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Abstract. Louveau showed that if a Borel set in a Polish space happens to be in
a Borel Wadge class Γ, then its Γ-code can be obtained from its Borel code in a
hyperarithmetical manner. We extend Louveau’s theorem to Borel functions: If a
Borel function on a Polish space happens to be a Σ˜ t-function, then one can find
its Σ˜ t-code hyperarithmetically relative to its Borel code. More generally, we prove
extension-type, domination-type, and decomposition-type variants of Louveau’s theo-
rem for Borel functions.

1. Introduction

1.1. Background. In [21], Louveau showed that if a Borel set in a Polish space happens
to be a Σ˜ 0

ξ set, then its Σ˜ 0
ξ-code can be obtained from its Borel code in a hyperarith-

metical manner. This is derived from the so-called Louveau separation theorem [21],
which states that if a disjoint pair of Σ1

1 sets is separated by a Σ˜ 0
ξ set, then it is sepa-

rated by a Σ˜ 0
ξ set which has a hyperarithmetical Σ˜ 0

ξ-code. Louveau applied his result to
solve the section problem on Borel sets. This result is useful for extracting information
about uniformity from a non-uniform condition. For instance, using Louveau’s theorem,
Solecki [35] obtained an inequality for cardinal invariants related to decomposability of
Borel functions, and Fujita-Mátrai [10] solved Laczkovich’s problem on differences of
Borel functions. Louveau’s theorem is also known to be a powerful tool which enables
us to use effective methods in topological arguments. For instance, Gregoriades-Kihara-
Ng [11] used it as a tool to reduce a problem on descriptive set theory to a problem on
computability theory, and gave a partial solution to the decomposability problem on
Borel functions.

In [22], Louveau revisited his theorem in the context of the Wadge hierarchy. The
notion of Wadge degrees [37] provides us an ultimate refinement of all known hierarchies
in descriptive set theory, such as the Borel hierarchy and the Hausdorff-Kuratowski dif-
ference hierarchy. However, the original definition of the Wadge hierarchy does not tell
us the way to obtain each Wadge class. To address this issue, Louveau [22] introduced
a set of basic ω-ary Boolean operations, and observed that each blueprint u for how to
combine these operations determines a Wadge class Γ˜ u. Indeed, Louveau [22] showed
that any Borel Wadge class in the Baire space can be obtained as a combination of
these ω-ary Boolean operations, and moreover, he showed that if a Borel set in a Polish
space happens to be a Γ˜ u set, then its Γ˜ u-code can be obtained from its Borel code in
a hyperarithmetical manner. Louveau’s explicit description of each Borel Wadge class
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has been applied to prove Borel Wadge determinacy within second order arithmetic
[23]. Similar notions have also been investigated, e.g. in [31, 8]. For instance, Duparc
[8, 7] introduced a slightly different set of operations, on the basis of which he gave the
normal form of each Borel Wadge degree, even in non-separable spaces.

The notion of Wadge reducibility has been extended to functions, and extensively
studied, e.g. in [36, 32, 1, 19, 13]. For Borel functions with better-quasi-ordered ranges,
Kihara-Montalbán [19] obtained a full characterization of the Wadge degrees. In order
to obtain the result, Kihara-Montalbán [19] introduced a language consisting of a few
basic algebraic operations, inspired by Duparc’s operations [8, 7], for describing any
Wadge class of Borel functions. As before, each blueprint t for how to combine these
operations determines a Wadge class Σ˜ t. The main difference with Louveau’s work
is not merely that it is for functions, but that the blueprints (i.e., the terms in the
language) naturally form a quasi-ordered algebraic structure, which can be viewed as
the structured collection of (suitably extended) nested labeled trees and forests [19], and
forgetting the algebraic information from the term model yields the ordering of Wadge
degrees; see also [33].

In this article, we show that if a Borel function between Polish spaces happens to be a
Σ˜ t function, then its Σ˜ t-code can be obtained from its Borel code in a hyperarithmetical
manner. To show this, we rewrite the definition of Σ˜ t as the mechanism controlled by
certain flowcharts only involving conditional branching. We observe that the flowchart
representation of Borel functions is a powerful tool for clarifying various arguments on
the class Σ˜ t. Indeed, this flowchart definition makes our proof simpler than Louveau’s
original one in [22], even though our theorem is a far extension of Louveau’s one.

1.2. Summary. In Section 2 we introduce Kihara-Montalbán’s signature LVeb(Q) and
Wadge classes Σ˜ t for LVeb(Q)-terms t (see [19]), and reorganize Kihara-Montalbán’s
theory of Σ˜ t, paying special attention to its syntactic aspects. In Sections 2 and 3, we
provide four definitions of Σ˜ t, one of which corresponds to Kihara-Montalbán’s defini-
tion [19] and one to Selivanov’s definition [33]. In Section 3, we pay particular attention
to the flowchart-based definition of Σ˜ t and give a rigorous proof of the equivalence of
the four definitions of Σ˜ t. Indeed, the real purpose of this article is to popularize these
definitions of Σ˜ t, thus making it more accessible to, for example, Selivanov’s series of
studies (e.g. [31, 33]) and broadening the base of research.

Since these notions have their origin in the theory of Wadge degrees, Section 4 looks
at an application of the flowchart representation of Σ˜ t in the theory of Wadge degrees.
Specifically, we see that the topological and symbolic complexity of Borel functions on
Polish spaces coincide: the symbolic Wadge degrees à la Pequignot [26] on bqo-valued
Borel functions on a (possibly higher-dimensional) Polish space is exactly the hierarchy
obtained from the topological Wadge classes Σ˜ t (Theorem 4.5). Finally, in Section 5,
we present several extensions of Louveau’s theorem: Let X and Q be computable Polish
spaces, and t be a hyperarithmetical LVeb(Q)-term.

(1) If f : X → Q is both Σ˜ t and hyperarithmetical, then f has a hyperarithmetical
Σ˜ t-code (Theorem 5.1).

(2) Let f :⊆ ωω → Q be a partial Π1
1-measurable function with a Σ1

1 domain, and
suppose that f can be extended to a total Σ˜ t function g : ω

ω → Q. Then, f can
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be extended to a total Σ˜ t function g
⋆ : ωω → Q which has a hyperarithmetical

Σ˜ t-code (Theorem 5.2).
(3) Let ≤Q be a Π1

1 quasi-order on Q, and f :⊆ ωω → Q be a partial Π1
1-measurable

function with a Σ1
1 domain. Suppose that f is ≤Q-dominated by some total

Σ˜ t function g : ω
ω → Q. Then, f is ≤Q-dominated by some total Σ˜ t function

g⋆ : ωω → Q which has a hyperarithmetical Σ˜ t-code (Theorem 5.3).

We also prove a decomposition-type variant of Louveau’s theorem (Theorem 5.4).

1.3. Preliminaries. In this article, we assume that the reader is familiar with ele-
mentary facts about descriptive set theory. For the basics of (effective) descriptive set
theory, we refer the reader to Moschovakis [25].

For a function f : X → Y and A ⊆ X, we use the symbol f ↾ A denote the restriction
of f to A. We denote a partial function from X to Y as f :⊆ X → Y . We also use the
following notations on strings: For finite strings σ, τ ∈ ω<ω, we write σ ⪯ τ if σ is an
initial segment of τ , and write σ ≺ τ if σ is a proper initial segment of τ . We also use
the same notation even if τ is an infinite string, i.e., τ ∈ ωω. For σ ∈ ω<ω and ℓ ∈ ω,
define σ ↾ ℓ as the initial segment of σ of length ℓ. For finite strings σ, τ ∈ ω<ω, let σ⌢τ
be the concatenation of σ and τ . If τ is a string of length 1, i.e., τ is of the form ⟨n⟩ for
some n ∈ ω, then σ⌢⟨n⟩ is abbreviated to σ⌢n. We always assume that ωω is equipped
with the standard Baire topology, that is, the ω-product of the discrete topology on ω.
For σ ∈ ω<ω, let [σ] be the clopen set generated by σ, i.e., [σ] = {x ∈ ωω : σ ≺ x}.

For Polish spaces X and Y , for a pointclass Γ, we say that f : X → Y is Γ-measurable
if f−1[U ] ∈ Γ for any open set U ⊆ Y . A computable Polish space or a recursively pre-
sented Polish space is a triple (X, d, α), where (X, d) is a Polish space, (αn)n∈ω is a dense
sequence in X, and the map (n,m) 7→ d(αn, αm) has a nice computability-theoretic
property; see [25, Section 3I] and [2]. If Γ is a lightface pointclass on computable Polish
spaces, then we say that f : X → Y is effectively Γ-measurable, or simply, Γ-measurable
if the relation R(x, e) defined by f(x) ∈ Be is in Γ, where Be is the e-th rational open
ball in Y . Let WO be the set of all well-orders on ω. For α ∈ WO, we define |α| as the
order type of α.

Let X and Y be topological spaces, and Q be a quasi-ordered set. A function f : X →
Q isWadge reducible to g : Y → Q (written f ≤W g) if there exists a continuous function
θ : X → Y such that f(x) ≤Q g(θ(x)) for any x ∈ X.

Some of the notion addressed in this article involve “codes”. For such notions, as
usual, by the expression “given X one can effectively find Y such that Z holds” we
mean “there exists a computable function φ such that if c is a code of X then φ(c) is a
code of some Y such that Z holds”.

2. Describing Borel Wadge classes

2.1. Syntax. As is well-known, the processes of approximating functions by finite mind-
changes can be represented by labeled well-founded trees and forests; see e.g. [12, 32, 13].
As an algebraic aspect of such precesses, it is known that one can describe well-founded
forests as terms in the signature {⊔,;} over an (infinitary) equational theory (Figure
1; see also [33]). However, as shown in [19], a control mechanism for Borel functions is
more complicated, and it cannot be described by just a tree or a forest. Instead, it is
described by a matryoshka of trees: Within each node of the tree there is a tree, and
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Figure 1. (left) The tree 1 ; (0 ⊔ 2); (right) The tree 2 ; ((0 ; 1) ⊔ (2 ; (1 ⊔ 0 ⊔ 0)))

within each node of that tree there is a tree, and within each node of that tree there is
another tree, and so on. Kihara-Montalbán [19] introduced the language for describing
matryoshkas of trees as follows:

Definition 2.1 (Kihara-Montalbán [19]). For a set Q, the signature LVeb(Q) consists
of a constant symbol q for each q ∈ Q, a binary function symbol ;, an ω-ary function
symbol ⊔, and a unary function symbol ⟨·⟩ωα

for each α < ω1. If Q = ∅, we write LVeb

for LVeb(∅).

Here, the original language introduced by Kihara-Montalbán [19] uses the symbol →

instead of ; (the reason for using the symbol ; here is to avoid confusion, since the
usual arrow symbol is used for many other purposes). As in [19], we abbreviate the

symbol ⟨·⟩ω0
as ⟨·⟩. The description ⟨t⟩ represents a node labeled by t. Not only that,

but the label types are ranked, e.g. ⟨t⟩ωα
is a node labelled with t, and the rank of its

label is ωα. Hereafter, we use the symbol ϕα to denote ⟨·⟩ωα
. As the function symbol

ϕα = ⟨·⟩ωα
is specified by the fixed point axiom ϕβ(ϕα(t)) = ϕα(t) for any β < α, we say

that ϕα is the α-th Veblen function symbol, see also [20], where the symbol sα is used
in [20, 33] instead of ⟨·⟩ωα

or ϕα.
The notion of terms in a given signature is inductively defined as usual in logic,

universal algebra, and other areas:

Definition 2.2 (Term). Let L be a (possibly infinitary) signature.

• A variable symbol x and a constant symbol c ∈ L are L-terms.
• If f is an I-ary function symbol in L, and ti is an L-term for any i ∈ I, then
f(⟨ti⟩i∈I) is an L-term.

When considering the signature LVeb(Q), the terms ;(⟨s, t⟩) and ⊔(⟨ti⟩i∈ω) are ab-
breviated as s; t and ⊔i∈ωti as usual. Recall that a term is closed if it does not contain
variable symbols. As in Kihara-Montalbán [19], we consider only closed LVeb(Q)-terms
in most cases, so we refer to a closed LVeb(Q)-term simply as an LVeb(Q)-term. When
dealing with an LVeb(Q)-term which may contain variable symbols, we refer to it em-
phatically as an open LVeb(Q)-term. In this article, the analysis of the syntax of terms
plays an important role in various aspects.

Definition 2.3 (Syntax tree). Let L be a (possibly infinitary) signature. Any L-term
t defines a labeled tree Synt = (St, lt) called the syntax tree of the term t as follows:

• If t is a constant or variable symbol x, then the syntax tree Synt is the singleton
St = {ε} labeled by lt(ε) = x, i.e., Synt can be written as ⟨x⟩ in terms of the
language of labeled trees.
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Figure 2. The syntax tree of 1 ; (0 ⊔ 2)

• If t is of the form f(⟨si⟩i∈I) for some function symbol f ∈ L and L-terms ⟨si⟩i∈I ,
then Synt is the result by adding a root ε and edges from ε to Synsi for i ∈ I,
where the root ε is labeled by f , i.e., Synt can be written as ⟨f⟩; ⊔i∈ISynsi in
terms of the language of labeled trees.

Note that the syntax tree of an L-term is always well-founded. When considering
LVeb(Q)-terms, be careful not to confuse the syntax tree of a term t (e.g., Figure 2)
with the tree represented by t (e.g., Figure 1). If t is an LVeb(Q)-term, then one can
always think of Synt as a labeled subtree of ω<ω, since the signature LVeb(Q) consists
of at most ω-ary function symbols. More explicitly, for any LVeb(Q)-term t, one may
assume that St is a subtree of ω<ω as follows:

• If t is either a constant or variable symbol then St = {ε}, where ε is the empty
string.
• If t is of the form u; s then St = {0⌢σ : σ ∈ Su} ∪ {1⌢σ : σ ∈ Ss}.
• If t is of the form ⊔n∈ωsn then St = {n⌢σ : n ∈ ω and σ ∈ Ssn}.
• If t is of the form ϕα(s) then St = {0⌢σ : σ ∈ Ss}.

Definition 2.4. An LVeb(Q)-term t is well-formed if t contains no subterm of the form
ϕα(⊔n∈ωsn); and t is normal if the symbol ; always occurs as of the form ϕα(u) ;

⊔n∈ωsn or q ; ⊔n∈ωsn.

In other words, using a syntax tree, an LVeb(Q)-term t is well-formed if and only if,
for any σ ∈ Synt, the following holds:

σ is labeled by ϕα =⇒ σ⌢0 is not labeled by ⊔.
Similarly, an LVeb(Q)-term t is normal if and only if, for any σ ∈ Synt, the following

holds:

σ is labeled by ; =⇒

{
σ⌢0 is either a leaf or labeled by ϕα,

σ⌢1 is labeled by ⊔.

Remark. Let us add a supplementary note on the difference in terminology between
this article and Kihara-Montalbán [19]. First, for signature, the symbol L(Q) is used
in [19] instead of LVeb(Q). Also note that an L(Q)-term in the sense of [19] is a normal
well-formed LVeb(Q)-term in the sense of this article. The items (3) and (5) in [19,
Definition 3.19] guarantee wellformedness and normality, respectively. Therefore, the
notation ⊔Treeω1(Q) used in [19] refers to the set of all normal well-formed LVeb(Q)-
terms.

Let ⊴ be the nested homomorphic quasi-order on the normal well-formed LVeb(Q)-
terms introduced by Kihara-Montalbán [19, Definition 3.20] to characterize the order
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type of the Wadge degrees of Q-valued Borel functions. For a quasi-order, its quotient
by the induced equivalence relation is called the poset reflection.

Fact 2.5 (Kihara-Montalbán [19, Theorem 1.5]). Let Q be a better-quasi-ordered set.
Then, the Wadge degrees of Borel functions ωω → Q is isomorphic to the poset reflection
of the quasi-order ⊴ on the normal well-formed LVeb(Q)-terms.

Coding a syntax tree: As usual, a subset of ω<ω can be viewed as a subset of ω via an
effective bijection ω<ω ≃ ω. We assume that the constant symbols Q and the variable
symbols are indexed by ωω, i.e., Q = {qz}z∈ωω and Var = {xz}z∈ωω , and then we consider
the following coding:

c(0, z) = qz, c(1, z) = xz, c(2, z) = ;, c(3, z) = ⊔, c(4, z) = ϕ|z|,

where c(4, z) is defined only when z ∈ WO. The function c gives a representation of the
LVeb(Q)-symbols. A realizer of a labeling function lt is a function λt : St → ω×ωω such
that lt = c ◦ λt. As we consider St as a subset of ω, a realizer λt of a labeling function
can be viewed as an element of (ω × ωω)ω ≃ ωω. Via this identification, we call such a
pair (St, λt) (as an element of ωω) a code of the syntax tree Synt = (St, lt).

As for effectivity, we say that an LVeb(Q)-term t is hyperarithmetic or ∆1
1 if its syntax

tree Synt has a ∆1
1-code.

2.2. Semantics. The essential idea of Kihara-Montalbán’s Theorem (Fact 2.5) is to
map the LVeb(Q)-terms to the control mechanisms of Borel functions. More precisely,
Kihara-Montalbán assigned to each LVeb(Q)-term t a class Σ˜ t of Borel functions, which
may be thought of as an ultimate refinement of the Borel/Baire hierarchy.

Definition 2.6 (First definition of Σ˜ t). Let Z be a zero-dimensional Polish space. For
each LVeb(Q)-term t, we inductively define the classes Σ˜ t(Z) and Σ˜ t(Y ;Z) of Q-valued
functions on Polish spaces Z and Y ⊆ Z as follows:

(1) Σ˜ q(Z) consists only of the constant function x 7→ q : Z → Q.
(2) If t = ⊔i∈ωsi, then f ∈ Σ˜ t(Z) if and only if there is an open cover (Ui)i∈ω of Z

such that f ↾ Ui ∈ Σ˜ si(Ui;Z) for each i ∈ ω.
(3) If t = s ; u, then f ∈ Σ˜ t(Z) if and only if there is an open set V ⊆ Z such

that f ↾ V ∈ Σ˜ u(V ;Z) and f ↾ (Z \ V ) = g ↾ (Z \ V ) for some g ∈ Σ˜ s(Z).
(4) If t = ϕα(s), then f ∈ Σ˜ t(Z) if and only if there is a Σ˜ 0

1+ωα-measurable function
β : Z → Z and a Σ˜ s(Z) function g : Z → Q such that f = g ◦ β.

Here, a function f : Y → Q is in Σ˜ t(Y ;X) if there exists a continuous function
γ : Y → X such that f = g ◦ γ for some g ∈ Σ˜ t(X).

In this article, we introduce various equivalent definitions of Σ˜ t. When we emphasize
that it is Σ˜ t in the sense of Definition 2.6, we write it as Σ˜ W

t ; the superscriptW suggests
that this is the one associated with a Wadge class. Indeed, Kihara-Montalbán’s theorem
in [19] shows that any Borel Wadge class can be described as Σ˜ W

t for some LVeb(Q)-term
t. That is to say, the essential ingredient of Fact 2.5 is not simply that the two structures
are isomorphic, but more precisely that the complexity of the control mechanism of the
Borel functions represented by a term corresponds exactly to the Wadge degree. This
can be stated as follows:
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Fact 2.7 (Kihara-Montalbán [19, Propositions 1.7 and 1.8]). Let Q be a better-quasi-
ordered set, and t be an LVeb(Q)-term. If g : ωω → Q is a Σ˜ W

t -function, then for any
f : ωω → Q,

f ≤W g ⇐⇒ f ∈ Σ˜ W
s (ωω) for some s ⊴ t.

Note that Definition 2.6 is slightly different from Kihara-Montalbán’s original defini-
tion [19] of the class Σ˜ t. To explain the original definition of the class Σ˜ t, we assume
Z = ωω, and let us consider the following: First, given a nonempty open set V ⊆ Z one
can effectively construct a map eV : ω → ω<ω such that V =

∪
n∈ω[eV (n)], and eV (n)

is incomparable with eV (m) whenever n ̸= m. Then, define inV (n
⌢x) = eV (n)

⌢x. It
is easy to see that inV : ωω ≃ V is a homeomorphism. Next, by zero-dimensionality of
Z, one can also effectively find a continuous retraction outV : ωω → (ωω \ V ). See also
Kihara-Montalbán [19, Observations 3.5 and 3.6] for the details.

Definition 2.8 (Second definition of Σ˜ t [19, Definition 3.7]). For each LVeb(Q)-term t,
we inductively define Σ˜ t(Z) as the class fulfilling (1), (2′), (3′) and (4):

(2′) If t = ⊔isi, then f ∈ Σ˜ t(Z) if and only if there is a clopen partition (Ci)i∈ω of
Z such that f ◦ inCi

∈ Σ˜ si(Z) for each i ∈ ω.
(3′) If t = s ; u, then f ∈ Σ˜ t(Z) if and only if there is an open set V ⊆ Z such

that f ◦ inV ∈ Σ˜ u(Z) and f ◦ outV ∈ Σ˜ s(Z).

To avoid confusion, we write Σ˜ W◦
t for Σ˜ t in the sense of Definition 2.8.

Observation 2.9. If Z = ωω, the first and second definitions of Σ˜ t(Z) coincide, i.e.,
Σ˜ W

t (Z) = Σ˜ W◦
t (Z).

Proof. We first show the inclusion Σ˜ W
t (Z) ⊆ Σ˜ W◦

t (Z) by induction. If t = ⊔i∈ωsi, and
f ∈ Σ˜ W

t (Z) via an open cover (Ui) of Z, then f ↾ Ui = gi ◦ γi for some gi ∈ Σ˜ W
si
(Z) and

γi. By the induction hypothesis, we have gi ∈ Σ˜ W◦
si

(Z). Since Z is zero-dimensional,
one can effectively find a clopen partition (Ci) such that Ci ⊆ Ui and

∪
iCi =

∪
i Ui.

Then, we get f ◦ inCi
= gi ◦ γi ◦ inCi

∈ Σ˜ W◦
si

(Z) since γi ◦ inCi
: Z → Z is continuous.

Hence, f ∈ Σ˜ W◦
t (Z). If t = s ; u, and f ∈ Σ˜ W

t (Z) via an open set V ⊆ Z, then
f ↾ (Z \ V ) = g0 ◦ γ0 for some g0 ∈ Σ˜ W

s (Z) and γ0, and f ↾ V = g1 ◦ γ1 for some g1 ∈
Σ˜ W

u (Z) and γ1. By the induction hypothesis, we have g0 ∈ Σ˜ W◦
s (Z) and g1 ∈ Σ˜ W◦

u (Z).
Then, we get f ◦ outV = g0 ◦ γ0 ◦ outV ∈ Σ˜ W

s (Z) since γ0 ◦ outV : Z → Z is continuous,
and similarly, we also get f ◦ inV = g1 ◦ γ1 ◦ inV ∈ Σ˜ W

u (Z) since γ1 ◦ inV : Z → Z is
continuous.

Next, we show the inclusion Σ˜ W◦
t (Z) ⊆ Σ˜ W

t (Z) by induction. If t = ⊔i∈ωsi, and if
f ∈ Σ˜ W◦

t (Z) via a clopen partition (Ci)i∈ω of Z, then by the induction hypothesis, one
can see that f ↾ Ci ∈ Σ˜ W

si
(Ci;Z) via gi = f ◦ inCi

and γi = in−1
Ci
. Hence, f ∈ Σ˜ W

t (Z).

If t = s ; u, and f ∈ Σ˜ W◦
t (Z) via an open set V ⊆ Z, then by the induction

hypothesis, one can see that f ↾ V ∈ Σ˜ W
u (V ;Z) via g1 = f ◦ inV and γ1 = in−1

V , and
f ↾ (Z \ V ) ∈ Σ˜ W

s (Z \ V ;Z) via g0 = f ◦ outV and γ0 = id. Hence, f ∈ Σ˜ W
t (Z). □

2.3. Command. Next, we decompose the inductive definition of Σ˜ t along the syntax
tree of t. This decomposition reveals the algorithmic aspect of the definition of Σ˜ t. Let
t be an LVeb(Q)-term, and consider its syntax tree Synt.
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Definition 2.10. A command on the LVeb(Q)-term t over a zero-dimensional Polish
space Z is a family U = (Uσ, uσ)σ∈Synt indexed by the syntax tree Synt satisfying the
following condition:

(1) For a leaf σ ∈ Synt, then Uσ = Z.
(2) If σ ∈ Synt is labeled by ;, then Uσ is an open subset of Z, uσ⌢0 is the identity

map, and uσ⌢1 : Uσ → Z is a continuous function.
(3) If σ ∈ Synt is labeled by ⊔, then Uσ is a sequence (Uσ,n)n∈ω of open subsets of

Z, and uσ⌢n : Uσ,n → Z is a continuous function for each n ∈ ω.
(4) If σ ∈ Synt is labeled by ϕα, then Uσ = Z, and uσ⌢0 : Z → Z is a Σ˜ 0

1+ωα-
measurable function.

Note that Definition 2.6 (2) requires an additional condition: We say that a command
U is strongly total if (Uσ,n)n∈ω is an open cover of Z whenever σ is labeled by ⊔.

A command may be thought of as a control flow that defines a function: Feed a value
into an input variable x. Then follow the command from the root to a leaf, where each
Uσ represents a condition branch depending on x ∈ Uσ in the case (2) and on x ∈ Uσ,n

in the case (3), and uσ⌢n represents a reassignment x ← uσ⌢n(x). When we reach a
leaf, output the label of the leaf, where note that any leaf must be labeled by a constant
symbol q ∈ Q.

To give a formal definition of the above argument, for a node σ ∈ Synt of length
ℓ > 0, put

valσ = uσ ◦ uσ↾ℓ−1 ◦ · · · ◦ uσ↾2 ◦ uσ↾1 :⊆ Z → Z,

and valε = id, where ε is the empty string. In other words, if x is the first value fed
into variable x, then valσ(x) is the value stored in variable x when we reach σ. Next,
we introduce the notion of a true position for x ∈ Z (with respect to the command U)
in the following inductive manner, where we consider Synt as a labeled subtree of ω<ω:

• The root of the syntax tree Synt is a true position for x.
• Assume that σ ∈ Synt is a true position for x, and is labeled by ;. If valσ(x) ∈
Uσ then σ⌢1 is a true position for x, and if valσ(x) ̸∈ Uσ then σ⌢0 is a true
position for x.
• Assume that σ ∈ Synt is a true position for x, and is labeled by ⊔. If valσ(x) ∈
Uσ,n then σ⌢n is a true position for x.
• Assume that σ ∈ Synt is a true position for x, and is labeled by ϕα. Then, the
unique immediate successor σ⌢0 of σ is a true position for x.

If a leaf ρ ∈ Synt is a true position for x, then we call it a true path for x (with
respect to U). A label of a true path for x is considered as an output of the function
determined by the command U.

Notation. We write [[U]](x) = q if q is a label of a true path for x with respect to U.

However, it may happen that there are many true paths for x or there is no true path
for x. If, for any x ∈ Z, there is a true path for x, that is, [[U]](x) is defined, then we
call U total. It is easy to see that a strongly total command is total. If, for any x ∈ Z,
there are at most one value q such that [[U]](x) = q, then U is called a deterministic
command. Then, the function [[U]] : Z → Q is called the evaluation of the command U.
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Observation 2.11. Let Z be a zero-dimensional Polish space. For any LVeb(Q)-term t,
the class Σ˜ W

t (Z) is the set of functions obtained as the evaluations [[U]] of deterministic
strongly total commands U on the term t over the space Z.

One may consider [[U]] even ifU is non-deterministic, and in such a case, [[U]] is multi-
valued. Next, we say that a command U is simple if uσ⌢i is the identity map for each i
whenever σ is labeled by either ⊔ or ;. Later we will see that the deterministic total
simple commands also yield the same class. This notion induces the third inductive
definition of Σ˜ t:

Definition 2.12 (Third definition of Σ˜ t). For each LVeb(Q)-term t, we inductively
define Σ˜ t(Z) as the class fulfilling (1), (2′′), (3′′) and (4):

(2′′) If t = ⊔isi, then f ∈ Σ˜ t(Z) if and only if there is an open cover (Ui)i∈ω of Z
such that f ↾ Ui ∈ Σ˜ si(Ui) for each i ∈ ω.

(3′′) If t = s ; u, then f ∈ Σ˜ t(Z) if and only if there is an open set V ⊆ X such
that f ↾ V ∈ Σ˜ u(V ) and f ↾ (Z \ V ) ∈ Σ˜ s(Z \ V ).

To avoid confusion, let us write Σ˜ ′
t for Σ˜ t in the sense of Definition 2.12.

Observation 2.13. Let Z be a zero-dimensional Polish space. For any LVeb(Q)-term t,
the class Σ˜ ′

t(Z) is the set of functions obtained as the evaluations [[U]] of deterministic
total simple commands U on the term t over the space Z.

This third definition seems to be the most natural definition of Σ˜ t among the ones
given so far. It should be noted, however, that this third definition has a very different
feature from the first two: In the process of defining a function, a partial function with
a complicated domain may appear. Because of this feature, proving the equivalence of
first and second definitions and the third definition is not an easy task (see Theorem
3.6), and for this reason, the relevance of the third definition to the Wadge theory is
not immediately obvious.

Borel rank: We define the Borel rank of a node σ ∈ Synt as follows. First, enumerate
all proper initial segments of σ which are labeled by Veblen function symbols ϕα:

τ0 ≺ τ1 ≺ τ2 ≺ · · · ≺ τℓ ≺ σ,

where τi is labeled by ϕαi
. We call (τi)i≤ℓ the Veblen initial segments of σ. Then, the

Borel rank of σ ∈ Synt is defined as the following ordinal:

rank(σ) = 1 + ωα0 + ωα1 + · · ·+ ωαℓ .

Observation 2.14. The function valσ : ⊆ Z → Z is Σ˜ 0
rank(σ)-measurable. Moreover,

the domain of valσ :⊆ Z → Z is Σ˜ 0
rank(σ).

Proof. The first assertion is clear. It is easy to show the second assertion by induction
since the domain of uσ is open for each σ ∈ Synt. □
Coding a command: Using the standard codings of the open sets and the Σ˜ 0

1+ωα-
measurable functions, one can define the notion of a code of a command U on an
LVeb(Q)-term t in the straightforward manner. More precisely, a code of a command
U = (Uσ, uσ)σ∈Synt is a pair of a code of the syntax tree Synt = (St, lt) and an St-indexed
collection (cσ)σ∈St of elements of ωω satisfying the following conditions:
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(1) If σ is a leaf, then cσ is arbitrary.
(2) If σ is labeled by ;, then cσ is a triple of Σ˜ 0

1-codes of (Uσ, uσ,0, uσ,1).
(3) If σ is labeled by ⊔, then cσ is a sequence ofΣ˜ 0

1-codes of elements of (Uσ,n, uσ⌢n)n∈ω.
(4) If σ is labeled by ϕα, then cσ is a Σ˜ 0

1+ωα-code of uσ⌢0.

As before, (cσ)σ∈St can be considered as an element of ωω.

3. Reassignment-elimination

3.1. Flowchart. The working mechanism of a command is a bit unclear, since it in-
volves reassignment instructions x← u(x) by Σ˜ 0

α-measurable functions u. Fortunately,
however, it is possible to eliminate the reassignment instructions: Let us introduce the
notion of a flowchart, which is a mechanism for defining functions using only conditional
branching. This notion is particularly useful when dealing with higher-dimensional
spaces. A similar concept has been studied, e.g. in Kihara [18] and Selivanov [34].

Definition 3.1. A flowchart on an LVeb(Q)-term t over a topological spaceX is a family
S = (Sσ)σ∈Synt indexed by the syntax tree Synt satisfying the following conditions:

(1) For a leaf σ ∈ Synt, then Sσ = X.
(2) If σ ∈ Synt is labeled by ;, then Sσ is a Σ˜ 0

rank(σ) subset of X.

(3) If σ ∈ Synt is labeled by ⊔, then Sσ is a sequence (Sσ,n)n∈ω of Σ˜ 0
rank(σ) subsets

of X.
(4) If σ ∈ Synt is labeled by ϕα, then Sσ = X.

We introduce the notion of a true position for x ∈ X (with respect to a flowchart S)
in the following inductive manner:

• The root of the syntax tree Synt is a true position for x.
• Assume that σ ∈ Synt is a true position for x, and is labeled by ;. Then, if
x ∈ Sσ then σ⌢1 is a true position for x, and if x ̸∈ Sσ then σ⌢0 is a true
position for x.
• Assume that σ ∈ Synt is a true position for x, and is labeled by ⊔. If x ∈ Sσ,n

then σ⌢n is a true position for x.
• Assume that σ ∈ Synt is a true position for x, and is labeled by ϕα. Then, the
unique immediate successor σ⌢0 of σ is a true position for x.

If a leaf ρ ∈ Synt is a true position for x, then we call it a true path for x (with respect
to S). A label of a true path for x is considered as an output of the function determined
by the flowchart S.

Notation. We write [[S]](x) = q if q is a label of a true path for x with respect to S.

As before, it may happen that there are many true paths for x or there is no true
path for x. If, for any x ∈ X, there is a true path for x, that is, [[S]](x) is defined, then
we call S total. If, for any x ∈ X, there are at most one value q such that [[S]](x) = q,
then S is called a deterministic flowchart. Then, the function [[S]] : X → Q is called the
evaluation of the flowchart S.

Definition 3.2 (Fourth definition of Σ˜ t). Let X be a topological space. For any
LVeb(Q)-term t, define Σ˜ t(X) as the set of functions obtained as the evaluations [[S]] of
deterministic total flowcharts S on the term t over the space X.
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As mentioned above, this notion is easy to handle even in higher-dimensional spaces,
and therefore, in this article, we declare this to be the correct definition of Σ˜ t. As
before, one may consider [[S]] even if S is non-deterministic, and in such a case, [[S]] is
multi-valued. In this case, we also say that a multi-valued function g is Σ˜ t if g coincides
with [[S]] for a flowchart S on t.

Coding a flowchart: If X is second-countable, using the standard codings of the Σ˜ 0
ξ

sets, one can define the notion of a code of a flowchart S on an LVeb(Q)-term t in the
straightforward manner. More precisely, a code of a flowchart S = (Sσ)σ∈Synt is a pair of
a code of the syntax tree Synt = (St, lt) and an St-indexed collection (cσ)σ∈St of elements
of ωω satisfying the following conditions:

(1) If σ is a leaf, then cσ is arbitrary.
(2) If σ is labeled by ;, then cσ is a Σ˜ 0

rank(σ)-code of Sσ.

(3) If σ is labeled by ⊔, then cσ is a sequence of Σ˜ 0
rank(σ)-codes of elements of

(Sσ,n)n∈ω.
(4) If σ is labeled by ϕα, then cσ is arbitrary.

As before, (cσ)σ∈St can be considered as an element of ωω. Since there is a total
representation of Σ˜ 0

ξ sets for each ξ < ω1, any sequence (cσ)σ∈St can be considered as a
code of a flowchart. If t is a hyperarithmetical LVeb(Q)-term, we say that a flowchart
is ∆1

1 if it has a ∆1
1 code. Define Σt(∆

1
1;X) as the set of all functions g : X → Q

determined by a ∆1
1 flowchart. If the underlying space is clear from the context, we

simply write Σt(∆
1
1) instead of Σt(∆

1
1;X). We will discuss the complexity of the codes

of total and deterministic flowcharts in Lemma 3.3.

3.2. Technical lemmata. We introduce here some useful concepts on flowcharts that
we will use later, but not immediately. First, one can define the notion of a true position
by assigning a set Dσ ⊆ X to each σ ∈ Synt.

(1) For the root ⟨⟩ of Synt, define D⟨⟩ = X.
(2) If σ is labeled by ;, then define Dσ⌢0 = Dσ \ Sσ and Dσ⌢1 = Dσ ∩ Sσ.
(3) If σ is labeled by ⊔, then define Dσ⌢n = Dσ ∩ Sσ,n.
(4) If σ is labeled by ϕα, then define Dσ⌢0 = Dσ.

We call (Dσ)σ∈Synt the domain assignment to S = (Sσ)σ∈Synt . It is easy to see that
σ ∈ Synt is a true position for x with respect to S if and only if x ∈ Dσ. Hence, S is
total if and only if (Sσ,n)n∈ω covers Dσ whenever σ is labeled by ⊔. Using this notion,
let us show a few complexity results on flowcharts.

Lemma 3.3. Let X be a computable Polish space, and t be a hyperarithmetical LVeb(Q)-
term.

(1) Every partial Σt(∆
1
1)-function g :⊆ X → Q can be extended to a Σt(∆

1
1)-function

ĝ :⊆ X → Q whose domain is ∆1
1.

(2) If g :⊆ X → Q is Σt(∆
1
1), then there exists a ∆1

1-measurable function G :⊆ X →
ωω such that g(x) = qG(x) for any x ∈ dom(g), where Q is indexed as {qz}z∈ωω .

(3) The set of all codes of deterministic flowcharts on t over X is Π1
1.

(4) If A is a Σ1
1 subset of X, then the set of all codes of flowcharts S on t over X

such that the domain of [[S]] includes A is Π1
1. In particular, the set of all codes

of total flowcharts on t over X is Π1
1.
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Proof. (1) Given a code c of a flowchart S, one can easily see that the domain assignment
(Dσ)σ∈Synt for S is uniformly ∆1

1 relative to the code c. Moreover, a node σ ∈ Synt is a
true position for x if and only if x ∈

∩
τ⪯σDτ . This is a ∆1

1 property relative to c. Now,

let S be a ∆1
1-coded flowchart over dom(g) ⊆ X determining g. Note that S can also

be thought of as a flowchart over X. Then the set D of all x ∈ X such that there exists
a unique true path for x is ∆1

1 in X since S has a ∆1
1 code. Now it is easy to observe

that S determines a Σt(∆
1
1)-function ĝ :⊆ D → Q extending g.

(2) Recall that a code of a syntax tree contains the information about what each
node of the tree is labeled. In particular, one can effectively recover information about
the label of σ. Let G(x) return a code of the label of a true path for x, and then G is
clearly ∆1

1-measurable relative to c.
(3) By definition, c is a code of a deterministic flowchart if and only if for any x ∈ X

and any σ, τ ∈ Synt, if both σ and τ are true paths for x w.r.t. the flowchart coded by
c, then both σ and τ are labeled by the same symbol. This is a Π1

1 property.
(4) One can see that the domain of [[S]] includes A if and only if, whenever σ is labeled

by ⊔, the sequence (Sσ,n)n∈ω covers A ∩ Dσ, i.e., for any x ∈ X, if x ∈ A ∩ Dσ then
x ∈ Sσ,n for some n ∈ ω. Since A is Σ1

1, and Dσ and (Sσ,n)n∈ω are ∆1
1 relative to a given

code, this is a Π1
1 property. □

We say that a flowchart S is monotone if any set assigned to σ ∈ Synt by S is a subset
of Dσ. In other words, if σ is labeled by ;, then Dσ⌢1 = Sσ; and if σ is labeled by ⊔,
then Dσ⌢n = Sσ,n.

Lemma 3.4 (see also Selivanov [34]). Given a flowchart S on a normal LVeb(Q)-term
t one can effectively find a monotone flowchart S′ on t determining the same function
as S.

Proof. Let (Dσ)σ∈Synt be the domain assignment for S. We inductively show that, if
σ ∈ Synt is not a leaf, then Dσ is a Σ˜ rank(σ) subset of X. If σ is labeled by ⊔, then
Dσ⌢n = Dσ ∩ Sσ,n is a Σ˜ rank(σ) subset of X since both Dσ and Sσ,n are Σ˜ rank(σ) by
induction hypothesis. Since rank(σ) ≤ rank(σ⌢n), we get Dσ⌢n ∈ Σ˜ rank(σ⌢n). If σ
is labeled by ;, then Dσ⌢1 = Dσ ∩ Sσ is Σ˜ rank(σ⌢1) as above. One can also see that
Dσ⌢0 = Dσ \ Sσ is a Σ˜ rank(σ)+1 subset of X. By normality of t, σ⌢0 is either a leaf or
labeled by ϕα. If σ

⌢0 is a leaf, there is nothing to do. If σ⌢0 is labeled by ϕα, we have
rank(σ) + 1 ≤ rank(σ⌢0), and therefore, we get Dσ⌢0 ∈ Σ˜ rank(σ⌢0).

If σ is labeled by ;, define S ′
σ = Dσ ∩ Sσ, which is Σ˜ 0

rank(σ); and if σ is labeled by ⊔,
define S ′

σ,n = Dσ ∩Sσ,n, which is Σ˜ 0
rank(σ). Hence, (S

′
σ)σ∈Synt gives a monotone flowchart

on t, which clearly satisfies [[S]] = [[S′]]. □
We next see that, if the space X is zero-dimensional, then for any node σ ∈ Synt

labeled by ⊔, the assigned sequence (Uσ,n)n∈ω can be pairwise disjoint. Note that this
property is required in the original definition of Σ˜ t (Definition 2.8). Such a flowchart
may be called a reduced flowchart, following the terminology in [33]. This property is
particularly useful when combining more than one deterministic flowchart to make a
new deterministic flowchart; see also the proof of Theorem 5.4.

Proposition 3.5. Let X be a subspace of a zero-dimensional Polish space, and let S be
a flowchart on an LVeb(Q)-term t over X. Then, in a hyperarithmetical manner, one
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can find a flowchart S′ on t such that for any node σ ∈ Synt labeled by ⊔, the assigned
sequence (Uσ,n)n∈ω is pairwise disjoint, and S′ determines the same function as S.

Proof. It suffices to show that, for any ξ < ωCK
1 , given a uniform ∆1

1-sequence of Σ˜ 0
ξ

sets (Rn)n∈ω, one can effectively find a ∆1
1-sequence (R

∗
n)n∈ω of pairwise disjoint Σ˜ 0

ξ sets
such that R∗

n ⊆ Rn for each n ∈ ω and
∪

n∈ω R
∗
n =

∪
n∈ω Rn. To see this, let R be

the Σ˜ 0
ξ(∆

1
1) set such that (x, n) ∈ R if and only if x ∈ Rn. If P is a universal Σ0

ξ set,

there exists a ∆1
1 element ε ∈ ωω such that (x, n) ∈ R if and only if (ε, x, n) ∈ P . By

the uniformization property on Σ0
ξ(ε) (see [25, 3E.10]), we have some R∗ ∈ Σ0

ξ(ε) which

uniformizes R. Now, let R∗
n be the Σ0

ξ(ε) set such that x ∈ R∗
n if and only if (x, n) ∈ R∗.

Then, (R∗
n)n∈ω has the required property. □

Remark. The flowchart definition of Σ˜ t is essentially the same as Selivanov’s fine
hierarchy [31, 34] over LVeb(Q)-terms, although not at all obvious at first glance. More
precisely, our Σ˜ t(X) (restricted to monotone flowcharts) corresponds to the t-family
L(X, t) in the Borel bases in Selivanov [34, Definition 3.21]. One of the major differences
between these definitions is that our flowchart definition is based on the syntax tree
of a term, whereas Selivanov’s definition is based rather on semantics of a term, i.e.,
induction on a nested tree. The latter semantical definition requires effort to understand
its meaning because it is given by induction on a nested tree, with various notions
intertwined. In comparison, our flowchart definition has the advantage of making the
idea easy to understand even at first glance.

3.3. Translation. Now, for an LVeb(Q)-term t, we will show that the four definitions
of Σ˜ t introduced so far all define the same class of functions.

Σ˜ t(ω
ω) = Σ˜ W

t (ωω) = Σ˜ W◦
t (ωω) = Σ˜ ′

t(ω
ω).(3.1)

Note that the equivalence Σ˜ t(ω
ω) = Σ˜ ′

t(ω
ω) has also been shown in [33, Theorem

4.10], although the terminology is slightly different. To prove the equivalence (3.1), it
suffices to show the following:

Theorem 3.6. Let t be an LVeb(Q)-term, and assume that Z = ωω.

(1) Given a command U on t over Z, one can effectively find a flowchart S on t
over Z such that [[U]] = [[S]].

(2) Conversely, given a flowchart S on t over Z, there exists a simple command U on
t over Z such that [[S]] = [[U]]. If S is total, then U is also total, and moreover
there exists a strongly total command U′ on t over Z such that [[S]] = [[U′]].
Furthermore, if S has a ∆1

1-code, so do U and U′.

Proof. (1) Given a commandU = (Uσ, uσ)σ∈Synt , we construct a flowchart S = (Sσ)σ∈Synt
as follows:

• For a leaf σ ∈ Synt, then Sσ = Z.
• If σ ∈ Synt is labeled by ;, then define Sσ = val−1

σ [Uσ].
• If σ ∈ Synt is labeled by ⊔, then define Sσ,n = (val−1

σ [Uσ,n])n∈ω.
• If σ ∈ Synt is labeled by ϕα, then Sσ = Z.

Then, Sσ and Sσ,n are Σ˜ 0
rank(σ) subsets of Z since valσ is a Σ˜ 0

rank(σ)-measurable func-

tion with aΣ˜ 0
rank(σ) domain by Observation 2.14. Hence, S is a flowchart on the LVeb(Q)-

term t. Then U and S determine the same function, i.e., [[U]] = [[S]]. This is because,
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by definition, if σ is labeled by ;, then x ∈ Sσ if and only if valσ(x) ∈ Uσ; and if σ is
labeled by ⊔, then x ∈ Sσ,n if and only if valσ(x) ∈ Uσ,n. By induction, this trivially
ensures that σ is a true position for x with respect to S if and only if σ is a true position
for x with respect to U. In particular, σ ∈ Synt is a true path for x with respect to S if
and only if σ is a true path for x with respect to U. This means that [[S]](x) = q if and
only if [[U]](x) = q.

(2) First, we fix a sufficiently strong oracle δ, relative to which all the Borel sets
attached to the given flowchart S are lightface. For any LVeb(Q)-term t, its syntax tree
is countable, and therefore, only countably many Borel sets are attached; hence such an
oracle δ exists. Then, for any δ-computable ordinal α, let us consider the ωα-th Turing
jump operator jα := J ωα,δ : Z → Z with true stages relative to δ; see Kihara-Montalbán
[19, Sections 4.1 and 6.1]. For the sake of brevity, hereafter, δ will be omitted from the
notation. One of the key properties of the jump operator jα with true stages is that its
image jα[Z] is closed. Moreover, a single index ensures the inequality x ≤T jα(x) for
any x, and therefore, jα has a computable left-inverse j−1

α : jα[Z] → Z. By combining
these properties, observe that, if A ⊆ Z is closed, so is jα[A].

By expressing an ordinal in Cantor normal form, any transfinite Turing jump can be
represented as the composition jαℓ

◦ jαℓ−1
◦ · · · ◦ jα1 ◦ jα0 ; see [19, Section 6.1]. In this

paper, we denote the α-th Turing jump by jα. The Σ˜ 0
1+α-measurability of jα is trivial

by definition, but we failed to find the exact reference, so here is the proof:

Observation 3.7 (Folklore). jα is Σ˜ 0
1+α-measurable.

Proof. Recall that a transfinite Turing jump jα is defined along an ordinal α equipped
with a fundamental sequence {α[n]}n∈ω (see [19, Section 6.1]). We prove the assertion
by induction. The Σ˜ 0

2-measurability of the Turing jump is trivial. If α = β + 1, then
jβ+1 = j1 ◦ jβ is the composition of a Σ˜ 0

2-measurable function and a Σ˜ 0
1+β-measurable

function by the induction hypothesis, so jβ+1 is Σ˜ 0
1+β+1-measurable. If α is limit, jα(x)

is computable in ⟨jα[n](x)⟩n∈ω, so consider jα∗ (x)(i, j) = jα[i](x)(j). Clearly, jα∗ is Σ˜ 0
1+α-

measurable since jα[i] is Σ˜ 0
1+α[i]-measurable by the induction hypothesis. Thus, jα is

Σ˜ 0
1+α-measurable as it is given by the composition of a computable function and jα∗ . □

By replacing δ with a more powerful oracle if necessary, by a straightforward trick,
one can assume the following assertion:

Claim 1 (Universality from the right). Let S be any Borel set that appears in the
flowchart S. If S ⊆ ωω is Σ0

α then one can effectively find an open set U ⊆ ωω such
that S = (jα)−1[U ].

Proof. To prove this, we need to go a little further into the definition of transfinite Turing
jumps. As in the proof of Observation 3.7, assume that an ordinal α is equipped with
a fundamental sequence, and each α[n] is also an ordinal equipped with a fundamental
sequence. Such a system can be thought of as a well-founded tree Tα whose rank is α.
Here, for the rank of the tree, see for example [16, 25]. A limit ordinal β corresponds
to an infinite branching node, and the n-th immediate successor corresponds to β[n].
When σ ∈ Tα is an infinite branching node, the rank of σ⌢m is greater than the rank
of σ⌢n if n < m. If σ ∈ Tα corresponds to a successor ordinal, then it has only one
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immediate successor σ⌢0. Note that, in classical computability theory, such a tree is
represented as a subset of the natural numbers, called Kleene’s O; see [27].

A Borel code c is a blueprint of how a Borel set is constructed from below, which
also forms a well-founded tree Tc. The problem is that even if a Borel set S is Σ0

α, the
shape of the tree Tc of its Borel code and the tree Tα of the ordinal α may not match
well. However, this can be solved by a padding process that inserts a sufficiently large
number of empty sets inside the countable union operation. To be precise, by induction
on the tree, a construction of a Borel set S is modified as follows: If S is Σ0

α, then its
code yields a sequence (Pn)n∈ω such that S =

∪
n Pn where Pn is Π0

βn
and βn < α. For

each n, choose mn > mn−1 such that βn < α[mn] and define P ′
mn

= Pn. If k ̸= mn for
any n, put P ′

k = ∅. Obviously, S =
∪

n P
′
n, and Pn ∈ Π0

α[n]. Since the syntax tree is

countable (so only countably many Borel sets can be attached), this padding process
can be performed with a strong enough oracle δ. In fact, such a δ can be ∆1

1 relative
to a given Borel code because both the calculation of the Borel rank of a node σ ∈ Tc
and the comparison of ordinals are hyperarithmetic (see e.g. [25, 27]). Of course, in
order to show the claim, it is necessary to address all the Borel sets that appear in
the flowchart S. However, codes of the Borel sets appearing in the flowchart S can be
uniformly recovered from a code c of S, so δ can be chosen as ∆1

1 relative to such c.
Hereafter, we assume that the above padding modification has already been per-

formed. For any Q appearing in the construction of S, we show by induction that one
can effectively find a Σ0

1 set V such that Q = (jβ)−1[V ] when Q is calculated to be Σ0
β

from the shape of the Borel code tree. Here, our oracle δ allows us to effectively compute
such β. If Q =

∪
n Pn, by the induction hypothesis and the padding assumption, one

can effectively find a Σ0
1 set Un such that Pn = ωω \ (jβ[n])−1[Un]. Determining whether

jβ[n](x) ∈ Un or not is computable relative to jβ[n]+1(x), and therefore jβ(x) can be
used to determine it uniformly in n. This decision process is written as φ; that is, one
can effectively find a computable function φ such that φ(n, jβ(x)) = 0 if and only if
jβ[n](x) ̸∈ Un, i.e., x ∈ Pn. Considering the Σ0

1 set V = {y : ∃n φ(n, y) = 0}, it is easy
to check that Q = (jβ)−1[V ]. Since our construction from (Un)n∈ω to V is effective, the
usual effective transfinite recursion (see e.g. [27]) verifies the claim. □

Step 1. We first transform a flowchart S = (Sσ)σ∈Synt into a command U. First we
define (uσ)σ∈Synt as follows: If σ ∈ Synt is labeled by ; or ⊔ then uσ⌢n = id for each
n; and if σ is labeled by ϕα then uσ⌢0 = jα, which is Σ˜ 0

1+α-measurable by Observation
3.7. Then we define a partial function valσ as before. Let (τi)i≤ℓ be the Veblen initial
segments of a node σ ∈ Synt, where τi is labeled by ϕαi

. Then, note that

valσ(x) = jαℓ
◦ jαℓ−1

◦ · · · ◦ jα1 ◦ jα0(x).

Next, we define (Uσ)σ∈Synt as follows: If σ is labeled by ;, since Sσ is a Σ˜ 0
rank(σ) set,

by Claim 1, one can find an open set Uσ such that

Sσ = (jαℓ
◦ jαℓ−1

◦ · · · ◦ jα1 ◦ jα0)
−1[Uσ].

Similarly, if σ is labeled by ⊔, for any n, one can find an open set Uσ,n such that
Sσ,n = (jαℓ

◦ jαℓ−1
◦ · · · ◦ jα1 ◦ jα0)

−1[Uσ,n]. If σ is labeled by ϕα, then put Uσ = Z. Then,
U = (Uσ, uσ)σ∈Synt gives a simple command on the LVeb(Q)-term t.

Claim 2. S and U determine the same function, i.e., [[S]] = [[U]].
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Proof. By definition, if σ is labeled by ;, then x ∈ Sσ if and only if valσ(x) ∈ Uσ; and
if σ is labeled by ⊔, then x ∈ Sσ,n if and only if valσ(x) ∈ Uσ,n. Therefore, as in the
proof of the item (1), one can easily see that [[S]](x) = q if and only if [[U]](x) = q. □

Claim 3. If S is total, so is U.

Proof. Assume that σ is a true position for x with respect to S, and σ is labeled by ⊔.
By the proof of Claim 2, this implies that σ is also a true position for x with respect
to U. Since S is total, there exists n ∈ ω such that σ⌢n is a true position for x with
respect to S. This means that x ∈ Sσ,n for some n ∈ ω. By definition, x ∈ Sσ,n if
and only if valσ(x) ∈ Uσ,n. Thus, σ⌢n is a true position for x with respect to U. By
induction, this shows that U is total. □

Step 2. Next we transform the above total command U into a strongly total com-
mand U′. We define the domain assignment of the command U = (Uσ)σ∈Synt as follows:

(1) For the root ⟨⟩ of Synt, define D⟨⟩ = Z.
(2) If σ is labeled by ;, then define Dσ⌢0 = Dσ \ Uσ and Dσ⌢1 = Dσ ∩ Uσ.
(3) If σ is labeled by ⊔, then define Dσ⌢n = Dσ ∩ Uσ,n.
(4) If σ is labeled by ϕα, then define Dσ⌢0 = jα[Dσ].

Note that we always have valσ(x) ∈ Dσ whenever σ is a true position for x with
respect to U. We will inductively define a computable homeomorphism ισ : Dσ ≃ Zσ,
where Zσ is a closed subset of Z.

To describe our construction, first we note that the Turing jump operator has the
so-called uniformly order preserving (UOP) property (see e.g. [24]): there exists a com-
putable function p : ω → ω such that

x ≤T y via e =⇒ jα(x) ≤T jα(y) via p(e).

In other words, given a partial computable function φe : ⊆ ωω → ωω, one can ef-
fectively find a partial computable function φp(e) : ⊆ ωω → ωω such that φe(y) = x
implies φp(e)(jα(y)) = jα(x); that is, φp(e) ◦ jα(y) = jα ◦ φe(y) if φe(y) is defined.
Therefore, if ι : A ≃ B is a computable homeomorphism (i.e., ι and ι−1 are computable
bijections), then the UOP property of the jump gives a computable homeomorphism
ι⋆ : jα[A] ≃ jα[B] such that jα ◦ ι(x) = ι⋆ ◦ jα(x) for any x ∈ A.

We also recall that, for a nonempty open set U ⊆ Z, inU : Z ≃ U denotes a home-
omorphism between Z and U . For a function f : A → B and C ⊆ B, we use the
symbol f ⇂ C to denote f ↾ f−1[C], i.e., the restriction of f whose codomain is C.

For a subspace Y of Z, if U is open in Y then there is an open set Û in Z such that
U = Û ∩ Y . Then, the homeomorphism inÛ : Z ≃ Û induces another homeomorphism
inÛ ⇂ Y : in−1

Û
[Y ] ≃ U . Note that if Y is closed in Z, so is the domain in−1

Û
[Y ]. In the

following argument, we may think of in−1

Û
as a magnifying glass which enlarges Û to

the size of the whole space Z, and in−1

Û
[Y ] as the view of U = Û ∩ Y under this scale.

Now, let us start the construction of ισ : Dσ ≃ Zσ. First put ιε = id and Zε = Z, and
assume that ισ and Zσ have already been defined.

Case 1. If σ is labeled by ;, then put V ′
σ = ισ[Dσ ∩ Uσ], and note that, by the

induction hypothesis, iσ : Dσ ≃ Zσ is a homeomorphism, so V ′
σ is open in Zσ since Uσ
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is open. Then, there exists an open set V̂ ′
σ in Z such that V ′

σ = V̂ ′
σ ∩ Zσ. Then put

Zσ⌢1 = in−1

V̂ ′
σ
[Zσ], u′σ⌢1 =

(
inV̂ ′

σ
⇂ Zσ

)−1

: V ′
σ ≃ Zσ⌢1.

As mentioned above, Zσ⌢1 is closed in Z. Then define ισ⌢1 as the restriction of u′σ⌢1◦
ισ to Uσ. Since Dσ⌢1 = Dσ ∩ Uσ, the map ισ⌢1 : Dσ⌢1 ≃ Zσ⌢1 is a homeomorphism.
Diagrammatically, this argument may be described as follows:

Dσ
∼
ισ

// Zσ

Dσ ∩ Uσ
∼

ισ↾Uσ

//
?�

OO

V̂ ′
σ ∩ Zσ� _

��

?�

OO

Zσ⌢1
inV̂ ′

σ
⇂Zσ

∼oo
� _

��
V̂ ′
σ Z

inV̂ ′
σ

∼oo

We also put u′σ⌢0 = id, Zσ⌢0 = Zσ \ V̂ ′
σ, and ισ⌢0 = ισ ↾ Dσ⌢0. Note that ισ[Dσ⌢0] =

ισ[Dσ \ Uσ] = Zσ \ V ′
σ = Zσ⌢0. Hence, ισ⌢0 : Dσ⌢0 ≃ Zσ⌢0 is a homeomorphism.

Case 2. If σ is labeled by ⊔, then put V ′
σ,n = ισ[Dσ ∩ Uσ,n], and let V̂ ′

σ,n be an open

set in Z such that V ′
σ,n = V̂ ′

σ,n ∩ Zσ for each n ∈ ω, as above. Then put

Zσ⌢n = in−1

V̂ ′
σ,n

[Zσ], u′σ⌢n =
(
inV̂ ′

σ,n
⇂ Zσ

)−1

: V ′
σ,n ≃ Zσ⌢n.

As before Zσ⌢n is closed in Z. Then define ισ⌢n as the restriction of u′σ⌢n ◦ ισ to
Uσ,n. Since Dσ⌢n = Dσ ∩ Uσ,n, the map ισ⌢n : Dσ⌢n ≃ Zσ⌢n is a homeomorphism.

Case 3. If σ is labeled by ϕα, then put V̂ ′
σ = Z, Zσ⌢0 = jα[Zσ], u

′
σ⌢0 = jα. By the

property of our specific Turing jump operator mentioned above, Zσ⌢0 is closed in Z.
Since ισ : Dσ ≃ Zσ by the induction hypothesis, one can effectively find a homeomor-
phism ι⋆σ : jα[Dσ] ≃ jα[Zσ] by the UOP property. Then define ισ⌢0 = ι⋆σ. Diagrammati-
cally,

Dσ
∼
ισ

//

jα
��

Zσ

jα
��

jα[Dσ]
∼
ι⋆σ

// jα[Zσ]

Finally, if σ ∈ Synt is labeled by ; or ϕα, we define U ′
σ = V̂ ′

σ; and if σ is labeled by

⊔, we define U ′
σ,0 = V̂ ′

σ,0 ∪ (Z \ Zσ) and U ′
σ,n = V̂ ′

σ,n for each n > 0. Note that U ′
σ,0 is

open since Zσ is closed.
Now, we claim that U′ = (U ′

σ, u
′
σ)σ∈Synt can be thought of as a command. First note

that, for example, if we consider the case where σ is labeled with ⊔, the function u′σ⌢n

is only defined on V ′
σ,n ⊆ V̂ ′

σ,n = U ′
σ,n, so it may not satisfy the condition of being a

command. However, since Zσ is closed and V ′
σ,n = V̂ ′

σ,n∩Zσ, any function on V ′
σ,n can be

extended to a function on V̂ ′
σ by composing the retraction outωω\Zσ : ω

ω → Zσ. Hence,
we may assume that u′σ is defined on U ′

σ by replacing u′σ with u′σ ◦ outωω\Zσ (restricted

to V̂ ′
σ,n) if necessarily.
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Claim 4. The command U′ is strongly total.

Proof. By the property of the domain assignment, if σ is labeled by ⊔, then Dσ is
covered by (Uσ,n)n∈ω since the command U is total. Therefore,

Zσ = ισ[Dσ] ⊆ ισ

[
Dσ ∩

∪
n∈ω

Uσ,n

]
=

∪
n∈ω

ισ[Dσ ∩ Uσ,n] =
∪
n∈ω

V ′
σ,n ⊆

∪
n∈ω

U ′
σ,n.

Moreover, we have Z \ Zσ ⊆ U ′
σ,0. Hence, (U

′
σ,n)n∈ω is a cover of Z. This means that

U′ is strongly total. □

As before, for a node σ ∈ Synt of length ℓ, we define a partial function val′σ as follows:

val′σ = u′σ ◦ u′σ↾(ℓ−1) ◦ · · · ◦ u′σ↾2 ◦ u′σ↾1.

By induction, one can show that, if σ is a true position for x with respect to U′,
then val′σ(x) ∈ Zσ as follows: If σ is labeled by ⊔ or ϕα then u′σ⌢n(x) ∈ Zσ. If σ is
labeled by ; then u′σ⌢1(x) ∈ Zσ. If σ

⌢0 is a true position for x with respect to U′ then

val′σ(x) ̸∈ U ′
σ = V̂ ′

σ by the definition of true position. By the induction hypothesis, we

have val′σ(x) ∈ Zσ, so val′σ(x) ∈ Zσ⌢0 = Zσ \ V̂ ′
σ. Since u′σ⌢0 = id, we conclude that

val′σ(x) = valσ(x) ∈ Zσ⌢0.

Claim 5. The commands U and U′ determine the same function, i.e., [[U]] = [[U′]].

Proof. We inductively show val′σ(x) = ισ ◦ valσ(x) whenever σ is a true position for
x ∈ Z with respect to U. If σ = ε, the assertion is clear. Let σ be labeled by
⊔, and assume that σ⌢n is a true position for x ∈ Z with respect to U. In this
case, σ is also a true position, so by the induction hypothesis, we have val′σ⌢n(x) =
u′σ⌢n ◦ val′σ(x) = u′σ⌢n ◦ ισ ◦ valσ(x). By definition, we have ισ⌢n(z) = u′σ⌢n ◦ ισ(z) for
any z ∈ Dσ ∩ Uσ,n. Moreover, since σ⌢n is a true position for x ∈ Z with respect to U
we have valσ⌢n(x) ∈ Dσ⌢n = Dσ ∩ Uσ,n. Therefore,

val′σ⌢n(x) = u′σ⌢n ◦ ισ ◦ valσ(x) = ισ⌢n ◦ valσ(x) = ισ⌢n ◦ valσ⌢n(x).

Here, the last equality holds because σ is labeled by ⊔, so σ and σ⌢n have the
same Veblen initial segments; hence simplicity of U implies valσ⌢n = valσ. The same
argument applies when σ is labeled by ;. If σ is labeled by ϕα, then by the induction
hypothesis and the UOP property,

val′σ⌢0 = u′σ⌢0 ◦ val′σ = jα ◦ ισ ◦ valσ = ι⋆σ ◦ jα ◦ valσ = ισ⌢0 ◦ valσ⌢0.

By induction we next prove that a node σ ∈ Synt is a true position for x with
respect to U if and only if σ is a true position for x with respect to U′. Assume that
σ is a true position for x with respect to U if and only if σ is a true position for
x with respect to U′. The former condition is equivalent to that valσ(x) is defined
and contained in Dσ. If σ is labeled by ⊔, then valσ(x) ∈ Dσ ∩ Uσ,n if and only if
val′σ(x) = ισ ◦ valσ(x) ∈ ισ[Dσ ∩ Uσ,n] = V ′

σ,n. Since U
′
σ,n ∩ Zσ = V ′

σ,n, one can see that
σ⌢n is a true position for x with respect to U if and only if σ⌢n is a true position for
x with respect to U′. Here, the backward direction holds because the latter condition
implies val′σ(x) ∈ Zσ as mentioned above. The same argument applies when σ is labeled
by ; or ϕα.
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In particular, σ ∈ Synt is a true path for x with respect to U if and only if σ is
a true path for x with respect to U′. This means that [[U]](x) = q if and only if
[[U′]](x) = q. □

It remains to show that the above construction preserves ∆1
1-ness. If S has a ∆1

1-code,
then an oracle δ can be ∆1

1 as mentioned in the proof of Claim 1. Moreover, (uσ)σ∈Synt
is obviously ∆1

1 and Claim 1 ensures that (Uσ)σ∈Synt is also ∆1
1. Hence U has a ∆1

1-code.
As for the construction of U′, we inductively assume that codes of Zσ and ισ are

known. Let us consider Case 1. First, the information on V̂ ′
σ can be recovered by a

standard method. More precisely, since ισ is a computable homomorphism, there is a
computation φ on ω<ω that simulates ι−1

σ , so {τ ∈ ω<ω : [φ(τ)] ⊆ Uσ} generates the

open set V̂ ′
σ. Therefore, we know inV̂ ′

σ
and its inverse, so we can effectively obtain codes

of Zσ⌢1, u
′
σ⌢1 and ισ⌢1. For σ⌢0, it is easy. By the same argument, the construction

in Case 2 is also shown to be effective.
For Case 3, we know codes of V̂ ′

σ = Z and u′σ⌢0 = jα, and the information ισ⌢0 = ι⋆σ
can be obtained effectively from ισ. The only thing that is not clear is Zσ

⌢0 = jα[Zσ],
and for this, it is necessary to examine the property of the α-th Turing jump jα. As
mentioned above, jα has a computable left-inverse, so let φ be an algorithm to compute
it. For a given z ∈ Z, note that z ∈ jα[Zσ] if and only if φ(z) ∈ Zσ and z = jα(φ(z)).
As jα is ∆1

1, it is clear that this decision can be performed hyperarithmetically relative
to a code of Zσ. We have mentioned that jα has the property “jump operator with true
stages” so that jα[Zσ] is closed, which actually means that when the above condition is
refuted, it is verified in a finite step. Thus, this actually gives a hyperarithmetic code
for the closed set jα[Zσ]. This completes the proof of Theorem 3.6. □

By this theorem, the equivalence (3.1) of the four classes can be shown as follows:
First, we have already seen Σ˜ W

t (ωω) = Σ˜ W◦
t (ωω) by Observation 2.9. Second, Observa-

tions 2.11 and 2.13 give characterizations of classes Σ˜ W
t and Σ˜ ′

t in terms of command.
Hence, Theorem 3.6 (1) implies Σ˜ W

t (ωω) ∪Σ˜ ′
t(ω

ω) ⊆ Σ˜ t(ω
ω). By Theorem 3.6 (2) we

finally obtain Σ˜ t(ω
ω) ⊆ Σ˜ ′

t(ω
ω) ⊆ Σ˜ W

t (ωω). This completes the proof.

4. Symbolic Wadge reducibility

4.1. Symbolic representation. As an advantage of defining Σ˜ t by means of a flow-
chart, in this section, we argue that one can export many results on the term classes
Σ˜ t on zero-dimensional Polish spaces to arbitrary Polish spaces. First, one of the basic
ideas in modern computability theory is that various mathematical objects (such as real
and complex numbers) can be represented by symbolic sequences. A symbolic sequence
is an element of Iω, where I is an alphabet, i.e., a set of symbols. In this article, we
assume that I = ω, and consider the set Z = ωω of all symbolic sequences.

A symbolic representation, or simply a representation, of a set X is a partial surjection
δX :⊆ ωω → X, where ωω is as above. If δX(p) = x, then p is called a δX-name of x (or
simply, a name of x if δX is clear from the context). A pair of a set and its representation
is called a represented space. A representation δ : ωω → X is admissible if for any partial
continuous function f : ⊆ ωω → X there exists a continuous function g : ⊆ ωω → ωω

such that f = δ ◦ g. It is known that every second-countable T0 space (indeed, every



20 T. KIHARA AND K. SASAKI

T0 space having a countable cs-network) has an admissible representation; see Schröder
[30].

Example 4.1. Let X = (X, d, α) be a separable metric space, where {αi}i∈ω is a dense
subset of X. Then, a Cauchy name of a point x ∈ X is a sequence p ∈ ωω such that
d(x, αp(k)) < 2−k for any k ∈ ω. This notion induces a partial surjection δ :⊆ ωω → X
defined by

δ(p) = x ⇐⇒ p is a Cauchy name of x.

This surjection δ is called the Cauchy representation of X (induced from (d, α)). One
can show that δ is an admissible representation of X .

Fact 4.2 (de Brecht [5, Theorem 49]). Every Polish space has a total admissible repre-
sentation. Indeed, every quasi-Polish space has a total admissible representation.

For represented spaces X = (X, δX) and Y = (Y, δY ), we say that a function f : X →
Y is symbolically continuous if there exists a continuous function F :⊆ ωω → ωω such
that, given a δX-name x of x ∈ X, F (x) returns a δY -name of f(x). In other words, the
following diagram commutes:

X
f // Y

ωω

δX

OO

F
// ωω

δY

OO

Such a function F is called a realizer of f . As long as we are dealing with admissible
representations of Polish spaces (more generally, second countable T0-spaces), there is
no need to distinguish between symbolic continuity and topological continuity at all.

Fact 4.3 (Schröder [30, Theorem 4]). If X and Y are admissibly represented spaces.
Then, f is sequentially continuous if and only if f is symbolically continuous.

Let X = (X, δX) be a represented space, and Γ be a pointclass. We say that A ⊆ X is
symbolically Γ if the set δ−1

X [A] of all names of elements in A is Γ in dom(δX). As above,
the symbolic Borel hierarchy and the topological Borel hierarchy coincide, and moreover,
the symbolic difference hierarchy and the topological difference hierarchy coincide. More
precisely, let Dβ(Σ˜ 0

α) be the β-th level of the difference hierarchy starting from Σ˜ 0
α sets,

and then we have the following:

Fact 4.4 (de Brecht [5, Theorem 68]). Let X be an admissibly represented second-
countable T0-space. Then, a set A ⊆ X is Dβ(Σ˜ 0

α) if and only if A is symbolically
Dβ(Σ˜ 0

α).

As an important observation, these results show, in particular, that the notion of
symbolic complexity does not depend on the choice of the admissible representation.
Callard-Hoyrup [3, Theorem 4.1] has shown the effective version of Fact 4.4 (when α
and β are finite).

We are interested in whether these results hold for the term classes Σ˜ t. Let (X, δX)
be an admissibly represented space. The following result is due to Selivanov [34] (see
also the discussion in the last paragraph of Section 4.1).
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Theorem 4.5 (Selivanov [34, Theorem 4.6]). Let δ be an open admissible representation
of a second-countable T0 space X with the domain ∥X∥ ⊆ ωω, and let t be a well-formed
normal LVeb(Q)-term. For a function f : X → Q, f is a Σ˜ t(X)-function if and only if
f ◦ δ :⊆ ωω → Q is a Σ˜ t(∥X∥)-function.

Let us say that a function f : X → Q is symbolically Σ˜ t if f ◦ δX : ωω → Q is Σ˜ t,
where δX is an admissible representation of X. Then, Theorem 4.5 can be rephrased as
follows:

f is Σ˜ t ⇐⇒ f is symbolically Σ˜ t.

Hence, the symbolic complexity (with respect to flowcharts) of a Borel function is
always the same as its topological complexity. Moreover, this equivalence holds effec-
tively.

The correspondence between Theorem 4.5 and Selivanov [34, Theorem 4.6] may not
be obvious at first glance, but recall that our Σ˜ t and Selivanov’s L(X, t) roughly corre-
spond, as noted in the last Remark in Section 3.2. However, our definition of Σ˜ t is still
slightly different from the definition of L(X, t) adopted in Selivanov [34], and we would
also like to add one more remark about the conclusion that follows from this theorem
(see Section 4.2). Therefore, for the sake of completeness, in Section 4.3, we will give a
complete proof of Theorem 4.5, which also shows that a flowchart is a useful notion for
making the proof crystal clear. This is also useful for clarifying that the proof of our
main theorem in Section 5 has an analogous structure to that of Selivanov’s Theorem
4.5, namely the transformation of the sets assigned to a flowchart.

4.2. Symbolic Wadge reducibility. One may apply this result to the Wadge theory
on admissibly represented spaces introduced by Pequignot [26]. In this section, we
show that, even in higher-dimensional Polish spaces, our definition of Σ˜ t by means of a
flowchart can be thought of as a Wadge class.

In contrast to the case of zero-dimensional spaces, it is known that the Wadge degrees
in higher-dimensional spaces behaves badly [15, 29]. For this reason, it is difficult to say
that the Wadge degrees in higher-dimensional spaces is a useful measure of topological
complexity. To overcome this difficulty, Pequignot [26] introduced a modified version of
Wadge reducibility. Let (X, δX) and (Y, δY ) be admissibly represented spaces.

Definition 4.6 (Pequignot [26]). We say that A ⊆ X is symbolic Wadge reducible to
B ⊆ Y (written A/X ⊑W B/Y ) if there exists a continuous function θ : ⊆ ωω → ωω

such that for any δX-name p,

p is a δX-name of an element of A ⇐⇒ θ(p) is a δY -name of an element of B.

In other words, A/X ⊑W B/Y states that δ−1
X [A] is Wadge reducible to δ−1

Y [B], but
it is sufficient if such a reduction is defined only on the domain of δX .

This notion has also been studied in Camerlo [4]. In general, we consider the following
notion:

Definition 4.7. Let Q be a quasi-ordered set. We say that f : X → Q is symbolic
Wadge reducible to g : Y → Q (written f ⊑W g) if there exists a continuous function
θ : ⊆ ωω → ωω such that, whenever p is a δX-name of an element x ∈ X, θ(p) is a
δY -name of an element y ∈ Y , and

f(x) ≤Q g(y).
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In other words, f ⊑W g states that f ◦ δX is Wadge reducible to g ◦ δY .

If Q = {0, 1} is equipped with the discrete order, then Definitions 4.6 and 4.7 for Q
coincide. Diagrammatically, the definition of f ⊑W g may be described as follows:

ωω δX //

θ
��

X
f // Q

≤Q

��
ωω

δY

// Y g
// Q

It is easy to see that the definition of ⊑W is independent of the choice of the admissi-
ble representations (since two admissible representations are reducible to each other by
definition). Note also that a quasi-Polish space always has an open admissible represen-
tation which has Polish fibers (i.e., the set of names of a point is always Gδ). This fact is
explicitly stated in de Brecht [5, the proof of Theorem 68], but the reason in a nutshell
is that the standard total admissible representation δ(p) = {n ∈ ω : (∃m) p(m) = n+1}
of the universal quasi-Polish space P(ω) is clearly open and has Polish fibers, and this
property is inherited to any subspace. Combining these two facts shows that when deal-
ing with symbolic Wadge reducibility on quasi-Polish spaces, without loss of generality,
each space is represented by an open function having Polish fibers.

Recall from Facts 2.5 and 2.7, the Wadge classes of Borel functions ωω → Q coincide
with the classesΣ˜ W

t (ωω) for L(Q)-terms t. Recall also that⊴ is the nested homomorphic
quasi-order on the normal well-formed LVeb(Q)-terms introduced by Kihara-Montalbán
[19]. By Theorems 3.6 and 4.5, we obtain the following:

Corollary 4.8. Let X and Y be Polish spaces, Q be a better-quasi-ordered set, and t be
a well-formed normal LVeb(Q)-term. Then, for any function f : X → Q, if g : Y → Q
is Σ˜ t(Y ),

f ⊑W g ⇐⇒ f ∈ Σ˜ s(X) for some s ⊴ t.

Proof. Let δX and δY be total admissible representations of X and Y , respectively. By
definition, f ⊑W g if and only if f ◦ δX ≤W g ◦ δY . By Selivanov’s Theorem 4.5,
g ∈ Σ˜ t(Y ) if and only if g ◦ δ ∈ Σ˜ t(ω

ω). By Theorem 3.6, the latter condition is
equivalent to g ◦ δ ∈ Σ˜ W

t (ωω). Hence, by Kihara-Montalbán’s Theorem (Fact 2.7),

f ◦ δX ≤W g ◦ δY ⇐⇒ f ◦ δX ∈ Σ˜ W
s (ωω) for some s ⊴ t.

Again by Theorem 3.6, f ◦ δX ∈ Σ˜ W
s (ωω) if and only if f ◦ δX ∈ Σ˜ s(ω

ω). Hence,
by Selivanov’s Theorem 4.5, the latter condition is equivalent to f ∈ Σ˜ s(X). This
concludes the proof. □

Let us describe a conclusion derived from Corollary 4.8. First, without knowing
Corollary 4.8, it is easy to see that the subsets of Polish spaces are semi-well-ordered
under symbolic Wadge reducibility; see also Pequignot [26]. Therefore, one can assign an
ordinal rank to each subset of a Polish space X. However, it is not immediately obvious
what a pointclass in X corresponding to a given ordinal rank α is. Now, Corollary 4.8
makes this clear: The pointclass in X corresponding to the ordinal rank α is exactly
what we expect it to be.
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Remark. The normality assumption of t in Corollary 4.8 can be removed. This is
because, as mentioned in Remark in Section 2.1, Kihara-Montalbán [19] only deals
with well-formed normal LVeb(Q)-terms, but nevertheless shows that these exhaust all
Wadge classes of Q-valued Borel functions (see the paragraph above Fact 2.7); that
is, if a class Γ of Q-valued Borel functions is closed under continuous substitution and
has a complete element, then Γ = Σ˜ t for some well-formed normal LVeb(Q)-term. For
any well-formed LVeb(Q)-term, every Σ˜ t-function is trivially Borel. Moreover, Σ˜ t is
closed under continuous substitution, since for any flowchart S = (Sσ)σ∈Synt determining
f ∈ Σ˜ t, the flowchart (θ−1[Sσ])σ∈Synt determines f ◦ θ. Note that in Kihara-Montalbán
[19, Lemma 3.17], only well-formedness is used for the existence of a Σ˜ W

t -complete
function. Hence, by the above argument, we have Σ˜ W

t = Σ˜ t′ for some well-formed
normal LVeb(Q)-term t′ (in fact, the semantics of the term t forms a nested labeled tree,
whose shape can be described as a normal form, which is the desired term t′).

4.3. Vaught transform of a flowchart. Let δ be an admissible representation for a
second-countable T0-space X. Then, for x ∈ X we use ∥x∥ to denote the set δ−1{x}
of all δ-names of x. As in de Brecht [5, Theorem 68] (recall also the discussion in the
previous subsection), one can assume that δ is an open function and has Polish fibers.
For a set A ⊆ ωω, define the δ-Vaught transform δ∗[A] of A (cf. Saint-Raymond [28,
Lemma 17], de Brecht [5, Theorem 68] and Callard-Hoyrup [3, Theorem 4.1]) as follows:

δ∗[A] = {x ∈ X : ∥x∥ ∩ A is not meager in ∥x∥}.

Fact 4.9 (Hyperarithmetical complexity of the forcing relation; cf. [28, 5, 3]). Let X
be a second countable T0-space with an admissible representation δ. Then, for any set
A ⊆ X,

A is Σ˜ 0
α =⇒ δ∗[A] is Σ˜ 0

α.

Indeed, given a Σ˜ 0
α-code of A, one can effectively find a Σ˜ 0

α-code of δ∗[A].

Let S be a normal flowchart on an LVeb(Q)-term t over ωω. Then, we define the
δ-Vaught transform of S as a flowchart Sδ = (Sδ

σ)σ∈Synt on t over X as follows:

(1) For a leaf σ ∈ Synt, S
δ
σ = X.

(2) If σ ∈ Synt is labeled by ;, then define Sδ
σ = δ∗[Sσ].

(3) If σ ∈ Synt is labeled by ⊔, then define Sδ
σ,n = δ∗[Sσ,n] for each n ∈ ω.

(4) If σ ∈ Synt is labeled by ϕα, then S
δ
σ = X.

By Fact 4.9, Sδ is also a flowchart on t. By Lemma 3.4, one can assume that S is
monotone.

Proposition 4.10 (Selivanov [34, Lemma 4.5]). Let X be a second-countable T0 space
with an admissible representation δ, and f : X → Q be a function. If S is a monotone
flowchart determining f ◦ δ, then Sδ is a flowchart determining f .

Proof. As above, one can assume that δ has Polish fibers, that is, ∥x∥ is Polish for
any x ∈ X. Let (Dσ)σ∈Synt and (Eσ)σ∈Synt be the domain assignments to S and Sδ,
respectively. We first show the following claim:

Claim 6. Eσ ⊆ δ∗[Dσ].
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Proof. We first observe that δ∗[A] \ δ∗[B] ⊆ δ∗[A \ B]. To see this, assume that x ∈
δ∗[A] \ δ∗[B]. Then x ∈ δ∗[A] means that ∥x∥ ∩ A is not meager in ∥x∥, and x ̸∈ δ∗[B]
means that ∥x∥ ∩ B is meager, so ∥x∥ \ B is comeager, in ∥x∥. Hence, by the Baire
category theorem on the Polish fiber ∥x∥, we see that ∥x∥ ∩ (A \ B) is not meager in
∥x∥. Therefore, we have x ∈ δ∗[A \B].

By induction on the syntax tree Synt. If σ is labeled by ;, then by induction
hypothesis and the above observation on the difference of sets,

Eσ⌢0 = Eσ \ δ∗[Sσ] ⊆ δ∗[Dσ] \ δ∗[Sσ] ⊆ δ∗[Dσ \ Sσ] = δ∗[Dσ⌢0].

By monotonicity of S, we have Dσ⌢1 = Sσ. Hence, by induction hypothesis,

Eσ⌢1 = Eσ ∩ δ∗[Sσ] ⊆ δ∗[Dσ] ∩ δ∗[Sσ] = δ∗[Dσ] ∩ δ∗[Dσ⌢1] = δ∗[Dσ⌢1]

since Dσ⌢1 ⊆ Dσ. The same argument applies when σ is labeled by ⊔. □
Next, note that S must be a total flowchart over X since f is total. Again, let

(Dσ)σ∈Synt and (Eσ)σ∈Synt be the domain assignments to S and Sδ, respectively. To
show that Sδ is also total, it suffices to show that Eσ ⊆

∪
n∈ω δ

∗[Sσ,n] whenever σ is
labeled by ⊔. By Claim 6, x ∈ Eσ implies x ∈ δ∗[Dσ]. Hence, ∥x∥ ∩Dσ is not meager
in ∥x∥. By totality of S, we have Dσ ⊆

∪
n∈ω Sσ,n. Therefore, by the Baire category

theorem on ∥x∥, there exists n ∈ ω such that ∥x∥ ∩ Sσ,n is not meager in ∥x∥. This
means that x ∈ δ∗[Sσ,n]. This concludes that S

δ is total.
Let ρ be a true path for x with respect to Sδ; that is, x ∈ Eρ. If the leaf ρ is labeled

by qρ, then we have [[Sδ]](x) = qρ. By the above claim, we also have x ∈ δ∗[Dρ]. In
particular, there is p ∈ δ−1{x} such that p ∈ Dρ. Thus, [[S]](p) = qρ. By our assumption,
S is a flowchart determining f ◦ δ, and therefore, f ◦ δ(p) = [[S]](p). Hence,

[[Sδ]](x) = qρ = [[S]](p) = f ◦ δ(p) = f(x).

This shows that Sδ is a flowchart determining f . □
Proof of Theorem 4.5. As seen in the last Remark in Section 4.2, the class Σ˜ t is closed
under continuous substitution; that is, if f ∈ Σ˜ t(X), then f ◦ δ ∈ Σ˜ t(∥X∥). For
the converse direction, assume f ◦ δ ∈ Σ˜ t(∥X∥). Then we have a flowchart S on t
determining f ◦ δ. By Proposition 4.10, its δ-Vaught transform Sδ is a flowchart on t
determining f . Consequently, f is a Σ˜ t-function. □
Remark. The assumptions of normality and well-formedness are not used in the proof,
so they can be removed from the assumptions of Theorem 4.5.

5. Louveau-type effectivization

5.1. Main results. In this section, we show that, if a Borel function between Polish
spaces happens to be a Σ˜ t function, then its Σ˜ t-code can be obtained from its Borel
code in a hyperarithmetical manner.

Theorem 5.1. Let X be a computable Polish space, Q be a computable Polish space,
and t be a hyperarithmetical LVeb(Q)-term. Then, Σ˜ t(X) ∩∆1

1 = Σt(∆
1
1;X).

This can be viewed as an extension of Louveau’s theorem [21, Theorem A], which
states that, if Γ˜ is a Wadge class of ωω which has some ∆1

1-description, then Γ(∆1
1) =

Γ˜ ∩ ∆1
1. Essentially this is a special case of Theorem 5.1 with Q = {0, 1}, although
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our term-description is different from Louveau’s one. One can also show that Theorem
5.1 holds for computable quasi-Polish spaces. Here, roughly speaking, a computable
quasi-Polish space is a represented second countable T0 space which is the image of a
computable open surjection from ωω (which almost corresponds to the effective version
of Fact 4.2; see also [6, 14]).

To further generalize Louveau’s theorem, let us note that separating pairwise disjoint
sets is a special case of extending a partial function. To see this, let us identify a subset
S of X with its characteristic function χS : X → {0, 1}. Then, for example, the Lusin’s
separation theorem for Σ˜ 1

1 sets is interpreted as the statement saying that there exists
a total 2-valued ∆˜ 1

1-function which extends a given partial 2-valued Σ˜ 1
1-function.

Note that if the codomain Q is countable, Σ˜ 1
1-functions and Π˜ 1

1-functions are in fact
the same class since f(x) = q if and only if, for any p ∈ Q, p ̸= q implies f(x) ̸= q.
Hence, instead of Σ˜ 1

1-functions, one may consider Π˜ 1
1-functions with Σ˜ 1

1-domains. We
show the following generalization of Louveau’s separation theorem (see Fact 5.11):

Theorem 5.2 (Effective extension). Let Q be a computable Polish space, t be a hyper-
arithmetical LVeb(Q)-term, and f :⊆ ωω → Q be a partial Π1

1-measurable function with
a Σ1

1 domain. Suppose that f can be extended to a total Σ˜ t function g : ω
ω → Q. Then,

f can be extended to a total Σt(∆
1
1) function g

⋆ : ωω → Q.

Indeed, Theorem 5.2 can be viewed as a functional version of Louveau’s theorem [21,
Theorem 2.7] for Borel Wadge classes. However, our language LVeb(Q) is designed as
a tool to discuss the case where Q is a quasi-ordered set. In such a case, it is natural
to deal with the domination theorem rather than the extension theorem. Let ≤Q be a
quasi-order on Q. For sets A ⊆ B and functions f : A→ Q and g : B → Q, we say that
f is ≤Q-dominated by g if f(x) ≤Q g(x) for any x ∈ A.

Theorem 5.3 (Effective domination). Let ≤Q be a Π1
1 quasi-order on a computable

Polish space Q, t(x̄) be a hyperarithmetical LVeb(Q)-term, and f : ⊆ ωω → Q be a
partial Π1

1-measurable function with a Σ1
1 domain. Suppose that f is ≤Q-dominated by

some total Σ˜ t function g : ωω → Q. Then, f is ≤Q-dominated by some total Σt(∆
1
1)

function g⋆ : ωω → Q.

Note that g extends f if and only if f is =-dominated by g. Thus, Theorem 5.3 is
more general than Theorem 5.2. Effective Domination Theorem 5.3 can be applied,
for example, to ordinal-valued functions; see also Example 5.7. For studies on ordinal-
valued functions in the context of Wadge degrees, see also [9, 1].

As another different type of application of our main techniques, we next consider
decomposability of Borel functions. The study of decomposability of Borel functions
originates from Lusin’s old question asking whether any Borel function can be written as
a union of countably many partial continuous functions. In the study of decomposability
of Borel function, it is known that computability-theoretic analysis plays an important
role, as shown in Kihara [17] and Gregoriades-Kihara-Ng [11]. The decomposition of
a Borel function into partial continuous functions along a flowchart has been studied
in [18]. One can express such a decomposition as an LVeb(C)-term where each partial
continuous function is considered as a constant symbol, i.e., C is the set of partial
continuous functions.
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More precisely, for an LVeb(C)-term, a function f : X → Y is in Σ˜ t if there exists a
flowchart S on t such that, for any x ∈ X and true path ρ for x w.r.t. S, if ρ is labeled by
h, then f(x) = h(x). Note that S is not necessarily deterministic in the sense of Section
3.1, but still deterministic in a certain sense. A Σ˜ t-function is clearly Borel-piecewise
continuous. However, this definition is too restrictive as the constant symbols in the
term t already tell us what partial continuous functions it can be decomposed into. To
weaken this restriction, we give another definition of Σ˜ t-piecewise continuity using an
open term, which make the part of partial continuous functions undetermined.

Recall that variable symbols are indexed as (xj)j∈ωω . For an open LVeb-term t(x̄)
and a set Q, a Q-valuation of t(x̄) is a sequence ā = (aj)j∈ωω where aj ∈ Q for any
j ∈ ωω. Then, by t(ā), we denote the result of substituting aj for xj in t(x̄) for each
j ∈ ωω. We say that a function f : ⊆ X → Y is Σ˜ t(x̄)-piecewise continuous if there
exists a C-valuation ā such that f is in Σ˜ t(ā). Then, f is Σ˜ t(x̄)-piecewise ∆1

1-continuous
if such an aj is a ∆1

1-continuous function with a ∆1
1-domain for any j ∈ ωω. We say that

f is Σt(x̄)(∆
1
1)-piecewise continuous if such a C-valuation ā : ωω → C is ∆1

1-measurable
and f is in Σt(ā)(∆

1
1), where C is considered as a represented space as usual; that is,

each partial continuous function is coded by an element of ωω, see e.g. [2, Sections 2.5.2,
9.2.12 and Definition 11.2.5 (5)]).

Theorem 5.4 (Effective decomposition). Let X and Y be computable Polish spaces
and t(x̄) be a hyperarithmetical open LVeb-term. If f : X → Y is ∆1

1-measurable and
Σ˜ t(x̄)-piecewise ∆1

1-continuous, then it is Σt(x̄)(∆
1
1)-piecewise continuous.

5.2. Auxiliary tools. As a common setting for dealing with our main results, we
introduce a few auxiliary notions: For setsX, Y and Z, and a binary relation� ⊆ Y ×Z,
we say that a partial function f :⊆ X → Y is �-dominated by g : X → Z if f(x)� g(x)
whenever x ∈ dom(f). Let X be a computable Polish space, and Q be a totally
represented set, i.e., Q = {qz}z∈ωω . For a pointclass Γ, we say that f is Γ-measurable
w.r.t. � if there exists a Γ set R ⊆ X × ωω such that for any x ∈ X,

x ∈ dom(f) =⇒ (f(x)� qz ⇐⇒ (x, z) ∈ R).

Example 5.5. For Polish spaces X and Y , if f : X → Y is a partial Σ˜ 1
1-measurable

function, then f is Π˜ 1
1-measurable w.r.t. the equality. To see this, note that f(x) = y

if and only if x ∈ f−1{y}, which is Π˜ 1
1 since any singleton is closed.

If f : X → Y is a partial Π˜ 1
1-measurable function, then f is ∆˜ 1

1-measurable w.r.t. the
equality. To see this, let (Be)e∈ω be an enumeration of rational open balls in X. Then,
whenever x ∈ dom(f), we have the following:

f(x) = y ⇐⇒ (∀e ∈ ω) [y ∈ Be =⇒ f(x) ∈ Be],

f(x) ̸= y ⇐⇒ (∃d, e ∈ ω) [Bd ∩Be = ∅ ∧ y ∈ Bd ∧ f(x) ∈ Be].

It is easy to see that the both formulas are Π˜ 1
1 since f is Π˜ 1

1-measurable and Be is
open.

Example 5.6. Let X and Q be Polish spaces. Moreover, let f :⊆ X → Q be a partial
Π˜ 1

1-measurable function, and� be aΠ˜ 1
1 binary relation onQ. Then, f isΠ˜ 1

1-measurable
w.r.t. �, since whenever x ∈ dom(f) we have

f(x)� z ⇐⇒ (∀q ∈ Q) [f(x) = q =⇒ q � z].
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Example 5.7. Let WO be the set of all well-orders on ω, and define a binary relation
� on WO as follows:

α� β ⇐⇒ the order type of α is less than or equal to that of β.

We think of WO as a subspace of the Polish space 2ω×ω. By the usual ordinal compar-
ison argument (see [25, Theorem 4A.2]), if f :⊆ X → WO is a partial Π˜ 1

1-measurable
function, then f is Π˜ 1

1-measurable w.r.t. �.

As a tool for proving our main result, we use the following topology, which is known
to be useful in transforming boldface arguments into lightface ones.

Definition 5.8. For a computable Polish space X, the Gandy-Harrington topology T∞
onX is the topology generated by Σ1

1 subsets ofX. We use Tξ to denote the subtopology
generated by sets in

∪
η<ξ Π˜ 0

η ∩ Σ1
1.

For the basics of the Gandy-Harrington topology T∞ and its subtopology Tξ, we refer
the reader to Louveau [21].

Fact 5.9 (see [21, Proposition 6]). The Gandy-Harrington topology T∞ is Baire in the
topological sense: Every nonempty T∞-open subset of X is T∞-nonmeager.

In the following, we write ∀∞xP (x) to denote that {x : ¬P (x)} is T∞-meager. In this
case, we also say that P holds ∞-a.e. The following fact plays a key role in our proof.

Fact 5.10 (Louveau [21, Lemma 8]). Let A be a Σ˜ 0
ξ set in a computable Polish space

X. Then, there exists a Tξ-open set A′ such that A = A′ ∞-a.e.

Louveau used these facts to prove the so-called Louveau separation theorem:

Fact 5.11 (Louveau [21, Theorem B]). If a disjoint pair of Σ1
1 sets is separated by a

Σ˜ 0
ξ set, then it is separated by a Σ0

ξ(∆
1
1) set.

We also use a few basic facts in classical computability theory. First, the following is
known as Kreisel’s ∆1

1-selection theorem; see e.g. [25, 4B.5] or [27, Theorem II.2.3].

Fact 5.12 (∆1
1-selection). Let X be a computable Polish space, and E ⊆ X × ω be a

total Π1
1 relation, i.e., for any x ∈ X there exists n ∈ ω such that E(x, n) holds. Then

there exists a ∆1
1 function f : X → ω such that (x, f(x)) ∈ E holds for any x ∈ X.

A formula φ(X) with a set variable is Π1
1 on Π1

1 if for each uniformly Π1
1 sequence

(An)n∈ω, the set {n ∈ ω : φ(An)} is Π1
1. The following is known as the first Π1

1-reflection
theorem (the lightface version of [16, Theorem 35.10]):

Fact 5.13 (Π1
1-reflection). Let φ be Π1

1 on Π1
1, and A ∈ Π1

1. If φ(A), then there is some
B ∈ ∆1

1 such that B ⊆ A and φ(B).

5.3. Proof of Main Theorems. In this section we prove Theorems 5.1, 5.2, 5.3 and 5.4
by induction on the complexity of LVeb(Q)-terms. However, in order for the induction
to work, we have to prove the following stronger claim:

Lemma 5.14. Let H be a Σ1
1 subset of ω

ω, Q be a set, t be a hyperarithmetical LVeb(Q)-
term, � ⊆ Y × Q be a binary relation, and f :⊆ H → Y be a partial function which
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is Π1
1-measurable w.r.t. � on its Σ1

1 domain. Suppose that f is ∞-a.e. �-dominated by
some Σ˜ t function g : H → Q, i.e.,

{x ∈ X : x ∈ dom(f) ∧ ¬(f(x)� g(x))} is T∞-meager.

Then, f is �-dominated by some Σt(∆
1
1) function g

⋆ : H → Q.

By effectivizing the arguments in Examples 5.5 and 5.6 to calculate the lightface
complexity, we observe that Lemma 5.14 implies Theorems 5.2 and 5.3, which also
deduces Theorem 5.1 for X = ωω. To prove Theorem 5.1 for computable Polish X,
first note that if X is computable Polish (indeed, if X is computable quasi-Polish; see
[6, 14]), then there exists a total computable open surjection δ : ωω → X; see also Fact
4.2. Then for a function f : X → Q, f ∈ Σ˜ t(X)∩∆1

1 implies f ◦δ ∈ Σ˜ t(ω
ω)∩∆1

1; hence
by Lemma 5.14, we have f ◦ δ ∈ Σt(∆

1
1;ω

ω), and thus f ∈ Σt(∆
1
1;X) by Selivanov’s

Theorem 4.5.
To prove Theorem 5.4, we show the multi-valued version of Lemma 5.14 for any

computable Polish space X. Recall from Section 3.1 that it is straightforward to define
Σ˜ t and Σt(∆

1
1) even for multi-valued functions by considering possibly non-deterministic

flowcharts. If g is multi-valued, then we say that f is �-dominated by g if, for any
x ∈ dom(f) and any value z of g(x), we have f(x)� z.

Lemma 5.15. Let H be a Σ1
1 subset of a computable Polish space X, Q be a set, t be a

hyperarithmetical LVeb(Q)-term, � ⊆ Y × Q be a binary relation, and f :⊆ H → Y be
a partial function which is Π1

1-measurable w.r.t. � on its Σ1
1 domain. Suppose that f is

∞-a.e. �-dominated by some multi-valued Σ˜ t function g : H ⇒ Q, i.e.,

{x ∈ X : x ∈ dom(f) ∧ ∃z ∈ g(x) ¬(f(x)� z)} is T∞-meager.

Then, f is �-dominated by some multi-valued Σt(∆
1
1) function g

⋆ : H ⇒ Q.

Assuming Lemma 5.15, let us give the detailed proof of Theorem 5.4.

Proof of Theorem 5.4. Assume that f is Σ˜ t(x̄)-piecewise ∆1
1-continuous. Then there

exists a C(∆1
1)-valuation h̄ = (hj)j∈ωω such that f is a Σ˜ t(h̄)-function. For each e ∈ ω,

let φe be the partial Π1
1-continuous function from X to Y coded by e, and let I ⊆ ω

be the Π1
1 set of all codes e such that φe is indeed ∆1

1. Then, there exists a function
d : ωω → I such that hj = φd(j) for any j ∈ ωω. Put d̄ = (dj)j∈ωω and then indeed, the
definition of f involves a (possibly non-deterministic) flowchart S on the LVeb(ω)-term
t(d̄). Clearly, S yields a multi-valued Σ˜ t(d̄)-function g such that, for any x ∈ dom(f)
and any value e of g(x), we have e ∈ I and f(x) = φe(x).

Define � ⊆ (X×Y )×ω by (x, y)�e if and only if e ∈ I, x ∈ dom(φe) and φe(x) = y.
Let us consider the function (id, f) : X → X×Y defined by (id, f)(x) = (x, f(x)). Since
f is ∆1

1-measurable, and each φe is a ∆1
1-continuous function with a ∆1

1-domain, the
conditions e ∈ I, x ∈ dom(φe) and f(x) = φe(x) are Π

1
1; hence, (id, f) is Π

1
1-measurable

w.r.t. �. For a single-valued function h, (id, f) is �-dominated by h if and only if
(x, f(x)) � h(x) for any x ∈ dom(f) if and only if h(x) ∈ I and f(x) = φh(x)(x) for
any x ∈ dom(f). Therefore, for a multi-valued function h, (id, f) is �-dominated by
h if and only if, for any x ∈ dom(f) and e ∈ h(x), we have e ∈ I and f(x) = φe(x).
Therefore, (id, f) is �-dominated by g. Now, by Lemma 5.15, (id, f) is �-dominated by
a multi-valued Σt(d̄)(∆

1
1)-function g

⋆. Then, we have f(x) = φe(x) for any e ∈ g⋆(x) as
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above. Let S′ be a ∆1
1 flowchart on t(d̄) determining g⋆, and then define S′′ by replacing

the label e ∈ ω of each leaf ρ ∈ Synt(d̄) with φe. Clearly, S′′ is a ∆1
1 flowchart, and we

also have that f(x) = φe(x) if and only if e ∈ g⋆(x) if and only if [[S′]](x) = e if and
only if [[S′′]](x) = φe. By the definition of Σ˜ t for an LVeb(Q)-term (see Section 5.1), this
means that this flowchart S′′ witnesses that f is Σt(x̄)(∆

1
1)-piecewise continuous. □

Before starting the proof of Lemma 5.14, let us look at the syntax tree of an LVeb(Q)-
term t. Then we can immediately see that the syntax tree Synt has the uppermost node
σ′ (i.e., the node closest to the root) which is not labeled by a Veblen function symbol.
Let us call σ′ the neck node of Synt. In other words, the term t can always be written
as

t = t′ or t = ϕα0(ϕα1(. . . (ϕαℓ
(t′)))),

where the root of the syntax tree Synt′ of the subterm t′ is not labeled by a Veblen
function symbol. In this case, we write ϕα0(ϕα1(. . . (ϕαℓ

(·)))) as ϕt(·), and let us say
that ϕt is the head of t, and t′ is the body of t. Then, t is of the form ϕt(t

′). See also
[34, Lemma 3.5].

Example 5.16. If s = a ⊔ ϕ1(b) then the neck node of Syns is the root of Syns. If
t = ϕ0(ϕ2(ϕ5(a) ; (b ⊔ ϕ3(c)))) then its neck node is the third node of Synt counting
from the root: the first node is labeled by ϕ0, the second node is labeled by ϕ2, and the
third node is labeled by ;, so this is the neck node of Synt. Moreover, ϕt = ϕ0 ◦ ϕ2.

It is straightforward to see the following:

Observation 5.17. Let f : X → Q be a function, and ξ be the Borel rank of the neck
node of an LVeb(Q)-term t.

(1) In the case where t is of the form ϕt(q) for some q ∈ Q, f ∈ Σ˜ t if and only if
f ∈ Σ˜ q.

(2) In the case where t is of the form ϕt(s ; u), f ∈ Σ˜ t if and only if there exists
a Σ˜ 0

ξ set U ⊆ X such that f ↾ (X \ U) ∈ Σ˜ ϕt(s) and f ↾ U ∈ Σ˜ ϕt(u).
(3) In the case where t is of the form ϕt(⊔i∈ωsi), f ∈ Σ˜ t if and only if there exists

a Σ˜ 0
ξ cover (Un)n∈ω of X such that f ↾ Un ∈ Σ˜ ϕt(sn) for any n ∈ ω.

Now, let us start the proof of Main Lemma 5.14.

Proof of Lemma 5.14. We prove the assertion by induction on the complexity of the
body of t = ϕt(t

′), where t′ is the body of t. Inductively assume that we have already
shown the assertion for the term ϕt(t

′′) for any proper subterm t′′ of t′. Put X = ωω.

Case 1. The neck node of Synt is labeled by a constant symbol q, i.e., t is of the
form ϕt(q). Then, Σ˜ t = Σ˜ q. By our assumption, f is ∞-a.e. �-dominated by a Σ˜ t

function. However, such a function must be the constant function x 7→ q. Therefore,
{x ∈ dom(f) : ¬(f(x)� q)} is T∞-meager. Since dom(f) is Σ1

1 and f is Π1
1-measurable

w.r.t. �, this set is Σ1
1, and in particular, T∞-open. Therefore, it must be empty by the

Baire category theorem for T∞ (Fact 5.9). Hence, we have f(x)� q for any x ∈ dom(f).
This means that f is �-dominated by the constant function g⋆ : x 7→ q on any H ⊆ X.
Clearly, g⋆ ∈ Σt(∆

1
1) in H.

Case 2. The neck node of Synt is labeled by ;, i.e., t is of the form ϕt(s ; u).
By our assumption, f is ∞-a.e. �-dominated by a total Σ˜ t function g : H → Q. Let
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S = (Sσ)σ∈Synt be a flowchart on the term t which determines g, i.e., [[S]] = g. Let ξ be
the Borel rank of the neck node of Synt. Note that ξ < ωCK

1 since t is ∆1
1. Then, a Σ˜ 0

ξ

set U ⊆ X is assigned to the neck node σ′, i.e., Sσ′ = U . By Observation 5.17, note
that we have [[S]] ↾ (H \ U) ∈ Σ˜ ϕt(s) and [[S]] ↾ (H ∩ U) ∈ Σ˜ ϕt(u). Then, define U+ as
the following Tξ-open set:

x ∈ U+ ⇐⇒ (∃O ∈ Σ1
1 ∩Σ˜ 0

ξ)(∃g ∈ Σ˜ ϕt(u)(H ∩O))
[x ∈ O ∧ (∀∞y) (y ∈ dom(f) ∩O −→ f(y)� g(y))].

The reason why it is Tξ-open is that it can be written as the union of Σ1
1 ∩ Σ˜ 0

ξ sets
O. It is not straightforward, but one can also show that U+ ⊆ X is the largest Tξ-open
set such that some Σ˜ ϕt(u)-function on U+ ∩H ∞-a.e. �-dominates f in the same way
as in Claim 10 below. First we show the following equivalences:

x ∈ U+ ⇐⇒ (∃O ∈ Σ1
1 ∩Σ˜ 0

ξ)(∃g⋆ ∈ Σϕt(u)(∆
1
1;H ∩O))

[x ∈ O ∧ (∀y) (y ∈ dom(f) ∩O −→ f(y)� g⋆(y))]

⇐⇒ (∃O⋆ ∈ Σ0
ξ(∆

1
1))(∃g⋆ ∈ Σϕt(u)(∆

1
1;H ∩O⋆))

[x ∈ O⋆ ∧ (∀y) (y ∈ dom(f) ∩O⋆ −→ f(y)� g⋆(y))]

The first equivalence follows from the induction hypothesis restricted to the Σ1
1-

domain H ∩O. For the second equivalence, observe that a set O in the first equivalent
formula is always disjoint from L = {y ∈ dom(f) : ¬(f(y) � g⋆(y))} ∪ (H \ dom(g⋆)).
Since g⋆ ∈ Σϕt(u)(∆

1
1), by Lemma 3.3, one can assume that the domain of g⋆ is ∆1

1 in
X, and moreover, g⋆ has a ∆1

1-measurable realizer G :⊆ H → ωω, i.e., g⋆(y) = qG(y). As
for the complexity of L, note that

y ∈ L ⇐⇒
(
y ∈ dom(f) ∧ (∃z ∈ ωω) [G(y) = z ∧ ¬(f(y)� qz)]

)
∨ y ∈ H \dom(g⋆).

Therefore, the set L is Σ1
1, since dom(f) and H are Σ1

1, dom(g⋆) is ∆1
1, and f is

Π1
1-measurable w.r.t. �. Hence, given a set O in the first equivalent formula, since O is

Σ1
1 and Σ˜ 0

ξ , by the Louveau separation theorem (Fact 5.11), there exists a Σ0
ξ(∆

1
1) set

O⋆ separating O from L. Then x ∈ O ⊆ O⋆, H ∩ O⋆ ⊆ dom(g⋆) and f(y) � g⋆(y) for
any y ∈ dom(f) ∩ O⋆. This verifies the second equivalence. Next, we check that the
second equivalent formula is Π1

1. Indeed:

Claim 7. U+ can be obtained from a Π1
1-sequence of ∆1

1-indices of Σ˜ 0
ξ sets.

Proof. To verify the claim, let C be the set of codes of deterministic flowcharts S such
that the domain of [[S]] includes H ∩ O⋆, and for c ∈ C, let Gc : ⊆ X → ωω be the
realizer for the flowchart Sc coded by c, i.e., [[Sc]](x) = qGc(x) for any x in the domain
of [[Sc]]. Then, the condition for O⋆ in the second equivalent formula for x ∈ U+ can be
rewritten as follows:

(∃c ∈ ∆1
1) [c ∈ C ∧ (∀y, z) ((y ∈ dom(f) ∩O⋆ ∧ Gc(y) = z) −→ f(y)� qz)]

To see that the formula inside the square brackets is Π1
1, recall from Lemma 3.3 that

the set C is Π1
1 since O⋆ ∩H is Σ1

1, and Gc is ∆
1
1-measurable relative to c. Thus, since

dom(f) is Σ1
1 and f is Π1

1-measurable w.r.t. �, the inner formula is Π1
1. Hence, by the

usual hyperarithmetical quantification argument (see [27, Lemma III.3.1]), the whole
formula is also Π1

1. This verifies the claim. □



A SYNTACTIC APPROACH TO BOREL FUNCTIONS 31

Hereafter, we use H ′ to denote the domain of f .

Claim 8. The function f ↾ H ′\U+ is �-dominated by a Σϕt(s)(∆
1
1)-function on H \U+.

Proof. By Fact 5.10, there exists a Tξ-open set V which is equal to U ∞-a.e. Since
V is Tξ-open, if x ∈ V , then there exists O ∈ Σ1

1 ∩ Σ˜ 0
ξ such that x ∈ O ⊆ V . Note

that O is ∞-a.e. included in U , and therefore, f ↾ H ′ ∩ O is ∞-a.e. �-dominated by
[[S]] ↾ H ∩ U ∈ Σ˜ ϕt(u). Hence, by the definition of U+, we have O ⊆ U+, and therefore
x ∈ U+ for any x ∈ V . Since x is an arbitrary element of V , we have U ⊆ U+ ∞-a.e.
In particular, H \ U+ ⊆ H \ U ∞-a.e., and thus f ↾ H ′ \ U+ is ∞-a.e. �-dominated by
[[S]] ↾ (H\U) ∈ Σϕt(s). By Claim 7, U+ is Π1

1, and therefore, by the induction hypothesis
restricted to the Σ1

1-domain H \ U+, the function f ↾ H ′ \ U+ is now �-dominated by
some function in Σϕt(s)(∆

1
1) on H \ U+. □

Let ψ :⊆ ω2 → ω be a partial Π1
1 function parametrizing all ∆1

1 functions, i.e., for any
∆1

1-function d : ω → ω, there exists e ∈ ω such that ψ(e, n) = d(n) for any n ∈ ω. Let
I be the set of all indices e ∈ ω such that the function ψe defined by ψe(n) = ψ(e, n) is
total. Clearly, I is Π1

1. Given P ⊆ I, we use the notation [P ]ξ to denote the union of
Σ˜ 0

ξ sets whose codes have ∆1
1-indices in P , i.e., [P ]ξ =

∪
e∈P δξ(ψe), where δξ(p) is the

Σ˜ 0
ξ set coded by p. By Claim 7, there exists a Π1

1 set P+ ⊆ I such that U+ = [P+]ξ.

Let Φ(Y ) be the formula saying that f ↾ H ′ \ [Y ∩ I]ξ is �-dominated by a Σϕt(s)(∆
1
1)

function on H \ [Y ∩ I]ξ.

Claim 9. Φ is Π1
1 on Π1

1.

Proof. Let C(Y ) be the set of codes of deterministic flowcharts S such that the domain
of [[S]] includes H \ [Y ∩ I]ξ. If (Yn)n∈ω is uniformly Π1

1, then clearly (H \ [Yn ∩ I]ξ)n∈ω
is uniformly Σ1

1. Hence, by Lemma 3.3, (C(Yn))n∈ω is uniformly Π1
1. Then, Φ(Yn) holds

if and only if

(∃c ∈ ∆1
1)

[
c ∈ C(Yn) ∧ (∀y, z)
((y ∈ dom(f) ∩ [Yn ∩ I]ξ ∧ Gc(y) = z) −→ f(y)� qz)

]
By the same argument as in the previous claim, one can see that this is a Π1

1 property
uniformly in n ∈ ω. Hence, Φ is Π1

1 on Π1
1. □

Recall from Claim 8 that Φ(P+) holds since U+ = [P+]ξ. Hence, by Π1
1-reflection

(Fact 5.13), there exists a ∆1
1 set R ⊆ P+ such that Φ(R) holds. Then, [R]ξ is Σ

0
ξ(∆

1
1).

Claim 10. The function f ↾ H ′ ∩ [R]ξ is �-dominated by a Σϕt(u)(∆
1
1)-function on

H ∩ [R]ξ.

Proof. Fix a ∆1
1-enumeration of R = (rn)n∈ω, and put O⋆

n = [{rn}]ξ. Note that (O⋆
n)n∈ω

is a ∆1
1-sequence of Σ˜ 0

ξ sets which covers [R]ξ. Since X = ωω is zero-dimensional, as

seen in the proof of Proposition 3.5, one can effectively find a ∆1
1-sequence of pairwise

disjoint Σ˜ 0
ξ sets (O′

n)n∈ω such that O′
n ⊆ On for each n ∈ ω and (O′

n)n∈ω covers [R]ξ.
Since R ⊆ P+ and O′

n ⊆ O⋆
n, for any n ∈ ω, the function f ↾ H ′ ∩ O′

n is �-dominated
by a Σϕt(u)(∆

1
1)-function g

′
n : H ∩O′

n → Q.
Now, consider the formula E(n, c) (where n ∈ ω and c ∈ ωω) stating that c ∈ ∆1

1 and
f ↾ H ′ ∩ O′

n is �-dominated by the Σϕt(u)(∆
1
1)-function on H ∩ O′

n determined by the
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flowchart coded by c. Since the formula saying that c is ∆1
1 is Π1

1, and the set H ∩ O′
n

is Σ1
1 uniformly in n ∈ ω, by Lemma 3.3, we observe that the formula E(n, c) is Π1

1. By
the property of O′

n, E is a total relation, that is, for any n ∈ ω there exists c ∈ ωω such
that E(n, c). Hence, by ∆1

1-selection (Fact 5.12), there exists a ∆1
1 function h : ω → ωω

such that E(n, h(n)) for any n ∈ ω.
By the definition of E, this function h yields a uniform ∆1

1-sequence of flowcharts
(Sn)n∈ω on ϕt(u) such that each Sn determines a Σϕt(u)(∆

1
1)-function g

′
n : H ∩ O′

n → Q
which �-dominates f ↾ H ′ ∩ O′

n. We write J for the syntax tree of ϕt(u), and then
each flowchart Sn is of the form (Sn

σ )σ∈J . Then, for each σ ∈ J , if σ is labeled by ;,
we define S ′

σ =
∪

n∈ω O
′
n ∩ Sn

σ ; and if σ is labeled by ⊔, we define S ′
σ,i =

∪
n∈ω O

′
n ∩ Sn

σ,i

for each i ∈ ω. Since such a node extends the neck node, its Borel rank is greater
than or equal to ξ. Hence, S ′

σ and S ′
σ,i are Σrank(σ)(∆

1
1) sets. Thus, S′ = (S ′

σ)σ∈J is a

∆1
1-flowchart on ϕt(u). Since (O′

n)n∈ω is pairwise disjoint, for any x ∈ [R]ξ there exists
a unique n ∈ ω such that x ∈ O′

n. Then, σ is a true path for x w.r.t. S′ if and only
if σ is a true path for x w.r.t. Sn. Since Sn determines a function, it is deterministic;
hence this shows that S′ is also deterministic. Let g′ be the function determined by the
flowchart S′. Then, g′ is a Σϕt(u)(∆

1
1)-function whose domain includes H ∩ [R]ξ, and we

have g′(x) = [[S′]](x) = [[Sn]](x) = g′n(x) whenever x ∈ H ∩O′
n. By our choice of g′n, this

implies that f ↾ H ′ ∩ O′
n is �-dominated by g′ ↾ H ∩ O′

n for any n ∈ ω. Consequently,
f ↾ H ′ ∩ [R]ξ is �-dominated by g′. □

Since Φ(R) holds, there exists a Σϕt(s)(∆
1
1)-function g′′ : H \ [R]ξ → Q which �-

dominates f ↾ H ′ \ [R]ξ. Let S′′ be a ∆1
1-flowchart on ϕt(s) determining g′′, and let

S′ be the ∆1
1-flowchart on ϕt(u) obtained by Claim 10 which determines a Σϕt(u)(∆

1
1)-

function g : H ∩ [R]ξ → Q which �-dominates f ↾ H ′ ∩ [R]ξ. Since [R]ξ is in Σ0
ξ(∆

1
1),

the straightforward combination of the ∆1
1-flowcharts S′′ and S′ yields a ∆1

1-flowchart
S⋆ on t = ϕt(s ; u). More precisely, recall that σ′ is the neck node of Synt, and its
Borel rank is ξ. Then, define S⋆

σ′ = [R]ξ. Moreover, for each node σ ∈ Synt, if σ is of
the form σ′⌢0⌢τ , define S⋆

σ = S ′′
σ′⌢τ ; and if σ is of the form σ′⌢1⌢τ , define S⋆

σ = S ′
σ′⌢τ .

It is easy to see that S⋆ = (S⋆
σ)σ∈Synt is a ∆1

1-flowchart determining a Σt(∆
1
1)-function

g⋆ : H → Q which �-dominates f . This completes the proof for Case 2.

Case 3. The neck node of Synt is labeled by ⊔, i.e., t is of the form ϕt(⊔n∈ωsn).
By our assumption, f is ∞-a.e. �-dominated by a total Σ˜ t function g : H → Q. Let
S = (Sσ)σ∈Synt be a flowchart on the term t which determines g, i.e., [[S]] = g. Let ξ be
the Borel rank of the neck node of Synt. Note that ξ < ωCK

1 since t is ∆1
1. Then, a Σ˜ 0

ξ

cover Sn of H is assigned to the neck node σ′, i.e., Sσ′ = (Sn)n∈ω. By Observation 5.17,
note that we have [[S]] ↾ (H ∩ Sn) ∈ Σ˜ ϕt(sn). Then, define U+

n as the following Tξ-open
set:

x ∈ U+
n ⇐⇒ (∃O ∈ Σ1

1 ∩Σ˜ 0
ξ)(∃g ∈ Σ˜ ϕt(sn)(H ∩O))

[x ∈ O ∧ (∀∞y) (y ∈ dom(f) ∩O −→ f(y)� g(y))].
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As in the Case 2, intuitively, U+
n ⊆ X is the largest Tξ-open set such that someΣ˜ ϕt(sn)-

function on H ∩ U+
n ∞-a.e. �-dominates f . Then, we have the following equivalences:

x ∈ U+
n ⇐⇒ (∃O ∈ Σ1

1 ∩Σ˜ 0
ξ)(∃g⋆ ∈ Σϕt(sn)(∆

1
1;H ∩O))

[x ∈ O ∧ (∀y) (y ∈ dom(f) ∩O −→ f(y)� g⋆(y))]

⇐⇒ (∃O⋆ ∈ Σ0
ξ(∆

1
1))(∃g⋆ ∈ Σϕt(sn)(∆

1
1;H ∩O⋆))

[x ∈ O⋆ ∧ (∀y) (y ∈ dom(f) ∩O⋆ −→ f(y)� g⋆(y))]

The first equivalence follows from the induction hypothesis restricted to the Σ1
1-

domain H ∩O. The second equivalence follows from Lemma 3.3 and Louveau’s separa-
tion theorem (Fact 5.11) as in the Case 2. As in Claim 7, one can see that U+

n is obtained
from a Π1

1-sequence of ∆1
1-indices of Σ˜ 0

ξ sets, uniformly in n ∈ ω. In other words, there

exists a Π1
1 set P+ ⊆ ω × I such that U+

n = [P+
n ]ξ, where P

+
n = {e ∈ I : (n, e) ∈ P+},

where I is the set defined as in Case 2.

Claim 11. (U+
n )n∈ω covers H.

Proof. By Fact 5.10 there is some Tξ open set which is equal to Sn ∞-a.e. for each n.
Then, as in the proof of Claim 8, one can see that Sn ⊆ U+

n ∞-a.e. Since (Sn)n∈ω covers
H, we have H \

∪
n∈ω U

+
n ⊆

∪
n∈ω Sn\

∪
n∈ω U

+
n ⊆

∪
n∈ω(Sn\U+

n ). This set is T∞-meager
since a countable union of T∞-meager sets is T∞-meager. However, H \

∪
n U

+
n is Σ1

1

and thus T∞-open. By the Baire category theorem for T∞ (Fact 5.9), this is in fact an
empty set. Consequently, (U+

n )n∈ω covers H. □
For Y ⊆ ω2, put (Y )n = {e ∈ ω : (n, e) ∈ Y } for each n ∈ ω. Let Φ(Y ) be the

formula stating that H ⊆
∪

n∈ω[(Y ∩ (ω × I))n]ξ. For any uniform sequence of Π1
1 sets

(Pk)k∈ω, it is easy to see that Φ(Pk) is Π
1
1 uniformly in k ∈ ω since H is Σ1

1. Hence, Φ
is Π1

1 on Π1
1. By Claim 11, Φ(P+) holds. Therefore, by Π1

1-reflection (Fact 5.13), there
exists a ∆1

1 set R ⊆ P+ such that Φ(R) holds.
Fix a ∆1

1-enumeration of (R)n = (rn,k)k∈ω, and put O⋆
n,k = [{rn,k}]ξ. Note that

(O⋆
n,k)n,k∈ω is a ∆1

1-sequence of Σ˜ 0
ξ sets which covers H. Since X = ωω is zero-

dimensional, as seen in the proof of Proposition 3.5, one can effectively find a ∆1
1-

sequence of pairwise disjoint Σ˜ 0
ξ sets (O′

n,k)n,k∈ω such that O′
n,k ⊆ O⋆

n,k for any n, k ∈ ω
and (O′

n,k)n,k∈ω covers H. Since (R)n ⊆ P+
n and O′

n,k ⊆ O⋆
n,k, for any n, k ∈ ω, the

function f ↾ H ′ ∩ O′
n,k is �-dominated by a Σϕt(sn)(∆

1
1)-function g

′
n,k : H ∩ O′

n,k → Q.
Here, H ′ is the domain of f as in Case 2.

Put S⋆
n =

∪
k∈ω O

′
n,k for each n ∈ ω. Then, S⋆

n is Σ0
ξ(∆

1
1), and as in Claim 10, one

can show that f ↾ H ′ ∩S⋆
n is �-dominated by a Σϕt(sn)(∆

1
1)-function on H ∩S⋆

n for each
n ∈ ω. Again, as in the proof of Claim 10, consider the formula E(n, c) (where n ∈ ω
and c ∈ ωω) stating that c ∈ ∆1

1 and f ↾ H ′ ∩ S⋆
n is �-dominated by the Σϕt(sn)(∆

1
1)-

function on H ∩ S⋆
n determined by the flowchart coded by c. As seen in the proof of

Claim 10, the formula E(n, c) is Π1
1, and by the property of S⋆

n, E is a total relation.
Hence, by ∆1

1-selection (Fact 5.12), there exists a ∆1
1 function h : ω → ωω such that

E(n, h(n)) for any n ∈ ω.
By the definition of E, this function h yields a uniform ∆1

1-sequence of flowcharts
(Sn)n∈ω such that each Sn = (Sn

σ )σ determines a Σϕt(sn)(∆
1
1)-function g

′
n : H ∩O′

n → Q
which �-dominates f ↾ H ′ ∩ O′

n. Since S⋆
n is in Σ0

ξ(∆
1
1) uniformly in n ∈ ω, the
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straightforward combination of the ∆1
1-flowcharts (Sn)n∈ω yields a ∆1

1-flowchart S
⋆ on

t = ϕt(⊔n∈ωsn). More precisely, recall that σ′ is the neck node of Synt, and its Borel
rank is ξ. Then, define S⋆

σ′,n = S⋆
n. Moreover, for each node σ ∈ Synt, if σ is of the form

σ′⌢n⌢τ , define S⋆
σ = Sn

σ′⌢τ . Since (S⋆
n)n∈ω is a ∆1

1-sequence of pairwise disjoint Σ˜ 0
ξ

sets, as in Claim 10, one can show that S⋆ = (S⋆
σ)σ∈Synt is a ∆1

1-flowchart determining a
Σt(∆

1
1)-function g

⋆ : H → Q which �-dominates f . This completes the proof. □
Proof of Lemma 5.15. In the proof of Lemma 5.14, the assumption X = ωω (i.e., zero-
dimensionality of the space) is only used to ensure that several flowcharts are determin-
istic. For this reason, if X is not necessarily zero-dimensional, then we cannot ensure
that the resulting function g⋆ is single-valued. To verify the assertion, we need to modify
the proof of Lemma 5.14 to conform to multi-valued functions; for instance, we need to
replace the condition Gc(y) = z in Claim 7 with z ∈ Gc(y). However, as in the proof
of Lemma 3.3, one can see that qz ∈ h(x) is a ∆1

1 condition whenever h is in Σs(∆
1
1)

where s is an LVeb(Q)-term. Thus, in any complexity calculation (e.g. Claims 7, 9 and
10), involving multi-valued functions does not increase the complexity. Therefore, we
can make exactly the same argument as in the proof of Lemma 5.14. □
Question 1. Does Theorems 5.2 and 5.3 hold for an arbitrary computable Polish space
instead of ωω?
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