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Abstract

We introduce the notion of a convex tree. We show that the binary
expansion for real numbers in the unit interval (BE) is equivalent to
weak Köning lemma (WKL) for convex trees having at most two nodes
at each level, and we prove that the intermediate value theorem (IVT)
is equivalent to WKL for convex tree, in the framework of constructive
reverse mathematics.
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1 Introduction

In Bishop’s constructive mathematics [2, 3, 4, 5], the binary expansion of real
numbers in the unit inteval:

BE: Every real number in [0, 1] has a binary expansion,

and the intermediate value theorem:

IVT: If f : [0, 1] → R is a uniformly continuous function with f(0) ≤ 0 ≤
f(1), then there exists x ∈ [0, 1] such that f(x) = 0,
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respectively imply the lesser limited principle of omniscience (LLPO or Σ0
1-

DML) which is an instance of De Morgan’s law (DML):

∀αβ[¬(∃n(α(n) 6= 0) ∧ ∃n(β(n) 6= 0))→¬∃n(α(n) 6= 0) ∨ ¬∃n(β(n) 6= 0)]1;

see [13, 5.9] for BE, and [4, 3.2.4] and [14, 6.1.2] for IVT; for a constructive
version of IVT, see [3, 2.4.8], [4, 3.2.5] and [14, 6.1.4, 6.1.5].

In the presence of the axiom of countable choice, which is assumed in
Bishop’s constructive mathematics, we can show the converses, and hence
BE and IVT are respectively equivalent to LLPO. Note that, in the absence
of the countable choice, we are able to show, in constructive mathematics,
that BE and IVT follow from weak Köning’s lemma:

WKL: Every infinite tree has a branch.

Ishihara [6] showed that WKL is equivalent to LLPO in Bishop’s construc-
tive mathematics, and it has been noticed that most mathematical theorems
equivalent to LLPO in Bishop’s constructive mathematics are equivalent to
WKL in the Friedman-Simpson program, called (classical) reverse mathemat-
ics; see [11] for reverse mathematics. Note that some mathematical theorems
equivalent to WKL in classical reverse mathematics are equivalent to the
fan theorem (FAN), which is a classical contraposition of and constructively
weaker than WKL; see [7], [10] and [8], and also [1].

Of course, there are exceptions. Since BE and IVT are provable in the
subsystem RCA0 of second order arithmetic, the base system for classical
reverse mathematics, and RCA0 does not prove WKL, neither BE nor IVT
proves WKL; see [11, II.6.6]. Therefore, although each of BE and IVT implies
LLPO, they are strictly weaker than WKL.

Since classical reverse mathematics is formalized with classical logic, we
cannot classify theorems, such as BE and IVT which are provable in RCA0

and theorems in intuitionistic mathematics or in constructive recursive math-
ematics which are inconsistent with classical logic. On the other hand, since
Bishop’s constructive mathematics is an informal mathematics using intu-
itionistic logic and is assuming some function existence axioms (the axiom

1Here and in the following, we follow the notational conventions in [14]: m,n, i, j, k are
supposed to range over N, a, b, c over the set N∗ of finite sequences of N, and α, β, γ, δ
over NN; |a| denotes the length of a finite sequence a, and a ∗ b the concatenation of two
finite sequences a and b; a(n) and α(n) denote the initial segments of a and α of length
n, respectively, where n ≤ |a|.
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of countable choice), we cannnot directly bring theorems of Bishop’s con-
structive mathematics into classical reverse mathematics. The aim of con-
structive reverse mathematics is to classify various theorems in intuitionistic,
constructive recursive and classical mathematics by logical principles, func-
tion existence axioms and their combinations over an intuitionistic system
without the axiom of countable choice which is a subsystem of RCA0; see
[7], and [15] for intuitionistic reverse mathematics.

In this paper, we deal with, in constructive reverse mathematics, how
weaker BE and IVT are than WKL, and which of them is weaker than the
other. After reviewing our base system only with the quantifier-free axiom
of countable choice for constructive reverse mathematics in the section 2, we
introduce the notion of a convex tree. We show that WKL for trees having
at most (exactly) two nodes at each level and WKL for convex trees having
at most (exactly) two nodes at each level are equivalent in the section 3. In
the section 4, we show that BE is equivalent to WKL for convex trees having
at most two nodes at each level, and, in the section 5, we show that IVT
implies WKL for trees having exactly two nodes at each level, and hence IVT
implies BE. Finally we prove that IVT is equivalent to WKL for convex tree.

Since our base system is a subsystem of RCA0, we see that WKL for
convex trees is derivable in RCA0.

2 A subsystem of elementary analysis

We adopt a subsystem EL0 of elementary analysis EL [14, 3.6] as a formal
base system for constructive reverse mathematics. The language of EL con-
tains, in addition to the symbols of HA, unary function variables, denoted
by α, β, γ, δ, . . ., the application operator Ap, the abstraction operator λ and
the recursor r. We write ϕ(t) for Ap(ϕ, t). The logic of EL is two-sorted
intuitionistic predicate logic. As non-logical axioms we have the axioms of
HA, with induction extended to formulae of the language of EL, the axiom
for λ-conversion, the axioms for the recursor, and the quantifier-free axiom
of choice:

QF-AC00: ∀m∃nA(m,n)→∃α∀mA(m,α(m)),

where A is a quantifier-free formula and does not contain α free; see [14, 3.6]
for more details. The subsystem EL0 is obtained from EL by restricting the
induction-axiom schema to quantifier-free formulae:
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QF-IND: A(0) ∧ ∀m(A(m)→ A(S(m)))→∀mA(m),

where A is a quantifier-free formula.
Note that functions in EL0 contain all primitive recursive functions, and

are closed under primitive recursion.

Proposition 1. Σ0
1-IND is derivable in EL0.

Proof. Let A(m) be a Σ0
1-formula of the form ∃nB(m,n), where B(m,n) is

quantifier-free. Note that ∀mn(B(m,n)∨¬B(m,n)) as B(m,n) is quantifier-
free. Suppose that A(0) and ∀m(A(m)→ A(S(m))). Then, by intuitionistic
predicate logic, we have

∀mn∃k(B(m,n)→B(S(m), k)),

and hence, by QF-AC00, there exists α such that

∀mn(B(m,n)→B(S(m), α(j(m,n)))),

where j is a coding function of pairs of natural numbers. Since A(0), there
exists n0 such that B(0, n0). Define a function γ by primitive recursion such
that

γ(0) = n0, γ(S(m)) = α(j(m, γ(m))).

Then we have

B(0, γ(0)) ∧ ∀m(B(m, γ(m))→B(S(m), γ(S(m)))),

and therefore ∀mB(m, γ(m)), by QF-IND. Thus ∀mA(m).

There is no difficulty at all to establish basic theorems of arithmetic (on
natural numbers) in EL0, as in [14, 3.2]. Using the pairing function j, we
can code n-tuples of natural numbers, finite sequences of natural numbers,
integers and rationals into natural numbers, develop the elementary theory
of operations and relations on Z, Q, N∗ and {0, 1}∗, and prove their basic
properites in EL0.

In the language of EL (and hence EL0), a detachable subset S of N is
given by its characteristic function χS : N→ {0, 1} such that

∀n(n ∈ S↔ χS(n) = 1).
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We adopt a definition of real number with a fixed modulus: a real number
is a sequence (pn)n of rationals such that

∀mn
(
|pm − pn| < 2−m + 2−n

)
.

The relations <, ≤, and = between real numbers x = (pn)n and y = (qn)n
are defined by

x < y⇔∃n
(
2−n+2 < qn − pn

)
,

x ≤ y ⇔ ¬(y < x), and x = y ⇔ x ≤ y ∧ y ≤ x, respectively. There is no
trouble to define the arithmetical operations on the reals, and to show basic
theorems on them in EL0; see [9, Section 4] and [14, 5.2 and 5.3]. Note that
for each real number x = (pn)n, we have ∀n(|x− pn| ≤ 2−n); see [9, Lemma
4.4] and [14, Propositions 5.2.14 and 5.2.15].

Especially, the inequality relation < is cotransitive, that is, for x, y, z ∈ R

x < y→ x < z ∨ z < y;

see [2, Chapter 2, Corollay], [3, Corollay 2.17], and also [14, 5.2.9]. Note that
for a given n, using the cotransitivity, we can devide a detachable index set
I of a set {xi | i ∈ I} of real numbers into disjoint detachable subsets I−, I0
and I+ such that i ∈ I−→ xi < 0, i ∈ I0→ |xi| < 2−n and i ∈ I+→ 0 < xi.

A uniformly continuous function f : [0, 1]→ R consists of two functions
ϕ : Q ×N → Q and ν : N → N such that f(p) = (ϕ(p, n))n ∈ R, and for
each k and p, q ∈ Q with 0 ≤ p, q ≤ 1

|p− q| < 2−ν(k)→ |f(p)− f(q)| < 2−k.

Then the uniformly continuous function f : [0, 1]→ R is given by

f(x) = (ϕ(min{max{pµ(n), 0}, 1}, n+ 1))n,

where x = (pn)n ∈ [0, 1] and µ(n) = ν(n+ 1) + 1, and its modulus of uniform
continuity is µ; see [9, Proposition 15].

3 Weak König’s lemma for convex trees

For a, b ∈ {0, 1}∗, let a � b denote that a is an initial segment of b, that is,
a � b⇔ |a| ≤ |b| ∧ b(|a|) = a. Note that a � c ∧ b � c→ a � b ∨ b � a.

Let a @ b denote that a is on the left of b (b is on the right of a), that is,
a @ b⇔ ∃u � a(u ∗ 〈0〉 � a ∧ u ∗ 〈1〉 � b). It is straightforward to show the
following lemma.
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Lemma 2. 1. ¬(a @ a),

2. a @ b ∧ b @ c→ a @ c,

3. a @ b ∨ b @ a ∨ a � b ∨ b � a,

4. a ∗ 〈0〉 @ b↔ a @ b ∨ a ∗ 〈1〉 � b,

5. a ∗ 〈1〉 @ b↔ a @ b,

6. a @ b ∗ 〈0〉 ↔ a @ b,

7. a @ b ∗ 〈1〉 ↔ a @ b ∨ b ∗ 〈0〉 � a,

8. a @ b ∧ a′ � a→ a′ @ b ∨ a′ � b,

9. a @ b ∧ b′ � b→ a @ b′ ∨ b′ � a,

10. a′ @ b′ ∧ a′ � a ∧ b′ � b→ a @ b,

11. ¬(a ∗ 〈0〉 @ b @ a ∗ 〈1〉).

Let a v b⇔ a @ b ∨ a � b ∨ b � a. Then it is easy to see the following
lemma.

Lemma 3. 1. a v b ∧ a′ � a→ a′ v b,

2. a v b ∧ b′ � b→ a v b′,

3. a v b→ a ∗ 〈0〉 v b,

4. a v b→ a v b ∗ 〈1〉,

5. |a| = |b| → (a v b↔ a @ b ∨ a = b),

6. |a| = |b| → (a v b ∧ b @ c→ a @ c),

7. |a| = |b| → (a v b ∧ b v c→ a v c).

For a detachable subset S of {0, 1}∗, we write Sn for the set {a ∈ S |
|a| = n} and |Sn| for the number of elements of Sn. We say that, for each n,
a subset C of {0, 1}n is convex if for each a, b ∈ C and c ∈ {0, 1}n,

a @ c @ b→ c ∈ C,
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and a subset S of {0, 1}∗ is convex if Sn is convex for each n.
A tree T is a detachable subset of {0, 1}∗ such that 〈〉 ∈ T , and b ∈ T

and a � b imply a ∈ T for each a, b ∈ {0, 1}∗, and a tree T is infinite if Tn
is inhabited for each n. A sequence α ∈ {0, 1}N is a branch of a tree T if all
initial segment of α are in T , that is, ∀n(α(n) ∈ T ).

A tree T has at most (exactly) k nodes at each level if |Tn+1| ≤ k (respec-
tively, |Tn+1| = k) for each n. Let WKL≤k (WKLk) denote WKL for trees
having at most (respectively, exactly) k nodes at each level, and let WKLc

denote WKL for convex trees. Also we write WKLc≤k (WKLck) for WKL for
convex trees having at most (respectively, exactly) k nodes at each level.

Note that, since |Tn+1| ≤ 2|Tn|, we have |Tn+1|/2n+1 ≤ |Tn|/2n, and hence
the sequence (|Tn|/2n)n is nonincreasing.

Proposition 4. Let T be an infinite convex tree such that

|Tn|/2n → 0 as n→∞ (1)

with a modulus of convergence. Then there exists an infinite convex subtree
T ′ of T having at most two nodes at each level.

Proof. Let T be an infinite convex tree such that |Tn|/2n → 0 as n → ∞
with a modulus µ : N → N of convergence, that is, |Tµ(n)|/2µ(n) < 2−n

for each n, and let (an)n and (bn)n be sequences of {0, 1}∗ such that Tn =
{c ∈ {0, 1}n | an v c v bn} for each n. We may assume, without loss of
generality, that n ≤ µ(n) ≤ µ(n+ 1) for each n. Define sequences (a′n)n and
(b′n)n by a′n = aµ(n)(n) and b′n = bµ(n)(n). If a′n @ c @ b′n for c ∈ {0, 1}n,
then aµ(n) @ c ∗ u @ bµ(n) for each u ∈ {0, 1}µ(n)−n, by Lemma 2 (10), and
hence 2µ(n)−n < |Tµ(n)|, or 2−n < |Tµ(n)|/2µ(n), a contradiction. Therefore
¬(a′n @ c @ b′n), and so T ′n = {a′n, b′n} is convex and has at most two nodes.
Since aµ(n) v aµ(n+1)(µ(n)) v bµ(n), we have a′n v aµ(n+1)(n) v b′n, by Lemma
3 (1) and (2), and hence aµ(n+1)(n) = a′n or aµ(n+1)(n) = b′n, by Lemma 3
(5). Therefore a′n � a′n+1 or b′n � a′n+1. Similarly, we have a′n � b′n+1 or
b′n � b′n+1. Thus T ′ =

⋃∞
n=0 T

′
n is an infinite convex subtree of T having at

most two nodes at each level.

Let WKLc→0 denote WKL for convex trees with the property (1) in Propo-
sition 4. Then we have the following corollary.

Corollary 5. The following are equivalent.
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1. WKLc≤2,

2. WKLc≤k (k ≥ 3),

3. WKLc→0.

Proof. Straightforward by Proposition 4.

Theorem 6. The following are equivalent.

1. WKL≤2,

2. WKL2,

3. WKLc≤2,

4. WKLc2.

Proof. Since WKL≤2 ⇒WKL2 ⇒WKLc2 and WKL≤2 ⇒WKLc≤2 ⇒WKLc2
are trivial, it suffices to show that WKLc2⇒WKL≤2.

(WKLc2⇒WKL≤2): Suppose WKLc2, and let T be an infinite tree having
at most two nodes at each level. Then there exist sequences (an)n and (bn)n
of {0, 1}∗ such that Tn = {an, bn} and an v bn for each n. Note that, since
T is a tree, we have an � an+1 ∧ an � bn+1, an @ bn ∧ bn � an+1 ∧ bn � bn+1,
or an @ bn ∧ an � an+1 ∧ bn � bn+1 for each n. Define sequences (a′n)n and
(b′n)n of {0, 1}∗ by a′0 = b′0 = 〈〉 and

a′n+1 = a′n ∗ 〈0〉, b′n+1 = a′n ∗ 〈1〉 if an � an+1 ∧ an � bn+1,
a′n+1 = b′n ∗ 〈0〉, b′n+1 = b′n ∗ 〈1〉 if an @ bn ∧ bn � an+1 ∧ bn � bn+1,
a′n+1 = a′n ∗ 〈1〉, b′n+1 = b′n ∗ 〈0〉 if an @ bn ∧ an � an+1 ∧ bn � bn+1.

Then it is straightforward to show, by induction on n, that |a′n| = |b′n| = n,
a′n+1 @ b′n+1 and ¬∃c(a′n @ c @ b′n) for each n, using Lemma 2 (11), (5) and
(6). Therefore T ′ =

⋃∞
n=0{a′n, b′n} is an infinite convex tree having exactly

two nodes at each level, and so there exists a branch α in T ′, by WKLc2.
Define a mapping f : T ′ → T by f(a′n) = an and f(b′n) = bn for each n.
Then |f(a′)| = |a′| for each a′ ∈ T ′, and it is straightforward to see that
f(a′) � f(a′ ∗ 〈i〉) for each a′, a′ ∗ 〈i〉 ∈ T ′. Thus the sequence (f(α(n)))n
defines a branch in T .
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4 The binary expansion

For a ∈ {0, 1}∗, define a rational number la inductively by l〈〉 = 0, la∗〈0〉 = la
and la∗〈1〉 = la + 2−(|a|+1), and let ra = la + 2−|a|. Note that a � b implies
la ≤ lb and a @ b implies 2−|a| ≤ lb − la.

Proposition 7. Let T be a tree, and let x be a real number such that

∀n∃a ∈ Tn(|x− la| < 2−n).

Then there exists an infinite convex subtree T ′ of T having at most two nodes
at each level, and

∀n∀a′ ∈ T ′n(|x− la′| < 2−n+1).

Proof. Let T be a tree, and let x be a real number such that ∃a ∈ Tn(|x−la| <
2−n) for each n. Let x = (qn)n such that |qm − qn| < 2−m + 2−n for each n
and m, and let

T ′n = {a(n) | a ∈ Tn+2 ∧ |qn+4 − la| < 2−(n+1)} ⊆ Tn

for each n. Then for each n, since there exists a ∈ Tn+2 such that |x− la| <
2−(n+2), we have

|qn+4 − la| ≤ |qn+4 − x|+ |x− la| < 2−(n+4) + 2−(n+2) < 2−(n+1),

and hence T ′n is inhabited. Assume that a ∗ 〈i〉 ∈ T ′n+1. Then there exists

b ∈ Tn+3 such that b(n + 1) = a ∗ 〈i〉 and |qn+5 − lb| < 2−(n+2), and hence,
setting c = b(n+ 2) ∈ Tn+2, we have a = c(n) and

|qn+4 − lc| ≤ |qn+4 − qn+5|+ |qn+5 − lb|+ |lb − lc|
< 2−(n+4) + 2−(n+5) + 2−(n+2) + 2−(n+3) < 2−(n+1).

Therefore a ∈ T ′n. If a′ @ c @ b′ with a′, b′ ∈ T ′n and c ∈ {0, 1}n, then there
exist a, b ∈ Tn+2 such that a′ = a(n), b′ = b(n), |qn+4 − la| < 2−(n+1) and
|qn+4 − lb| < 2−(n+1), and hence

2−n+1 = 2−n + 2−n ≤ (lb′ − lc) + (lc − la′)
= (lb′ − lb) + (lb − qn+4) + (qn+4 − la) + (la − la′)
< 0 + 2−(n+1) + 2−(n+1) + 2−n = 2−n+1,
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a contradiction. Therefore T ′n is convex and has at most two nodes. If a′ ∈ T ′n,
then there exists a ∈ Tn+2 such that a′ = a(n) and |qn+4− la| < 2−(n+1), and
hence

|x− la′| ≤ |x−qn+4|+ |qn+4− la|+ |la− la′| < 2−(n+4) +2−(n+1) +2−n < 2−n+1.

Thus T ′ =
⋃∞
n∗0 T

′
n is an infinite convex subtree of T with the required

properties.

Theorem 8. The following are equivalent.

1. BE,

2. WKLc≤2,

Proof. It suffices to show that BE⇒WKLc2 and WKLc≤2⇒BE, by Theorem
6.

(BE⇒WKLc2): Suppose BE, and let T be an infinite convex tree having
exactly two nodes at each level. Then there exist sequences (an)n and (bn)n of
{0, 1}∗ such that Tn = {an, bn} and an+1 @ bn+1 for each n. Note that, since
T is a tree, we have an+1 = an ∗ 〈0〉∧ bn+1 = an ∗ 〈1〉, an+1 = bn ∗ 〈0〉∧ bn+1 =
bn ∗ 〈1〉, or an+1 = an ∗ 〈1〉 ∧ bn+1 = bn ∗ 〈0〉 for each n. Define sequences
(a′n)n and (b′n)n of {0, 1}∗ by a′0 = b′0 = 〈〉,

a′2n+1 = a′2n ∗ 〈0〉, b′2n+1 = a′2n ∗ 〈1〉 if an+1 = an ∗ 〈0〉 ∧ bn+1 = an ∗ 〈1〉,
a′2n+1 = b′2n ∗ 〈0〉, b′2n+1 = b′2n ∗ 〈1〉 if an+1 = bn ∗ 〈0〉 ∧ bn+1 = bn ∗ 〈1〉,
a′2n+1 = a′2n ∗ 〈1〉, b′2n+1 = b′2n ∗ 〈0〉 if an+1 = an ∗ 〈1〉 ∧ bn+1 = bn ∗ 〈0〉,

and
a′2n+2 = a′2n+1 ∗ 〈1〉, b′2n+2 = b′2n+1 ∗ 〈0〉.

Then it is straightforward to show, by induction on n, that |a′n| = |b′n| = n,
a′n+1 @ b′n+1, and ¬∃c(a′n @ c @ b′n) for each n, using Lemma 2 (11), (5) and
(6). Therefore T ′ =

⋃∞
n=0{a′n, b′n} is an infinite convex tree having exactly

two nodes at each level. It is straightforward to see, by induction on n, that
lb′n+1

− la′n+1
= 2−(n+1) for each n, and hence 0 ≤ la′n+1

− la′n ≤ 2−n for each
n. Therefore (la′n)n is a Cauchy sequence of rationals, and so it converges to
a real number x in [0, 1]. Note that la′n ≤ x ≤ la′n + 2−n+1 and x ≤ lb′n + 2−n

for each n. By BE, there exists α ∈ {0, 1}N such that x =
∑∞

i=0 α(i) ·2−(i+1).
Note that lα(n) ≤ lα(n+1) and x ≤ lα(n) + 2−n.
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We show that α is a branch in T ′. Assume that α(n) 6∈ T ′, and choose m
so that n ≤ 2m+ 1. Then α(2m+ 1) 6∈ T ′2m+1, and hence either α(2m+ 1) @
a′2m+1 or b′2m+1 @ α(2m + 1), by Lemma 2 (3). In the former case, since
x ≤ lα(2m+1) + 2−(2m+1) ≤ la′2m+1

, we have

x+ 2−(2m+2) ≤ la′2m+1
+ 2−(2m+2) = la′2m+2

≤ x,

a contradiction. In the latter case, since lb′2m+1
+ 2−(2m+1) ≤ lα(2m+1) ≤ x, we

have

x+ 2−(2m+2) ≤ lb′2m+2
+ 2−(2m+2) + 2−(2m+2) = lb′2m+1

+ 2−(2m+1) ≤ x,

a contradiction. Therefore α(n) ∈ T ′. Let β(n) = α(2n). Then it is straight-
forward to show, by simultaneous induction on n, that α(2n) = a′2n implies
β(n) = an and α(2n) = b′2n implies β(n) = bn for each n. Thus β is a branch
in T .

(WKLc≤2⇒ BE): Suppose WKLc≤2. Let x ∈ [0, 1], and let T = {0, 1}∗ be
the complete binary tree. Then ∃a ∈ Tn(|x− la| < 2−n) for each n, and hence
there exists an infinite convex subtree T ′ of T having at most two nodes at
each level and ∀a′ ∈ T ′n(|x − la′| < 2−n+1) for each n, by Proposition 7. By
WKLc≤2, there exists a branch α in T ′, and hence in T . Since

|x−
∑∞

i=0 α(i) · 2−(i+1)| ≤ |x−lα(n)|+|lα(n)−
∑∞

i=0 α(i) · 2−(i+1)| < 2−n+1+2−n

for each n, we have x =
∑∞

i=0 α(i) · 2−(i+1).

5 The intermediate value theorem

For a ∈ {0, 1}∗, define a rational number l′a inductively by l′〈〉 = 1/3, l′a∗〈0〉 = l′a
and l′a∗〈1〉 = l′a+2 ·3−(|a|+2), and let r′a = l′a+3−(|a|+1). Note that a � b implies

l′a ≤ l′b and r′b ≤ r′a, and a @ b implies 3−|a|+1 ≤ l′b − r′a.

Proposition 9. IVT implies WKL2.

Proof. Suppose IVT, and let T be an infinite tree having exactly two nodes
at each level. Then there exist sequences (an)n and (bn)n of {0, 1}∗ such
that a0 = b0 = 〈〉, Tn = {an, bn} and an+1 @ bn+1 for each n. Note that
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l′an ≤ l′an+1
< r′bn+1

≤ r′bn for each n, and hence l′an < r′bm for each n and m.
For each n, define a uniformly continuous function fn : [0, 1]→ R by

fn(x) = max{min{l′−1an (x− l′an), 0}, (1− r′bn)−1(x− r′bn)}.

Note that x < l′an if and only if fn(x) < 0, l′an ≤ x ≤ r′bn if and only if
fn(x) = 0, r′bn < x if and only if 0 < fn(x), fn(0) = −1, and fn(1) = 1.
If fn(x) < 0 and 0 < fm(x) then x < l′an < r′bm < x, a contradiction.
Hence if fn(x) < 0 for some n, then fm(x) ≤ 0 for each m. Similarly, if
0 < fn(x) for some n, then 0 ≤ fm(x) for each m. Moreover, note that
|fn(x)− fn(y)| ≤ 3|x− y| for each x, y ∈ [0, 1]. Let

f(x) =
∞∑
n=0

2−(n+1)fn(x).

Then f : [0, 1]→ R is a uniformly continuous function such that f(0) < 0 <
f(1), and hence there exists x ∈ [0, 1] such that f(x) = 0, by IVT.

We define inductively a sequence (cn)n of T such that |cn| = n, cn � cn+1,
and ∀m ≥ n∃c ∈ Tm(cn � c) for each n. Then, trivially, the sequence (cn)n
defines a branch in T . Let c0 = 〈〉, and suppose that cn has been defined.
If cn � an+1 and ¬(cn � bn+1), then set cn+1 = an+1, and if cn � bn+1 and
¬(cn � an+1), then set cn+1 = bn+1. If cn � an+1 and cn � bn+1, then, since
r′an+1

+ 3−(n+2) ≤ l′bn+1
, either r′an+1

< x or x < l′bn+1
. In the former case,

assume that m ≥ n+1 and ¬(bn+1 � bm). Then an+1 � bm, and, since r′bm ≤
r′an+1

< x, we have 0 < 2−(m+1)fm(x) ≤ f(x), a contradiction. Therefore
bn+1 � bm for each m ≥ n + 1, and set cn+1 = bn+1. In the latter case,
similarly we have an+1 � am for each m ≥ n+ 1, and set cn+1 = an+1.

Corollary 10. IVT implies BE.

Proof. By Proposition 9, Theorem 6 and Proposition 8.

Lemma 11. Let a, b ∈ {0, 1}∗ be such that a @ b. Then there exist c, d ∈
{0, 1}∗ such that |c| = |a|, |d| = |b|, a @ c v b, a v d @ b, lc = ra and
rd = lb.

Proof. For u ∈ {0, 1}∗ with |u| > 0, define suc(u) in {0, 1}∗ inductively by

suc(〈0〉) = 〈1〉, suc(〈1〉) = 〈1〉,
suc(u ∗ 〈0〉) = u ∗ 〈1〉, suc(u ∗ 〈1〉) = suc(u) ∗ 〈0〉.
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It is stratightforward to show, by induction on a, that |suc(a)| = |a|. We
show, by induction on a, that if a @ b, then a @ suc(a) v b and lsuc(a) = ra.
Suppose that a @ b. Then ¬(a = 〈1〉) and ¬(b = 〈0〉). If a = 〈0〉, then 〈1〉 �
b, and hence a @ suc(a) v b and lsuc(a) = 1/2 = ra. If a = u ∗ 〈0〉, then either
u @ b or u∗〈1〉 � b, by Lemma 2 (4), and, by Lemma 2 (5), in both cases, we
have a @ suc(a) v b and lsuc(a) = lu+2−(|u|+1) = lu∗〈0〉+2−(|u|+1) = ra. Assume
that a = u∗〈1〉. Then u @ b, by Lemma 2 (5), and hence u @ suc(u) v b and
lsuc(u) = ru by induction hypothesis. Therefore a @ suc(a) v b, by Lemma 2
(5) and (6), and Lemma 3 (3), and

lsuc(a) = lsuc(u) + 2−(|u|+1) = ru + 2−(|u|+1)

= lu + 2−(|u|+1) + 2−(|u|+1) = lu∗〈1〉 + 2−(|u|+1) = ra.

For u ∈ {0, 1}∗ with |u| > 0, define prd(u) in {0, 1}∗ inductively by

prd(〈0〉) = 〈0〉, prd(〈1〉) = 〈0〉,
prd(u ∗ 〈0〉) = prd(u) ∗ 〈1〉, prd(u ∗ 〈1〉) = u ∗ 〈0〉.

Then, similarly, we see that |prd(b)| = |b|, a v prd(b) @ b and rprd(b) = lb.

Theorem 12. The following are equivalent.

1. IVT,

2. WKLc.

Proof. (IVT⇒WKLc): Suppose IVT, and let T be an infinite convex tree.
Then there exist sequences (an)n and (bn)n of {0, 1}∗ such that Tn = {c ∈
{0, 1}n | an v c v bn} for each n. For each n, define a uniformly continuous
function fn : [0, 1]→ R by

fn(x) = max{min{(lan + 1)−1(3x− lan − 1), 0}, (2− rbn)−1(3x− rbn − 1)}.

Note that if fn(x) = 0, then lan ≤ 3x− 1 ≤ rbn , if fn(x) < 0 for some n, then
fm(x) ≤ 0 for each m, and if 0 < fn(x) for some n, then 0 ≤ fm(x) for each
m. Let

f(x) =
∞∑
n=0

2−(n+1)fn(x).

Then f : [0, 1] → R is a uniformly continuous function such that f(0) <
0 < f(1), and hence there exists x ∈ [0, 1] such that f(x) = 0, by IVT.
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For each n, since fn(x) = 0, we have lan ≤ 3x − 1 ≤ rbn , and hence ∃a ∈
Tn(|(3x−1)− la| < 2−n). Therefore there exists an infinite convex subtree T ′

of T having at most two nodes at each level, by Proposition 7. By Proposition
9 and Theorem 6, there exists a branch in T ′, and hence in T .

(WKLc⇒ IVT): Suppose WKLc, and let f : [0, 1] → R be a uniformly
continuous function such that f(0) ≤ 0 ≤ f(1). Then we define inductively
sequences (an)n and (bn)n of {0, 1}∗ such that for each n

1. |an| = |bn| = n and an v bn,

2. f(lan) ≤ 0 ≤ f(rbn),

3. ∀c ∈ {0, 1}n(an @ c v bn→ |f(lc)| < 2−n).

Let a0 = b0 = 〈〉, and suppose that an and bn have been defined. Then we
devide the set

S = {u ∈ {0, 1}n+1 | ∃v ∈ {0, 1}n(an v v v bn ∧ v � u)}

into disjoint detachable subsets S−, S0 and S+ such that c ∈ S−→ f(lc) < 0,
c ∈ S0→|f(lc)| < 2−n and c ∈ S+→0 < f(lc). If S− is inhabited, then choose
an+1 ∈ S− so that ¬∃v ∈ S−(an+1 @ v), and otherwise set an+1 = an ∗ 〈0〉.
If {u ∈ S+ | an+1 @ u} is inhabited, then choose c ∈ S+ so that an+1 @
c ∧ ¬∃v ∈ S+(an+1 @ v @ c) and choose bn+1 ∈ S, by Lemma 11, so that
an+1 v bn+1 @ c and rbn+1 = lc , and otherwise set bn+1 = bn ∗ 〈1〉.

It is trival that |an+1| = |bn+1| = n+1 and an+1 v bn+1. If S− is inhabited,
then, since an+1 ∈ S−, we have f(lan+1) < 0, and otherwise, since lan+1 = lan ,
we have f(lan+1) ≤ 0. If {u ∈ S+ | an+1 @ u} is inhabited, then, since there
exists c ∈ S+ such that rbn+1 = lc, we have 0 < f(rbn+1), and otherwise, since
rbn+1 = rbn , we have 0 ≤ f(rbn+1). Assume that an+1 @ c v bn+1 with c ∈
{0, 1}n+1. If c ∈ S−, then S− is inhabited, and hence ¬∃v ∈ S−(an+1 @ v), a
contradiction. If c ∈ S+, then, since {u ∈ S+ | an+1 @ u} is inhabited, there
exists c′ ∈ S+ such that ¬∃v ∈ S+(an+1 @ v @ c′) and an+1 v bn+1 @ c′, and
hence an+1 @ c @ c′ by Lemma 3 (6), a contradiction. Therefore c ∈ S0.

Let Tn = {u ∈ {0, 1}n | an v u v bn} for each n, and let T =
⋃∞
n=0 Tn.

Then T is an infinite convex tree, and hence there exists a branch α in T by
WKLc. Let µ : N → N be a modulus of uniform continuity for f such that
for each x, y ∈ [0, 1] and each n

|x− y| < 2−µ(n)→ |f(x)− f(y)| < 2−n,
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and let x =
∑∞

i=0 α(i) · 2−(i+1). Suppose that |f(x)| > 0, choose m so that
|f(x)| > 2−m+2, and let n = max{m,µ(m)} + 1. Then, since |x − lα(n)| ≤
2−n < 2−µ(m), we have

|f(lα(n))| ≥ |f(x)| − 2−m > 2−m+2 − 2−m > 2−m+1 > 2−n,

and hence α(n) = an and f(lan) < −2−m+1. If there exists u ∈ {0, 1}n, by
Lemma 11, such that an @ u v bn, then there exists c ∈ {0, 1}n such that
an @ c v u and |lan− lc| = |lan−ran| = 2−n < 2−µ(m), and hence an @ c v bn,
by Lemma 3 (7), and

−2−n < f(lc) ≤ f(lan) + 2−m < −2−m+1 + 2−m = −2−m < −2−n,

a contradiction. Therefore an = bn, and, since |lan − rbn| = 2−n < 2−µ(m), we
have

0 ≤ f(rbn) ≤ f(lan) + 2−m < −2−m+1 + 2−m = −2−m,

a contradiction. Thus f(x) = 0.

Remark 13. The fan theorem for detachable bar:

FAND: ∀α ∈ {0, 1}N∃nB(αn)→∃n∀α ∈ {0, 1}N∃k ≤ nB(αk),

where B is quantifier-free, is a classical contraposition of and constructively
weaker than WKL; see [14, 4.7] and [8]. Since FAND is classically equivalent
to WKL, we have RCA0 6` FAND, and therefore, since RCA0 ` IVT, we
have

EL + PEM + IVT 6` FAND,

where PEM denotes the principle of excluded middle. Since BE ` LLPO
and the weak continuity for numbers (WC-N) refutes LLPO (see [14, 4.6.3
and 4.6.4]), we have WC-N + BE ` ⊥, and therefore, since WC-N + FAND is
consistent (see [12, 3.3.11 Theorem (ii)]), we have

EL + WC-N + FAND 6` BE.

Although FAND is incompatible with Church’s thesis (CT) (see [14, 4.3.1
and 4.7.6]), since RCA0 ` IVT, we have REC |= IVT, that is, IVT is valid
in the model REC of RCA0 consisting of all recursive sets, and therefore,
since REC |= CT, we have

EL + PEM + IVT + CT 6` ⊥.
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Hahn-Banach theorem, Z. Math. Logik Grundlag. Math. 36 (1990), 237–
240.

[7] Hajime Ishihara, Constructive reverse mathematics: compactness prop-
erties, In: L. Crosilla and P. Schuster eds., From Sets and Types to
Analysis and Topology, Oxford Logic Guides 48, Oxford Univ. Press,
2005, 245–267.
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