1 and §(m) = 0 for any m > [h(0), where
lh(c) denotes the length of o. In this case, we say that « sticks to 8 on o. If
r(a) # r(B), then clearly 7 o tf(a) # r o vp(5). Assume that « sticks to 3 on o.
Then there are my < mq such that ¢f(a)(mo) = tr(a)(m1) = a(lh(c)) =0 and
tf(B)(mo) = tf(B)(m1) = B(lh(o)) = 1 by our definition of ¢y. Therefore, ¢¢()
does not stick to tf(3). Hence, r o vy(a) # 7o ¢f(8) whenever o # 3. Actually,
rouLys: 2N — R is a computable embedding.

Then, there is a constant ¢ € N such that, for any a € 2Y and n € N,
we have K(1f(a) | n+ f~'(n)) > K(a | n) — ¢, where K denotes the prefix-
free Kolmogorov complexity. Therefore, for any sufficiently fast-growing function
f:N — N and any Martin-Lof random sequence o € 2V, we have the following
for some constant d € N:

K(y(0) [n+fm)  Klln)—c_ _n-d
nt ) et ) ot i)



Hence, the effective Hausdorff dimension of r o ¢y(c) must be 1. Thus, for any
nonempty I set R C 2V consisting of Martin-Lof random sequences, {0} x
(rouf(R)) is a IIY subset of DIM{'}. Let Q be the dendroid constructed from
P = rois(R) as in the proof of Theorem 4, where we choose v = p(B) as Chaitin’s
halting probability (2. For every point (zo,z1) € @, the effective Hausdorff
dimension of x; for some ¢ < 2 is equivalent to that of an element of P or that
of £2. Consequently, @ C DIML2, ad

5.2 Reverse Mathematics

Theorem 6. For every I1Y set P C 2V, there is a contractible planar 1T set Q
such that @ has the same Turing upward closure as P, i.e., {y: (Jx <p y) z €

P} ={y:Bx<ry) v cqQ}.

Proof. We choose B as a c.e. set of the same degree with the leftmost path of
P. Then, the dendroid ) constructed from P and B as in the proof of Theorem
4 is the desired one. a

A compact IT{ subset P of a computable topological space is Muchnik com-
plete if every element of P computes the set of all theorems of T for some
consistent complete theory T' containing Peano arithmetic. By Scott Basis The-
orem (see Simpson [15]), P is Muchnik complete if and only if P is nonempty
and every element of P computes an element of any nonempty IT) set Q C 2.

Corollary 5. There is a Muchnik complete contractible planar II) set.

A compact IT9 subset P of a computable topological space is Medvedev com-
plete (see also Simpson [15]) if there is a uniform computable procedure ¢ such
that, for any name x € NY of an element of P, &(z) is the set of all theorems of
T for some consistent complete theory T' containing Peano arithmetic.

Question 2. Does there exist a Medvedev complete simply connected planar I7?
set? Does there exist a Medvedev complete contractible Euclidean II9 set?

Our Theorem 4 also provides a reverse mathematical consequence. For basic
notation for Reverse Mathematics, see Simpson [14]. Let RCAy denote the sub-
system of second order arithmetic consisting of /XY (Robinson arithmetic with
induction for X9 formulas) and AJ-CA (comprehension for A) formulas). Over
RCA, we say that a sequence (B;);cn of open rational balls is flat if there is a
homeomorphism between | J,_,, B; and the open square (0, 1)? for any n € N. It
is easy to see that RCA( proves that every flat cover of [0, 1] has a finite subcover.

Theorem 7. The following are equivalent over RCAgq.

1. Weak Konig’s Lemma: every infinite binary tree has an infinite path.
2. Every open cover of [0,1] has a finite subcover.
3. Every flat open cover of [0,1]? has a finite subcover.



Proof. The equivalence of the item (1) and (2) is well-known. It is not hard to see
that RCA( proves the existence of the sequence {Qs}sen as in our construction
of the dendroid @ in Theorem 4, by formalizing our proof in Theorem 4 in RCA.
Here we may assume that {Q; }sen is constructed from the set of all infinite paths
of a given infinite binary tree T C 2<N, and a c.e. complete set B C N. Note that
Us<:([0,1]*\ Q) does not cover [0, 1]* for every ¢ € N. Over RCA, there is a flat
sequence {[0,1]* \ Q}sen of open rational balls such that (),_, Q% 2 (), @s
for any ¢ € N, and that an open rational ball U is removed from some Q7% if and
only if an open rational ball U is removed from some @Q,. However, if T has no
infinite path, then @ has no element. In other words, {[0,1]? \ QZ}sen covers
[0, 1]2. 0
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