ON SOME TOPICS AROUND THE WADGE RANK w,
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ABSTRACT. Kechris and Martin showed that the Wadge rank of the w-th level of
the decreasing difference hierarchy of coanalytic sets is ws under the axiom of deter-
minacy. In this article, we give an alternative proof of the Kechris-Martin theorem,
by understanding the w-th level of the decreasing difference hierarchy of coanalytic
sets as the (relative) hyperarithmetical processes with finite mind-changes. Based on
this viewpiont, we also examine the gap between the increasing and decreasing differ-
ence hierarchies of coanalytic sets by relating them to the ITi- and Xi-least number
principles, respectively. We also analyze Weihrauch degrees of related principles.

1. INTRODUCTION

1.1. Summary. In this article, we investigate topological complexity of sets in the dif-
ference hierarchy of coanalytic sets. For a finite sequence (A,,)m<n of sets, its difference
D,<n Ay, is defined as follows:

D Ay = Ap\ (Ap-1 \ (- \ (A1 Ao))).

m<n

One important aspect of the finite difference operator is that one can use this to
represent exactly all finite Boolean combinations, and another is that it has a natural
algorithmic interpretation, as we will see later. There are two ways of extending the
difference operator to certain transfinite sequences of sets. The first operator D is appli-
cable to increasing sequences of sets, and the second one D* is applicable to decreasing
sequences; see Section 1.2.

For a class I' of sets, let us define D¢(I') as the collection of all sets of the form
D, <¢ A, for some increasing sequence (4,),<¢ of I'-sets, and D{(I") as the the collection
of all sets of the form D . B, for some decreasing sequence (B,),<¢ of I'-sets. Then,
(De(T'))¢<wy is called the increasing difference hierarchy of I' sets, and (D{(T'))¢<w, is
called the decreasing difference hierarchy of I' sets. In this article, we give a detailed
analysis of these hierarchies for the case where I' is the collection of all coanalytic sets,
ie., ' =1I1.

The formal definition (see Section 1.2) of the transfinite levels of the difference hier-
archy is rather non-intuitive. In order to make the meaning of the definition clearer,
we describe a computational interpretation of the difference hierarchy, which is much
easier to understand. It is well-known that I} is a higher analog of computable enu-
merability (based on a certain kind of ordinal-step computability; see e.g. [13, 18]). As
Al is also known as hyperarithmetic, let us call a higher analog of computability by
hyp-computability (so, one may refer to Aj as hyp-finite and II] as hyp-c.e.) Then,
roughly speaking:

(1) The n-th level D,(II7) of the increasing difference hierarchy can be viewed as

hyp-computability with finite mind-changes along a countdown starting from 7.
1
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More precisely, A € D,(II}) if and only if there exists a hyp-computable learner
guessing whether n € A or not through the following trial-and-error process: At first
the ordinal n is displayed in the countdown indicator, and the learner guesses n ¢ A,
but during the process, the learner can change her mind and make another guess. Each
time the learner changes her mind, the learner has to choose some smaller ordinal than
the current value displayed in the countdown indicator. This newly chosen ordinal will
be the next value displayed in the indicator. As there is no infinite decreasing sequence
of ordinals, this guarantees that the learner changes her mind at most finitely often.

This is a higher analog of “computability with finite mind-changes along an ordinal
countdown,” which has been studied in various contexts, such as computational learning
theory, see e.g. [I1, 1]. This notion must not be confused with hyp-computability with
ordinal mind-changes, which corresponds to the decreasing difference hierarchy. Indeed:

(2) The 7-th level D;(II}) of the decreasing difference hierarchy can be thought of
as hyp-computability with at most n mind-changes.

To be more precise, as before, the hyp-computable learner guesses n ¢ A at first, but
during the process, the learner can change her mind and make another guess. However,
since this is an ordinal step computation, the learner has the opportunity to change
her mind ordinal many times. At a limit step, the learner may have changed her mind
unboundedly, in which case her guess is reset to state “n ¢ A” (as in infinite time Turing
computation [8]). During the computation, the number of mind-changes must be kept
below n. However, if it reaches 7, the learner has to terminate the process with the final
guess ‘n & A”.

In particular, the ambiguous class A(D?(I1})) of the w-th level of the decreasing
difference hierarchy corresponds to hyp-computability with finite mind-changes, where
A(T) = T'N—I. Hence, Diff(I}) € A(D}(II})), where Diff(T") stands for the whole
increasing difference hierarchy (J,_,, De(I'). Similarly, the whole decreasing difference
hierarchy Diff*(I1}) = U5 <, DE(T) can be interpreted as hyp-computability with a fived
countable ordinal mind-changes. A higher analog of the limit lemma (due to Monin;
see [0, Proposition 6.1]) also shows that hyp-computability with ordinal mind-changes
corresponds to the sets which are AY relative to sets in I} U ¥}. In summary, we get
the following inclusions:

Dy (W) = D (L) € -+  Diff(I1)) € A(DL(Iy)) & -+ & Diff*(II)) € AY(ILUX)),

where AY(II] UX1) is the pointclass consisting of all sets which are AY relative to sets
in II{ U X]; see Section 3.3.

So far, we have introduced two hierarchies of length w;; however, a question arises
here: Is it really the case that a hyp-computable procedure with finite mind-changes
is always along some countable ordinal (i.e., some ordinal below w;) countdown? Sur-
prisingly, the answer is no. On the one hand, Fournier [9] showed that the Wadge rank
of Dy, o(II7) is ¢y, (a) for a < wy, where ¢, is the w;-st Veblen function of base w.
Hence, the Wadge rank of Diff(II1) is ¢,,(w;). On the other hand, according to Steel
[20], Kechris and Martin showed that the Wadge rank of D (II}) is wy under the axiom
of determinacy.

Theorem 1.1 (Kechris-Martin (unpublished); see Steel [20]). Under the aziom of de-
terminacy AD, the order type of the Wadge degrees of A(D*(I1})) sets is wo.
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This reveals the huge gap between Diff(II) and D7 (II}). In other words, a hyp-
computable procedure with finite mind-changes is not necessarily along a countable
ordinal countdown.

Fact 1.2 (see also Fournier [10]). Under AD, the increasing difference hierarchy of
coanalytic sets is strictly included in the wth level of the decreasing difference hierarchy
of coanalytic sets, i.e., Diff(T1}) C A(Dx(I11)).

The proof for the lower bound wy < otypey, (A(D?(II1))) in Kechris-Martin’s the-

orem has been written down in Steel [20, Theorem 1.2] and Fournier [9, Proposition
5.10]. For the upper bound, only a very rough idea, no more than two lines long, is
commented on by Steel [20]. According to Steel [20], Martin’s proof of the inequality

otypey (A(D?(II1))) < wy is based on the analysis of the ordinal games associated
to Wadge games involving sets in A(D?(II1)). In this article, we give a somewhat
constructive alternative proof of Martin’s upper bound which does not use any such
techniques.

As a by-product of our constructive ideas, we can give a very clear solution to
Fournier’s problem, which asks if the gap between the classes Diff(IT1) and A(D} (I1}))
still exists even if we weaken the determinacy hypotheses (and may assume the axiom
of choice).

Question 1 (Fournier [10, Question 4.6]). Is the equality between Diff(I11) and A(D} (I1}))
consistent under weaker determinacy hypothesis?

To solve Question 1, we give a natural set which belongs to the w-th level of the

decreasing difference hierarchy, but not to the increasing difference hierarchy (see Section
3.2).

Theorem 1.3. Without any extra set-theoretic hypothesis, the increasing difference hi-
erarchy of coanalytic sets is strictly included in the w-th level of the decreasing difference
hierarchy of coanalytic sets, i.e., Diff(TI1}) C A(D?(I13)) holds, constructively.

Beyond the decreasing difference hierarchy, we also turn our attention to the in-
clusion Diff*(II{) € AY(II{ U X1). As mentioned above, the former corresponds to
hyp-computability with fixed countable mind-changes, and the latter corresponds to
hyp-computability with ordinal mind-changes by the relative higher limit lemma. Then,
it is natural to ask the following:

uestion 2. Does the equality between Diff*(I11) and AY(TI1 U X 1) hold?
23] =SICE R

Our answer to Question 2 is that there is a huge gap between Diff*(II}!) and A(IT1uU
31) (see Section 3.3), without assuming any extra set-theoretic hypothesis.

Theorem 1.4. Diff*(II}) € AYII] U X}).

1.2. Preliminaries. For the basics of (effective) descriptive set theory, we refer the
reader to Moschovakis [17]. For background and basic facts about Wadge degrees, see
[2]. For higher computability, see e.g. [13, 18, (].

We use ¢? to denote the eth partial computable function relative to an oracle x. The
least non-computable ordinal is denoted by wsk. Let WO C 29%% ~ 2 be the set of
well-orders on N. For each y € WO, we also write (N, <,) for the corresponding well-
ordered set. We use |y| to denote the order type of y, and for each a € N, define |a|, as
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the order type of {b € N:b <, a}. It is known that WO is a ITj-complete set. Indeed,
if P C w* is IIi, then there exists a computable function op such that, for any z € w*,
r € P if and only if op(x) € WO. We often use this reduction to approximate a II} set
and a II} function. For instance, if 1: C w — w is a partial II} function (i.e., the graph
of ¢ is I1}), then for any s < w§* the stage s approximation of ¥[s] can be defined as
follows: 1 (n)[s] J]= m if and only if the order type of op(n,m) is less than s, where P
is the graph of 1.

For sets A, B C w¥, we say that A is Wadge reducible to B (written A <w B) if there
exists a continuous function 0: w* — w*, we have A = 07'[B]. A set A is selfdual if
—-A <w A, where —A is the complement of A. For a pointclass I', we use —I' to denote
its dual pointclass, that is, ="' = {=A: A € I'}. By Wadge’s lemma [21, 2], the Wadge
degrees are semi-well-ordered under AD, where AD stands for the axiom of determinacy.
Then, to each set A C w” one can assign the order type |A|w of the collection of all
nonselfdual sets B <w A, which is called the Wadge rank of A.

2. DIFFERENCE HIERARCHY

2.1. Difference of functions. In this article, we deal with two difference operators
D and D*. However, the original definition of the increasing and decreasing difference
operators is asymmetrical and rather hard to understand. For the sake of clarity, we
consider the difference operators for functions instead of sets, which yield a symmetric
definition of the hierarchies.

Let X and Y be Polish spaces. A sequence (f¢)e<, of partial functions fe:C X — Y
is dom-increasing if (dom(f¢))e<y is increasing; and dom-decreasing if (dom(fe))e<, is
decreasing. Fix ¢ € Y U {1}, where the symbol 1 stands for “undefined”.

Definition 2.1. For a dom-increasing sequence (f¢)e<, of partial functions, we define
cDeey fe: € X = Y as follows:

fy(x), ify=min{f <n:xedom(fe)},
cD fg(iﬁ) _ W( ) . { ' ( 5)}

€<n c, if no such v exists.

For a dom-decreasing sequence (f¢)¢<, of partial functions, we define ci_, fe: C
X =Y as follows:

cD* fg(l’) =

€<n c, if no such v exists.

{h(x), if v = max{¢ < 7 : z € dom(fe)},

Note that if ¢ € Y then the resulting function is always total. The usual increasing
and difference hierarchies of IIj sets are obtained by putting ¢ = 0 and considering
constant functions f,: x — ¢ with II] domains where ¢ € {0,1}; see Section 2.3.

Hereafter, to simplify our argument, we assume Y C w. Let ¢D,(II}) be the class
of all functions of the form c¢De, f¢ for a dom-increasing sequence (fe)e<, of partial
IT} functions. We also define ¢Dj(II}) in a similar manner. To give a computability-
theoretic interpretation of Definition 2.4, we also consider the lightface version of these
classes. For n < w$k, let ¢D, (I1}) be the class of all functions of the form ¢Dg, fe for
a uniform I} dom-increasing sequence (f¢)e<, of partial II7 functions. We also define
¢D;(IT7) in a similar manner. Here, a sequence (fe)e<y is uniformly Iy if {(§,n,m) :
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fe(n) J= m} is II}, where a computable ordinal £ is always identified with its notation;
see also 2.2.

2.2. Approximation with mind-changes. To explain the intuitive meaning of two
difference hierarchies, we first introduce the notion of finite-change approximations.
For a detailed study of approximations with mind-changes in the context of higher
computability theory, we refer the reader to Bienvenu-Greenberg-Monin [6]. The results
in Sections 2.2 and 2.3 are only used for us to get an intuition about two difference
hierarchies, and will not be used in later sections. For this reason, readers without prior
knowledge of higher computability may skip Sections 2.2 and 2.3.

Fix a II} path O; through Kleene’s O whose order type is w$¥, and hereafter we
identify O; with w$*. For a function ¢: w x w{* — w, consider the set mc,(n) of all
stages at which the value of ¢ changes:

me,(n) = {s < Wi s (. 5) # pln,s + 1)}
We say that ¢ is a finite-change function if mc,(n) is a finite set for any n € w. A
function 1 : w X w§ — n is antitone if s < t implies 1 (n, s) > 1 (n,t) for any n € w. An
antitone function is a countdown for ¢: w x W — w if for any n € w and s € wsk,

p(n,s) # e(n, s +1) = ¢(n,s) > P(n, s +1).
Observe that if ¢ has a countdown, then ¢ is a finite-change function. If ¢ changes
at most finitely often, the limit value, lims; p(n, s), always exists, where

lirrtl o(n,s) =m <= ¢(n,s) =m eventually holds for s < ¢.
s<

Here, we say that A(s) eventually holds for s < ¢ if there exists v < ¢ such that
[u,t) C A holds, that is, for any v, u < v < t implies A(v). We say that ¢ is continuous
if p(n,t) = lim,; ©(n, s) for any limit ordinal ¢ < wSk.

Let n be a computable ordinal. A function ¢: w x w$k — 7 is hyp-computable if its
graph is I1}, where recall that w$* is identified with the I} set O; C w, and note that
n={s <w:s<n} CO;. Given c € wU{t}, we now show that c¢D,(II}) is equivalent
to hyp-computability with finite mind-changes along (1 + 1)-countdown with the initial
value c.

Proposition 2.2. A function f:C w — w belongs to ¢D,(I17) if and only if there exists
a hyp-computable continuous function p: w X W — w such that for any n € w,

e © has an (n + 1)-valued hyp-computable countdown,
e ©(n,0) =c, and f(n) = lim,,  p(n, ).

Proof. (=) Assume that f = D¢, f¢ for a uniform sequence (f¢)¢<, of partial II}
functions. Fix a Aj approximation (f¢[s]),c.e of fe, so that fe[s] is a Aj function
uniformly in s < wsk. Then, define 1 (n,s) = min{¢ < 7 : n € dom(fe[s])} if it exists;
otherwise put ¥ (n,s) = n. It is clear that ¢ is a hyp-computable function, since given
input (n,s) we only need to simulate at most n < w$* many hyp-algorithms for Al
functions (fe[s])e<y. Then we define p(n,s) = fym.s(n) if ¥(n,s) < n; otherwise put
©(n, s) = c. The function ¢ is also hyp-computable.

Clearly, 9 is an (n + 1)-valued antitone function, which is a countdown for . Let

7 < n be the least ordinal such that n € dom(f,) if it exists. Then f(n) = f,(n)
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by the definition of the difference operator . For such a «, there exists so < wsk

such that n € dom(f,[so]), and for such an sy, we have ¥(n,s) = v for any s > s
by minimality of 7. Hence, ¢(n,s) = f,(n) = f(n) for any s > sy. This means that
lim, e p(n, s) = f(n). If there is no such a v, we have ¢)(n, s) = 1 by the definition of
1, and therefore p(n, s) = ¢ for any s < ws*. Hence, lim, o p(n,8) = c = f(n).

(<) Let ¢ be a function in the assumption, and @ be a countdown for ¢. Given
£ <nandn € w, if we see 1(n,s) < & for some s < w{¥, then for the least such an s,
define fe(n) = ¢(n,s). If there is no such an s, then f¢(n) remains undefined. Clearly,
(fe)e<n is dom-increasing. Note that (fe)e<y is a I} sequence since ¢ and ¢ are both
hyp-computable. We claim that D¢, fe(n) = f(n), where f(n) = lim,  a p(n,s) by
our assumption. Let 7 < n be the least ordinal such that n € dom(f,) if it exists.
Then D¢ fe(n) = f,(n) by the definition of D. By the definition of f,, the condition
n € dom(f,) implies that 1 (n,s) < v for some s < w$k, and by minimality of v, there
is no s < w such that ¥(n,s) < 7. Let so < w be the least ordinal such that
Y(n,sp) = . Then we have f,(n) = ¢(n,sg) by our definition of f,. Since there
is no t > sp such that ¥ (n,t) < 1(n,sy) = 7, by the countdown condition, we have
¢(n,t) = ¢(n, so) for any t > so. This means that D¢, fe(n) = f,(n) = lim, e (n, 5).
If there is no such a v, fe(n) is undefined for all £ < n, and thus, ¥(n,s) = n for any
s < wsk. Since 9 is a countdown for ¢, we have p(n,s) = p(n,0) = c for any s < wk.
Therefore, D¢y, fe(n) = ¢ = lim, o ¢(n, 5). O

Next, let us move on to a function which may change infinitely often. For such
a function ¢, in general, lim,.; p(n,s) does not necessarily exist. Instead, for any
constant ¢ € w and ordinal 3 < w{¥, we define

. {m, if p(n,s) = m eventually holds for s < ¢,
clim p(n, 5) = | .

s<t c, if there exists no such m.

We say that ¢ is c-semicontinuous if p(n,t) = clims<; p(n, s) for any limit ordinal
t < w$k. Note that any function ¢ yields a semicontinuous function ¢ by defining
©(n,0) = ¢; p°(n,t+1) = ¢(n,t) for any t < ws; and p°(n,t) = clim,; o(n, s) for any
limit ordinal ¢ < w$*. This is, for example, exactly the same as the behavior of infinite
time Turing machines at limit steps.

Fix ¢ € wU {1}, and let 5 be a computable ordinal. We characterize ¢D}(Il}) as
hyp-computability with at most 1 mind-changes with the initial and reset value c.

Proposition 2.3. A function f: w — w belongs to CD;(H%) if and only if there exists
a hyp-computable c-semicontinuous function ¢: w X wk — w such that for any n € w,

e otype(mcy(n)) <,
e ©(n,0) =c, and f(n) = clim,_ a p(n,s).

Proof. (<) Let ¢ be a function in the assumption, and for each n € w, let (s§)e<rm) be
the increasing enumeration of the set mc,,(n) of all mind-change stages. Since there is an
order embedding of mc,(n) into 1 by our assumption, we have A(n) < 7. For any n € w
and § < A(n), define fe(n) = ¢(n,sg +1). If & > A(n), fe(n) is undefined. Clearly
(fe)e<n is dom-decreasing since we have dom(fe) = {n € w : £ < A(n)}. Note also



ON SOME TOPICS AROUND THE WADGE RANK w> 7

that (fe)e<y is a II§ sequence since ¢ is hyp-computable, and mc,, has a hyp-computable
increasing enumeration.

We claim that ¢Dg_, fe(n) = f(n), where f(n) = clim,_ a ¢(n, s) by our assumption.
If A(n) is a successor ordinal, then v := A(n) — 1 is the greatest ordinal such that n €
dom(f,). Then cDi_, fe(n) = f,(n) by definition. Then, s exists, and by maximality,

there is no ¢ > s such that p(n,t) # ¢(n,t + 1). Hence, we have

f(n) = ¢ lim_p(n,s) = p(n, 5% + 1) = f,(n) = D" fe(n).

s<wy E<n

If A(n) is a limit ordinal, there is no greatest ordinal v such that n € dom(f,), so
cDi_, fe(n) = c. Moreover, for s™ = supe_y,,) s¢, we have ¢(n, s") = clim,csn ¢(n, ) =
c since @(n,sg) # @(n,sg + 1) for any & < A(n). Therefore, cDg_, fe(n) = ¢ =
climgegn o(n,s) = f(n).

(=) Assume that f = cDi_, f¢ for a dom-decreasing sequence (f¢)e<y of partial I}
functions. Then, we have a hyp-approximation (fe[s]) e for f for each £ < n. Fix
n € w. Let s¢ be the least stage s such that f¢(n)[s| is defined if such an s exists.
Clearly, we may assume that ¢ < & implies s, < s¢ since (fe)e<, is dom-decreasing.
Moreover, we claim that if we choose a hyp-approximation for f; appropriately, we may
assume that s¢ is successor for each & < 7, and (s¢)e<, is strictly increasing. To see
this, put s(&,1) = (np+1) -t + &+ 1. Then, s: n x W — Wk is injective. Fix & < 7,
and first declare that f{(n)[0] is undefined. If s = s(¢,t) for some ordinal ¢ < w*, then
put fi(n)[s] = fe(n)[t]. Assume that s is not of the form s(§,t). If s is successor, say
s = s'+1, then put fi(n)[s] = fi(n)[s']. If s is limit, then put fi(n)[s] = lim,<, f{(n)[t].
It is easy to see that (f¢[s]),<.ex is a hyp-approximation for fe for each § < 7. Moreover,
since s(&,t) is successor, and s is injective, one can see that this approximation has the
desired property. Then, replace (fe[s]) cpoc With (f[s])cpex-

For a successor ordinal s < w$k let ¢(n,s) be the least ordinal £ < 7 such that
n & dom( fe[s]). If there is no such £, put ¥(n, s) = 7. Note that ¢(n,s) = min({{ < n:
s < sepU{n}), so & < (n,s) if and only if s¢ < s. If 9(n, s) is successor, say ¥(n, s) =
v+ 1, then define ¢(n, s) = f,(n). If ¢(n, s) is limit, then define ¢(n, s) = c. For a limit
ordinal s < wk, define p(n, s) = clim,—, p(n,s). Obviously, ¢ is c-semicontinuous. One
can also check that ¢ is hyp-computable.

We inductively define an order embedding h: mc,(n) — n which, given ¢ € mc,(n),
returns an ordinal less than ¢(n,t +1). Put s =t 4+ 1. If ¢(n, s) is successor, define
h(t) = ¢(n,s) — 1. If ¢(n,s) is limit, note that s* := sup{s¢ : £ < ¥(n,s)} < s since
(S¢)e<n is strictly increasing and s is successor. Note that if u is a successor ordinal
with s* < u < s then ¥(n,u) = ¥(n,s) by the definitions of s* and . Moreover,
t € mc,(n) implies that ¢(n,t) # ¢(n,s), so we must have s* = t. First suppose
that, for any £ < ¢(n, s) there exists ¢ such that £ < { < ¥(n,s) and fe(n) # fe(n).
In this case, as (S¢)e<y is a strictly increasing sequence of successor ordinals, we have
o(n,se — 1) = fe(n) # fe(n) = p(n,sc —1). This implies that ¢(n,t) = ¢(n,s*) =
climy g p(n,t) = c. Moreover, p(n,s) = ¢ since 1(n, s) is limit by our assumption.
This contradicts ¢ € mc,(n).

Thus, there exists & < 1(n,s) such that £ < ¢ < (n,s) implies fe(n) = f:(n), for
any (. Then, one might think that we can just define h(t) as £ + 1; however recall
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that if ¢(n,u) is a limit ordinal, then the value of ¢(n,u) is reset to c¢. Thus, the
value of ¢(n,u) may change even if (f¢(n))e<ccp(n,s) is constant. Of course, if the
value of f¢(n) is ¢, there is no problem. If f¢(n) = ¢, for any u with s < u < s,
we have p(n,u) = ¢(n,s¢) = fe(n). In this case, we put h(t) = £ + 1, which implies
h(t) < 1(n,s). Note that u < s and u € mc,(n) implies u < s¢, so u + 1 < S¢qq as
(Se)e<y 1s strictly increasing. This implies ¢(n,u+1) < £+ 1 by the definition of ¢). By
the induction hypothesis, h(u) < ¢(n,u+1) < &+ 1. Hence, u < t implies h(u) < h(t).

If fe(n) # ¢, then there are two cases: If 1(n,s) is a limit of limit ordinals, say
Y (n, s) = supye, A\x Where each A is limit, then we have p(n, sy, —1) = csince ¥ (n, sy, —
1) = A, which is limit. Then s* = sup{s,, : k € w}, and t = s* as seen before, so
we have p(n,t) = clim,<s p(n,u) = ¢. However, p(n,u) = ¢ as ¢(n,s) is limit by
our assumption. Again, ¢ € mc,(n) implies that p(n,t) # ¢(n,s), which is impossible.
Next, if 1)(n, s) is not a limit of limit ordinals (while t(n, s) is limit by our assumption),
then ¢ (n, s) is of the form A + w. Then choose k € w such that £ < A+ k, and define
h(t) = A+ k + 1, which implies A(t) < ¢ (n,s). Note that for any successor ordinal u
with syyr < u < s* = sup{sas : £ € w} we have ¢¥(n,u) = A + £ for some k < { < w.
In particular, ¥(n,u) is successor, so @(n,u) = fiye(n) = fe(n). Hence, for any u with
Sx+k < u < s, we have ¢(n,u) = fe(n). Therefore, by the same argument as in the case
fe(n) = ¢, one can see that u < t implies h(u) < h(t). Hence, h is an order embedding.

We claim that f(n) = clim, o ¢(n,s). Let us consider v = max{{ < n :n €
dom(fe)} if it exists. Then, f(n) = f,(n) since f = Di_, fe. Let s be the least stage
such that n € dom(fe[s]). By maximality of v, for any successor ordinal t > s we
have ¢(n,t) = v+ 1, and thus ¢(n,t) = f,(n) by definition. Therefore, we have
clim,a @(n,s) = fy(n) = f(n). If there is no such a 7, then f(n) = c¢. Put A =
min{¢ < n : n ¢ dom(fe)} Then, A\ must be a limit ordinal as v is undefined. Let
us consider (s¢)e<r. Note that & +— sg: A — ws* is a total II] function, and thus A}
since the domain is a computable ordinal. Hence, by Spector’s boundedness theorem

(see e.g. [18, Corollary 1.5.6]), we have s* := sup{s¢ : £ < A} < w$k. For any successor
ordinal s > s*, we have ¥(n,s) = A, and thus ¢(n,s) = ¢ since A is limit. Hence, we
have clim,  a ¢(n,s) = c = f(n). O

As a corollary, one can see that for any n € w, and 7 < wsk, we have
cD,(Il}) = eDi(I}) C --+ C eD,(I) C -+ C eD,(I1;) C -+ C DX ().
By relativizing Propositions 2.2 and 2.3, one can show the similar results for Baire

space w”.

2.3. Difference hierarchy for sets. Now let us return to the original unintuitive
definition of difference operators for sets. For a countable ordinal &, if (A,),<¢ is an
increasing sequence of sets, then its difference D, ¢ A, is defined as follows:

D A, = U (AW\UAV),

n<§ <
par(n)#par(§)

where par(§) = 1 if £ is odd; otherwise, par(§) = 0. If n is a natural number, one can
see that Dy,<p Ay = A \ (Ape1 \ (- \ (A1 \ Ap))). If (B,),<¢ is a decreasing sequence
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of sets, then its difference ]D:; <¢ By is defined as follows:

D* B, = U (By \ By+1)

n<§
n<¢
7 even

where if € is odd, put Be = ). If n is a natural number, one can see that D) . B, =
Bo\ (B \ (- -\ (Ba-1\ Bn))).

Let D,(II{) be the class of all sets of the form De., A¢ for an increasing sequence
(Ag)e<y of IIT sets. Similarly, let D, (II7) be the class of all sets of the form De.,, f¢ for
a uniform IT] increasing sequence (Ag)e<, of II7 sets. We also define the classes D;’;(IZI%)
and D} (II}) in a similar manner. To understand the relationship between the difference
operators for sets and function, it is useful to introduce the following hybrid version of
difference operators. Let X and Y be Polish spaces, and fix ¢ € Y U {1}.

Definition 2.4. For an increasing sequence (Ag¢)e<, of sets and a sequence (f¢)e<, of
partial functions, we define ¢Deop[fe/Ae]: € X — Y as follows:

fy(z), ify=min{{ <n:ze A},
c, if no such v exists.

Cg@n[fs/As](ﬂﬂ) = {

For a decreasing sequence (Bg)e<, of sets and sequence (fe)e<, of partial functions,
we define cD;_, [fe/Be]: € X — Y as follows:

. fr(x), ify=max{{ <n:z € B¢},
D e/ B(r) = P = o
£<n c, if no such v exists.

Let ¢D,(X9/I17) be the class of all sets of the form ¢De,[fe/A¢] for an increasing
sequence (A¢)ec, of II7 sets, and a sequence (f¢)e<, of continuous functions. Similarly,
let ¢D,(X9/117) be the class of all sets of the form ¢Deo,[fe/A¢] for a uniform II} in-
creasing sequence (Ag)e, of I} sets, and a computable sequence (f¢)¢<, of computable
functions. We also define the classes ¢Dj(X9/II}) and ¢D;(%9/I1}) in a similar man-
ner. Obviously, D, (X{/II1) C cD,(I1}) and ¢D;(X9/I1}) C cD;(II}). The lightface
versions also hold.

These hybrid difference operators seem relevant for studying o-continuous functions
(w-decomposable functions; see e.g. [12]). As in Propositions 2.2 and 2.3, the classes
D, (X9/11}) and ¢Dj (X9 /11}) are characterized as hyp-computability of an index v with
mind-changes. Such an index-guessing has been extensively studied in the theory of
inductive inference (identification in the limit; see [11]).

Observe that the characteristic function of a set in D, (II}) belongs to 0D, (X9/II1):
Given an increasing sequence (Ag)e<,, of sets, define fe: Ae — 2 by fe(x) = 1 if par(§) #
par(n); otherwise fe(x) = 0. Similarly, the characteristic function of a set in D} (II})
belongs to 0D} (XY/I11): Given a decreasing sequence (A¢)e<, of sets, define fe: Ae — 2
by fe(x) = 1 if par(§) = 0; otherwise fe(x) = 0.

As a corollary of Proposition 2.2, the class D, (II}) is characterized as hyp-computability
with finite mind-changes along (1 4 1)-countdown with the initial value 0.

Corollary 2.5. A set A C w belongs to D,(I13) if and only if there exists a hyp-
computable continuous finite-change function p: w X w< — 2 such that for any n € w,
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e ¢ has an (n + 1)-valued hyp-computable countdown,
e ©(n,0) =0, and A(n) = lim,_ a p(n, s).

Similarly, as a corollary of Proposition 2.3, the class D;(I}) is characterized as hyp-
computability with at most n mind-changes with the initial value 0.

Corollary 2.6. A set A C w belongs to D;(H%) if and only if there exists a hyp-
computable c-semicontinuous function p: w x W — w such that for any n € w,

e otype(mc,(n)) <1,
e ¢(n,0) =0, and A(n) = 0lim, o p(n, s).

It is easy to show the following analogues of Post’s theorem.

Proposition 2.7. A set A C w belongs to A(D,(I13)) if and only if there exists a
hyp-computable continuous finite-change function ¢: w x W — 2 such that for any

new,

e  has an n-valued hyp-computable countdown,
e and A(n) = lim,_ a p(n, s).

Proposition 2.8. A set A C w belongs to A(D;(I1})) if and only if there exists a
hyp-computable c-semicontinuous function ¢: w X W — w such that for any n € w,

e otype(mc,(n)) < n,
e and A(n) = clim_ a p(n, s).

In particular, A(D}(I1})) corresponds to hyp-computability with finite mind-changes.

3. SOLUTION TO FOURNIER’'S PROBLEM

3.1. Weihrauch lattice. Let us explain that the class ¢D,(X9/I17) is to some extent
a natural one in terms of the Weihrauch lattice. This perspective will also be used to
solve Fournier’s Question 1. The study of the Weihrauch lattice aims to measure the
computability theoretic difficulty of finding a choice function witnessing the truth of a
given V3-theorem (cf. [7]) as an analogue of reverse mathematics [19]. The notion of
Weihrauch degree is used as a tool to classify certain V3-statements by identifying each
V3-statement with a partial multivalued function. Informally speaking, a (possibly false)
statement S = Vo € X [Q(z) — JyP(x,y)] is transformed into a partial multivalued
function f: € X =% Y such that dom(f) = {z : Q(z)} and f(z) = {y : P(x,y)}.
Then, measuring the degree of difficulty of witnessing the truth of S is identified with
that of finding a choice function for f. Here, we consider choice problems for partial
multivalued functions rather than relations in order to distinguish the hardest instance
f(z) = 0 and the easiest instance x € X \ dom(f).

If one only considers subspaces of NV, one can use the following version of Weihrauch
reducibility: For partial multivalued functions f and g, we say that f is Weihrauch
reducible to g (written f < g) if there are partial computable functions h and k such
that the following holds: Given an instance x of f-problem (i.e., z € dom(f)), if we know
a solution y to the instance h(x) of g-problem (i.e., y € g(h(z))), then the algorithm k
tells us that k(z,y) is a solution to the instance x of f-problem (i.e., k(z,y) € f(z)).
In other words,

(Vo € dom(f))(Vy) [y € g(h(z)) = k(x,y) € f(z)].
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The functions h and k are often called an inner reduction and an outer reduction,
respectively. To discuss Weihrauch reducibility in other spaces, we introduce some
auxiliary concepts. A representation of a set X is a partial surjection dx:C w* — X.
If §x(p) = x, then p is called a dx-name of x (or simply, a name of x if Jx is clear from
the context). A pair of a set and its representation is called a represented space.

Example 3.1. Perhaps, one of the best known examples of represented spaces in de-
scriptive set theory is the space Bor of Borel sets in a Polish space, where consider the
representation Oger: C w* — Bor defined by 0gor(p) = A if and only if p is a Borel code
of A. In other words, a dge-name of A is exactly a Borel code of A.

Definition 3.2 (see also [7]). Let X, Y, Z and W be represented spaces with represen-
tations dy, dy, 0z and dy, respectively. For partial multivalued functions f:C X =3 Y
and g: C Z == Y, we say that f is Weihrauch reducible to g (written f < g) if there are
partial computable functions h and k such that the following holds: Given a dx-name
x of an instance x of f-problem, the algorithm A tells us a dz-name h(x) of an instance
x* of g-problem, and if we know a dy-name y of a solution y to the instance z* of
g-problem, then the algorithm k tells us that k(x,y) is a dy-name of a solution to the
instance x of f-problem. In other words,

(Vx € dom(f 0 0x))(Vy) [0w(y) € g0 0z(h(x)) = dy o k(x,y) € fodx(x)].

We now consider the following V3-principles related to the difference hierarchy:

o ['-least number principle: For any nonempty I' set A C w, there exists the least
element of A.
e ['-counting: For any finite I' set A C w, the value #A exists.

We consider the case where T is either IT{ or ¥}. For such a I', note that if X is a
Polish space then the collection I' (X) of all I' subsets of X has a total representation
or: w* — ['(X). For instance, if X = N and I' = I} then, for any e € w and p € w¥,
the concatenation e”p is a d-name of A C w if and only if A is the e-th TIj(p) set.
Hereafter, we also use P, to denote 5H}($)3 that is, P, is the II} set coded by .

Definition 3.3. We define the I'-least number principle I'-LNP: C T’ (w) — w as follows:

min A, if A#0,

I'-LNP(A) =
(4) {undeﬁned, if A=40.

We define the I'-counting principle #I': C I' (w) — w as follows:

AT(A) = {#A, if #£4 s finite,
undefined, otherwise.

Let (X,0x) be a represented space. We say that a partial function f: C X — w
is ¢D,,(T")-complete if f o dy:C w” — w belongs to c¢D,(T"), and any ¢D,,(T')-function
g:C w¥ — w is Weihrauch reducible to f. We define ¢D?(I")-completeness in a similar
manner. We now consider the case ¢ = 1 (indicating “undefined”).

Proposition 3.4. II}-LNP is 1D, (X% /I13)-complete.
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Proof. To see that IT}-LNP is in 1D, (2{/11}), define A,, = {z : (3k < n) k € P,} where
P, is the xth II} set, and consider the constant function ¢, : x + n. Then, (A,),<y is an
increasing sequence of II} sets. One can easily see that min P, = min{n € w:z € A, }
whenever P, is empty. Recall from Definition 2.4 that 1D, < [c,/An](2z) = min{n € w :
r € A,} if it exists. Therefore, 1D, ,[c,/A,] is a realizer for II}-LNP. To show the
completeness, assume that a sequence (A, f)n<w Of pairs of II! sets and continuous
functions is given. To see that 1D, [fn/Ax] is Weihrauch reducible to II}-LNP, let us
consider the inner reduction h which maps = to a 5H%—name of Q. ={necw:xeA,l},
and the outer reduction k& which maps (z,n) to f,(z). If m = min @, exists, then
TDnewlfn/An](x) = fiu(z) = k(z,minQ,). If no such m exists, 1Dy, [fn/As](z) is
undefined. This verifies the assertion. O

Proposition 3.5. X1-LNP is 1D (30/I1})-complete.

Proof. To see that 3{-LNP is in 1D (X9/11}), define B, = {z : (Vk < n) k € P,},
and consider ¢,: x — n. Then, (B,),<, is an decreasing sequence of II! sets. Put
Sy = w\ Py, and then one can see that min .S, = max{n < w : € B, } whenever S, # (.
Therefore, T D _ [c,/B,] is a realizer for ©}-LNP. To show the completeness, assume
that a sequence (B, f,) of pairs of I} sets and continuous functions is given. Let us
consider the inner reduction h which maps x to a dy1-name of U, = {n € w: z ¢ B,},
and the outer reduction & which maps (x,n + 1) to f,(z), where k(x,0) 7. Note that
minU, = m+ 1 if and only if {n < w: 2 € B,} = m as (By)n<y is decreasing. If
min U, > 0, say min U, = m + 1, then 1D _ [fn/Bn](x) = fi(z) = k(z, minU,). If no

such m exists, TID; _ [f./Bn|(z) is undefined. This verifies the assertion. O
Proposition 3.6. IT11-LNP =y #X1 and 21-LNP = #I1}.

Proof. Given A C w, define A* = {n € w: (Vm <n) m ¢ A}. Clearly, min A = #A*.
If Ais IIi then A* is X1, and moreover A — A*: II{(w) — X }(w) is computable, that
is, given a II}-code of A, one can effectively find a 3{-code of A*. Similarly, if A is 3}
then A* is 1T}, and moreover A — A*: 3¥{(w) — II}(w) is computable. Thus, the inner
reduction A — A* witnesses that TI}-LNP <y #X] and Z]-LNP < #II;.

For the converse direction, assume that a ¥ set A C w is given. If A is finite,
then this fact is witnessed at some stage < w$k since (In)(Vm > n) m & Als] is a A}
property, where A[s] is the stage s hyp-approximation of A. Here, recall that ¥} is a
higher analogue of “co-c.e.,” so (A[s])sew is a co-enumeration of A, that is, s < ¢ implies
Als| O A[t]. At each stage s, check if A[s] is finite. If so, enumerate #A[s| into B.
Then, one can easily see min B = #A. Moreover, given a Yi-code of A, one can easily
find a IT}-code of B. This argument can be uniformly relativizable. Thus, the inner
reduction A — B witnesses that #X] <w II{-LNP.

Assume that a T} set B C w is given. If we see that the nth element is enumerated
into B, i.e., #B[s| > n, then co-enumerate [0,n) from A. Then, min A = #B. Given
a IT}-code of B, one can easily find a i code of A. This argument can be uniformly
relativizable. The inner reduction B — A witnesses that #I11 <y X1-LNP. O

One can also consider the least number principle on a well-ordered set. For a countable
ordinal «, let <, be a well-order on N whose order type is a. Then, we use I'-LNP,, to
denote the least number principle with respect to <,; that is, I-LNP,(A) is defined as
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the <,-smallest element of A if it exists. As in the above argument, one can observe
that IT{-LNP,, and 3{-LNP,, correspond to 1D, (X9/II}) and 1D?(X9/I1}), respectively.
This idea leads to our solution to Question 1.

3.2. Fournier’s problem. The increasing difference hierarchy can be defined by the
combination of the parity function and the least number principle on countable well-
orders. Recall that the parity function par: Ord — 2 returns 1 if a given input is odd;
otherwise, returns 0. For a countable ordinal 7, let (A¢)e<, be an increasing sequence
of subsets of w*, and put A, = w*. Then, it is not hard to check the following:

E]1<])17 Ae = {x € w* :par(min{a <n:z € A.}) # par(n)}.

Similarly, if (Bg)e<y is an decreasing sequence of subsets of w*, then

(]D)* BE> (2) = {1 if par(max{{ <n:z € Be}) =0,

£<n 0 if max{{ <n:x € B¢} does not exist.

The I1}-least number principle on a well-ordered set (w, <) states that any nonempty
I} set P C w has the <-smallest element. We represent the IT}-least number principle
as a function as in Section 3.1. Here, recall that we have a total representation o1 of
II{(N). A orp-name is often called a I1{-code. Let us use P, to denote the subset of w
whose II}-code is z, i.e., P, = 0y (). For y € WO and A C N, we define min, A as the
<,-least element of A, i.e., a = min, A if and only if a € A and b € A for any b <, a.

To be more precise, we define TI}-LNPyo as the partial function which, given a IT}-
code z of P C N and a well-order y = (N, Sy), returns the <,-smallest element of P
whenever P is nonempty, that is,

dom(II{-LNPwo) = {(,y) : P, # 0 and y € WO},

IT{-LNPwo(z,y) = min, P,.
We consider totalizations of II1-LNPwo. For each ¢ € w, define ¢ * II{-LNPwo as
follows:
min, P, if P, # () and y € WO,

& otherwise.

(c* IT}-LNPwo)(z, y) = {

Note that, contrary to Section 3.1, we deal with a realizer (i.e., a function on codes)
rather than a function between represented spaces. This ensures that ¢ * IT{-LNPwo
is a total N-valued function on w®. However, to discuss the Wadge degree, it must be
restricted to a two-valued function. To simplify our argument, we assume that ¢ = 0.
Then define TII-LNPlZ as follows:

par,(min, P,) if P, # () and y € WO,

}-LNP; =
(11, wo) (Z: ) {0 otherwise.

Here, par,(n) is the parity of the <,-rank of n. Then, II}-LNPJ, is a two-valued
function on w®.

Proposition 3.7. For any countable ordinal n, every D,(II1) set is Wadge reducible
to TIL-LNPJZ.
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Proof. Assume that 7 is even. Fix a well-order <, on w whose order type is , and put
= (w,<,). Let A=De., A bea D,(II7) set. Then, theset @ = {(x,n) : x € Ap,, } is
IT}, where recall that |n|, is the <,-rank of n € N (see Section 1.2). Thus, one can find
a continuous function § which, given z, returns a IT{-code of @, = {n € N:z € A, }.

We claim that 2 — (A(z),7) is a Wadge reduction witnessing A <y II}-LNP}s,. Since
n is even, x € A if and only if min{¢ < n:x € A¢} is odd if and only if min,({n € N :
r € Ap,}) is odd if and only if TI-LNP{?o(6(z),7) = 1. This verify the claim. The
case where 7 is odd can be proved in almost the same way. U

As a consequence, cxIT{-LNPyq is not hyp-computable with finite mind-changes along
any countable ordinal (since the hierarchy (D, (II7)),<., does not collapse). On the
other hand, it is intuitively clear that c*II}-LNPyq is hyp-computable with finite mind-
changes. Indeed, it is hyp-computable with finite mind-changes along the uncountable
ordinal wy 4+ 1. To see this, let (x,y) be an input. Begin with the guess ¢ and ordinal
counter w; < wy + 1. If y is found to be WO, then change the ordinal counter to the
order type |y| of y, which is smaller than w;. When something is first enumerated into
P,, we guess the current <,-least element n € P, as a correct answer, and change the
ordinal counter to |n|, < |y|. If some number which is <,-smaller than the previous
guess is enumerated into P,, then change the guess as above. Continue this procedure.
This algorithm eventually guesses the correct output of ¢ * II1-LNPwo(z,y). Clearly,
this procedure is hyp-computable with finite mind-changes along w; + 1. Thus, we only
need to formalize this argument as a D} (II}) set.

Proposition 3.8. TI1-LNPl;, € D*(II}).

Proof. Define B, as the set of all (z,y) such that the parity (w.r.t. the <,-rank) of the
<,least element of P, changes at least n times under the cannonical hyp-computable
guessing process. In other words, B, is the set of all (x,y) satisfying the following
conditions:

y € WO A (3s1 <--- <sy,) [par,(min, Py[s1]) = 1
A (Vi < n) par, (min, Py[s.]) # par, (min, Py[si:1])]
The standard hyperarithmetical quantification argument shows that B, is I} since
we only need to search for z-computable ordinals s;. To be more precise, first recall
that the condition n € P, is equivalent to op(n,z) € WO. In this case, op(n, z) is an a-
computable well-order since op is computable. Similarly, the condition a = min, P,[s]
is equivalent to that |op(a,z)| < s and |op(b,x)| > s for any b <, a. This is a

Al condition on the II} assumption that s is an ordinal. Putting it all together, the
condition (x,y) € B,, can be written as follows:

y € WO A (Fey,...,en) [(Vi<n) gl €e WO A @2 | <--- < |F |
A (Fay, ... a,)[par,(a1) =1 A (Vi <n) par,(a;) # par,(a;s1)]
A (Vi < n) [lop(ai, 2)| < |gg | A (W) (b <y ai — lop(b,2)| = |¢ )]

This only involves number quantification (with some IT] sets), so this property is
[T}, Tt is clear that (B,)nen is decreasing. Given (z,), let n be the largest number
such that (v,y) € B, with witnesses s; < --- < s,. Then, we have par, (min, P,) =
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par, (min, P,[s,]); otherwise, we must find s, > s, such that par (min, P;[s,1]) #
par, (min, P,[s,]), which is impossible by the maximality of n. Put p; = par, (min, P,[s;]).
Then, since p; = 1 and p; # pi11, we have p; = par(i), and therefore, par,(min, P,) =
pn = par(n). Consequently, if n is the largest number such that (z,y) € B, then
par,(min, P,) = par(n). Moreover, if there is no such an n then y ¢ WO or P, is empty.
This shows that

if n =max{n: (z,y) € B,}
II!-LNP/? ~(p* B, _Jpar(n) i ! nt
=t wo(: ) n<w (@9) 0 if there is no such an n.

Hence, TI1-LNPly, € DX (II}). O

Consequently, H%—LNP\D\Q,O is contained in the w-th level of the decreasing difference
hierarchy, but not in the increasing difference hierarchy. This solves Fournier’s question:

Proof of Theorem 1.3. By Proposition 3.8, H%—LNP\D@O belongs to the w-th level of the
decreasing difference hierarchy. If IT}-LNP\>, € Diff(II}) would hold, then IT}-LNPly, €
D, (I17) for some 7 < wy. However, by Proposition 3.7, every D,1(II7) set is Wadge
reducible to IT{-LN Pwo A simple diagonalization argument shows the existence of a
D, ;1 (I1}) set which is not Wadge reducible to a D, (II1) set. This implies a contradic-
tion; hence, IT}-LNPly ¢ Diff(IT}). d

3.3. Beyond the decreasing difference hierarchy. The decreasing difference hier-
archy over II! sets occupies a very small part of the smallest o-algebra including all T}
sets. Let us turn our attention to the first level of the o-algebra.

Definition 3.9 (see e.g. Becker [5, Page 719]). For a pointclass I', let Z{(T") be the
smallest family including all I" sets and closed under countable union, finite intersection,

and continuous preimage. A set A isin A(T") if both A and its complement is contained
in 9(I).

Higher limit lemma [0, Proposition 6.1] states that AY(X} U II}) is equivalent to
hyp-computability with ordinal mind-changes. Note that this result does not imply
that AY(X] UTL}) is equivalent to Diff*(II}). This is because Diff*(II}) corresponds to
hyp-computability with ordinal mind-changes involving some countable ordinal which
bounds the number of mind-changes for all inputs, while in the case of AY(X1UTI), the
number of mind-changes can be different for each input, and it is not always possible to
give their upper bound by a single countable ordinal. Indeed, using a similar argument
as above, we show that Diff*(II{) is a proper subclass of A%(X] UII}{).

The X1-least number principle on a well-ordered set (w, <) states that any nonempty
Y1 set S C w has the <-smallest element. Let us use S, to denote the subset of w whose
3i-code is ¥, i.e., S; = w \ P,. One can define the totalization ¢ * X 1-LNPwo of the
partial w-valued function $1-LNPwo as above. Then define its two-valued restriction
L LLNPl, as follows:

par,(min,S,) if S, # 0 and y € WO,
0 otherwise.

(Z1-LNPyo ) (2,y) = {

Then, Z%—LNPL@O is a two-valued total function on w®.
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Proposition 3.10. For any countable ordinal 1, every D;‘;(l:[%) set is Wadge reducible
to L1-LNPlys.

Proof. Fix a well-order <, on w whose order type is n, and put 7 = (w,<,). Let
B = D¢,y Be be a Dj(I1}) set. Then, the set U = {(z,n) : & & By, } is 3. Thus, one
can find a continuous function # which, given z, returns a X{-code of U, = {n e N: z ¢
By, }- We claim that x — (6(z),7) is a Wadge reduction witnessing B < T LLNPY,.
If v = max{{ < n: 2 € B¢} exists, x € B if and only if 7 is even. In this case,
the <,-rank of min, U, is v + 1, which is odd, and therefore, Z]%-LNP\[,\Q,O(H(:E),ﬁ) = 1.
If no such a 7y exists, then z ¢ B, and the <,-rank of min, U, is a limit ordinal,
which is even, and therefore, £1-LNP[>,(6(z),7) = 0. In cither case, we have B(z) =
S1-LNPYo (6(2), 7). m

As a consequence, ¢ * X 1-LNPyq is not hyp-computable with fixed countable ordinal
mind-changes (since the hierarchy (D} (II1))y<., does not collapse). On the other hand,
it is intuitively clear that ¢ * 3{-LNPwg is hyp-computable with ordinal mind-changes.
To see this, let (z,y) be an input, and begin with the guess c. If y is found to be WO,
we guess the current <,-least element n € S, as a correct answer. If all numbers which
are <,-smaller than or equal to the previous guess is removed from S,, then change the
guess as above. Continue this procedure. This algorithm eventually guesses the correct
output of ¢ * 3{-LNPwo(x,y). Clearly, this procedure is hyp-computable with ordinal
mind-changes. Thus, we only need to formalize this argument as a A%(X 1 UTI1) set.

Proposition 3.11. S1-LNP)?, € A)SIUTIY).

Proof. We first consider the set of stages at which the least value of S, changes later.
In other words, define W as follows:

(z,y,8) e W <= y,s e WO ATt <rzxdy(t € WO
At >1s| A (ming,S.[s] < min,S.[t] V S.[t] =0)).

It is easy to see that W is II}. We claim that if S, # @ and y € WO then there
exists an ordinal s <p x @ y such that min,S,[s] = min,S,. To see this, assume that
a = min,S,. Then, for any b <, a there exists an z-computable ordinal s, € WO such
that b € P,[s;]. Note that A ={b € w:b <, a} is a A{(y) set. Then consider the map
b — ey, where e, is an z-computable index of such s;, which is a Af(z & y) function.
The usual Y1-bounding argument (i.e., the relativized Spector boundedness theorem)
ensures that s = sup{s, : b <, a} is an (z & y)-computable ordinal. This verifies the
claim.

This claim shows that, for any y € WO and ¢ < 2, the statement S, # () and
par,(min, S;) = 7 holds if and only if there exists an ordinal s <7 = @ y such that
(z,y,s) ¢ W and par, (min, S,[s]) = i. Therefore,

SLINPE o (2,y) =1 <=y WO A Is<rzDy
(s € WO A (z,y,5) ¢ W A par,(min,S,[s]) = 1),
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and similarly
TLINPR o (2,9) =0 <= y¢WO V Vs <pz @y (z,y,5) € W
VyeWO N Is<rxdy
(s € WO A (z,y,5) ¢ W A par,(min,S,[s]) = 0)].

The former formula is clearly 39(2{ UII1). The latter formula contains a universal
quantification, but the first line and the second line are separated, and the subformula
“Vs <rx®y (r,y,s) € W” is IIl. Hence, the latter formula is also £9(3{UTI}). Note
also that the first line in the latter formula is equivalent to the statement that either
y & WO or S, = ) holds. Consequently, we get Z1-LNPly, € AY(ZIUTI)). d

Consequently, Ej%—LNP\D\z,O is contained in the first A-level of the o-algebra containing

II] sets, but not in the decreasing difference hierarchy. That is, 3{-LN P\D%/o witnesses
the properness of the inclusion Diff*(II]) C AY(II} U X1). This solves Question 2:

Proof of Theorem 1.4. By Proposition 3.11, Z1-LNPlz, belongs to AY(X} U TI}). If
L LLNPY, € Diff*(IT!) would hold, then SI-LNPl, € D;(II}) for some 1 < w.
However, by Proposition 3.10, every Dj,,(II}) set is Wadge reducible to T LLNPY,.
A simple diagonalization argument shows the existence of a Dy +1(II7) set which is not
Wadge reducible to a D} (II1) set. This implies a contradiction; hence, X{-LN Ploo &

Diff* (TI1). O

4. THE w-TH LEVEL OF THE DECREASING DIFFERENCE HIERARCHY

4.1. wi-prewellordered coproduct. Next, we analyze the structure of A(D?(I11))
sets. We first show the following useful characterization of A(D?(II})) sets.

Proposition 4.1. A set P C w* belongs to A(D}(I11)) if and only if there exists an
infinite decreasing sequence (P,)ne. of IIT sets such that (), -, Pn =0 and P =D}, P,.

n<w - n

Proof. If P € A(D}(I11)), then there exist infinite decreasing sequences (A, )ne, and
(By)new of I} sets such that P = D} A, and =P = D} B,. Note that z € (), A,, implies
r ¢ D) Ay, sox € P, and similarly, x € (), B,, implies ¢ P. Hence, (), A, N[, Bn =
(. Then, define P, = A, N By41. Then, N, P, €, AN, Bn = 0. Moreover, it is
not hard to check that P =D P,.

For the converse direction, let (P,) be such that (), P, = § and P = D} P,. Then,
define A, = P,, Bp = w*, and B, = P,;;. It is easy to check that P = D) A, and
~P =D B,. 0

As we have already mentioned, the class A(D} (II})) corresponds to hyp-computability
with finite mind-changes. As usual, the process of mind-changes can be represented by
a well-founded tree. We describe the details below.

Under AD, recall that every nonselfdual subset of w* is Wadge equivalent to a subset
of 2¢; see e.g. [16, Lemma 1.5], and any selfdual set is Wadge equivalent to the join of
countably many nonselfdual set; see e.g. [2]. Therefore, one may assume that everything
is a subset of the o-compact space C = w x 2*. Recall that WO C 2“*“ ~ 2 igs the set
of all well-orders on w.
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Let (Py,)new be an infinite decreasing sequence of I sets in C such that (., P, = 0.
Since WO is ITi-complete, there exists a continuous function 6,, witnessing P,, <yy WO.
Then, define P,[c,a] = 6. Ha} N ({c} x 2¥) for any ¢ € w and a € WO. Clearly,
P,[c, a] is compact, and we have P, = .., P.[c, a]. Hereafter we omit ¢ to simplify the

notation.

c,x

Definition 4.2. Given such a sequence P = (P,),e,, one can define a system on a
labeled WO-branching well-founded tree Tp C WO<* as follows:

To each node o of Tp of length n, assign the sequence (P,[a])aewo. If the length n
is even, then the node is labeled by 0; otherwise, it is labeled by 1. The domain on o is
defined as Q, :=(),,.,, Pmlo(m)]. We add the a-th immediate successor of ¢ whenever

m<n = M

Q. N P,[a] is nonempty. In other words, define Tp = {0 € WO : Q, # 0}.

Note that if x € @, then o = (0y(x), 61 (x),...,0-1(x)) since v € Py[o(m)] if and
only if 8,,,(x) = a(m).

Observation 4.3. For P = (P,)n<w, if (yeo Po = 0 then Tp is well-founded.

Proof. If Tp has an infinite path p € WO*, then for any n, the compact set ,,,<,, Pm[p(m)]
is nonempty. Therefore, by compactness, the whole intersection (,,_, P.[p(n)] € N, Pn
is also nonempty, which contradicts our assumption on (P, )ney- O

Note also that Tp is Borel on WO=“. One can recover the information on D} P, in
the following manner.

Observation 4.4. Let P and (0,,) be as above. For x € w®, define o, as the mazimal
initial segment of (0¢(x))i<., which is contained in Tp. Then, x € D) _ P, if and only
if o, s labeled by 1.

Proof. Assume that o, = (0¢())s<. Then, x € Qy, € (,,<x Pn- Since this is maximal,

o, = 0, Or(x) is not contained in Tp. If §;(x) € WO then we have x € Q,, so o}, must

be contained in Tp. Hence, 0 (z) € WO, so x € Py. Therefore, max{{:z € P} = k—1.
Thus, x € D}, P, if and only if par(k —1) = 0, so par(k) = 1. This means that the length

of o, is odd. In this case, o, is labeled by 1. ]

In a more inductive manner, one can recover the information of D} P,. For o € Tp,
inductively define f,: w* — {0, 1} as follows: If a leaf p is labeled by 0, define f,: x — 0.
If a leaf p is labeled by 1, define f,: x — 1. If a node o is not a leaf, and is labeled by
7, define

so(x) if a € WO,
fo(@;l') =% I_I onz(x) = { ; ( ) if o ;WO

aeWO
Lemma 4.5. x € D}, P, <= [fi((0e(x))e<w) = 1, where () is the empty string.

Proof. Let 0, = (0m(x))m<n is a string as in Observation 4.4. Then n be the least
number such that 0, (z) € WO. For o = o, by the definition of f,, note that

£ (00, 04(2), 63(0), ) = Fo(bul), B (). ).
If o is labeled by ¢ then f,(0,(z),y) = ¢ for any y since 0,(x) ¢ WO. Hence, o is
labeled by i if and only if fy((6¢(x))e<w) = i. By Observation 4.4, o = o, is labeled by
1 if and only if z € D, P,. This verifies the claim. 4
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Thus, D, P, is constructed from constant functions and the WO-indexed coproduct.
To formalize this idea, given a pointclass I[', define A = I'N —I" as usual.

Definition 4.6. We say that (A, )aes is a uniform A collection if there are B,C € T’
such that for any « and z,

acl = [z€A, <= (a,2) € B <= (o,2) ¢ C|.

We say that a pointclass I is strictly closed under wy-prewellordered (wy-pwo) coprod-
uct if, for any uniform A collection (A, )aewo, we have

|_| Ay ={(,z) :a e WO Az € Ay} € A.

aeWO

If we identify a set A C w* with its characteristic function x4: w* — 2, then | |, Aq
and 0 |_|a A, are the same. One can also see that if I' is strictly closed under w;-pwo
coproduct, then we have 1| | .o Aa € A. To see this, first note that A € A implies
—-A € A. Similarly, if (A4)aewo is uniformly A, so is (= A4 )aewo. Thus,

Lx | | Ada:={(a,2):agWOVz €A} == | | (m4.) €A

aeWO aeWO

Observation 4.7. D*(I17) is strictly closed under wi-pwo coproduct.

Proof. The algorithmic reason for this can be explained as follows: Given an input
(a,x), we have av € WO at the first stage, so the learner guesses that (a, z) € | ], cwo 4o
is false. If the learner sees @ € WO at some stage, change her mind, and then since
A, € A(D}(II7)), the learner only needs to simulate a guessing process to answer
whether x € A, or not with finite mind-changes.

The set-theoretic reason for this is as follows: Let a pair (B, C') be a A-definition of
(Aa)aewo as in Definition 4.6. It is easy to see that | | .o As and its complement can
be written as m; '[WO] N B and 7, *[-WO] U C, respectively. Since D*(IT}) is closed
under finite union with X1 sets and finite intersection with II} sets, both sets belong
to D (IT}). .

A key basic fact on the closure property for A under AD is that, if A is closed under
something, then it is closed uniformly, as shown by Becker [1]. As a special case, we
have the following;:

Fact 4.8 (Becker [1], AD). If I is strictly closed under wi-pwo coproduct, then there

exists a continuous function which, given a uniform A-code of (As)acwo, Teturns a
A-code of | |,ewo A-

The Wedge reducibillity is too fine-grained to handle this level of pointclasses, and
for this reason we first deal with a coarser reducibility. For A, B C w*, we say that
A is Borel-Wadge reducible to B (written A <gw B) if there exists a Borel function
0: w¥ — w* such that, for any x € w*, x € A if and only if (z) € B. The Borel-Wadge
degrees are semi-well-ordered, and therefore, one can assign a Borel-Wadge rank | A|gw
to each set A C w“. A Borel-Wadge pointclass is a class of subsets of w* downward
closed under Borel-Wadge reducibility, i.e., A € I' and B <gw A implies B € I'. For
basic information on Borel-Wadge reducibility, see Andretta-Martin [3].

Now we give a key result connecting the class D*(II}) and the w;-pwo coproduct.
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Proposition 4.9 (AD). D} (I1}) is a minimal nonselfdual Borel-Wadge pointclass which
1s strictly closed under wi-pwo coproduct.

Proof. By Observation 4.7, D*(II}) is strictly closed under w;-pwo coproduct. Thus,
we only need to show the minimality. Assume that I' is strictly closed under w;-pwo
coproduct. It suffices to show that A(D?(I17)) C A. Asin Definition 4.2, any D’ _ P, €
D7 (II}) can be represented as a system on a labeled WO-branching tree Tp, where
P = (P,)n<w- Then, assign a function f,: w* — 2 to each node o € Tp as above, and
define Z, = f,'{1}. To be precise, if p is a leaf then Z, is either §) or w* depending on
the label of p, and if o € Tp is not a leaf then Z, = i x| | ,cyo Zoa, Where i is the label
of 0.

Claim. Z, € A for any o € Tp.

Proof. By Fact 4.8, there exists a continuous function which, given a uniform A-code of
(Aa)aewo, returns a A-code of i * | | oo Aa- We define a partial function h: WO<¥ —
w* such that h(o) is a A-code of Z,. The recursion theorem allows us to use a self-
referential definition such as “let k(o) be a A-code of the w;-pwo coproduct of the A-sets
(Zsa)acwo coded by (h(ca))aewo.”

To discuss the complexity of h, we give the details of the above argument: Given
o € WO<Y, first check whether o extends a leaf of Tp or not. This is a Borel prop-
erty, so it is doable by a IT}-measurable way, and the recursion theorem holds for TI},
cf. Moschovakis [17, Theorem TA.2]. If o extends a leaf p, then h(o) is a A-code of
either () or w*, depending on the length of the leaf p. If ¢ does not extend a leaf,
calculate a IT{-code of o +— h(oa). Then, by applying Lemma 4.8 to this code, we hope
to obtain the A-code ¢ of of the wi-pwo coproduct of the A sets coded by (h(ca))aewo,
and define h(o) = c¢. However, the problem is that since h is IIi-measurable, it is not
immediately guaranteed that (Z,4)aewo is a uniform A collection.

In order to overcome this difficulty, let us notice that Qo := (1|, Pn[o(n)] is compact
uniformly in 0 € WO (even in ¢ € (w¥)<¥). In other words, we have a continuous
function which, given o, returns a I1{-code of Q,. Hence, one can decide whether o
extends a leaf by a partial stable Baire-one function 1, where a function f is stable
Baire-one if there exists a partial continuous function f such that for any x € dom(f)
we have f(z) = f(n, z) for all but finitely many n. In particular, such an f is Baire-one,
and therefore, the domain of f can be extended to a Borel set. The recursion theorem for
partial stable Baire-one functions follows from the classical recursion theorem applied
to the partial continuous function f.

Now, the definition of h is given as follows: If ¢)(0) = 1 (i.e., o extends a leaf p),
then (o) is a code of Z,, which is either () or w*, depending on the length of the leaf
p. Otherwise, if cav € dom(h) and h(ca) is a A-code of Z,,, for a fixed I'-universal set
G, we have

T € Zyo < (moh(oa),z) ¢ G <= (mh(oa),x) € G.
Since [' is a Borel-Wadge pointclass, we have
G! = {(a, ) : ca € dom(h) & (m;h(oa),z) € G} €T.

Moreover, a ['-code ¢! of G' can be uniformly obtained from o and a code of h.
This ensures that, whenever h(oa) is defined for all & € WO, the collection (Zy4)acwo
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is uniformly A, whose code is given by (¢, cl). Then, let 79 be a partial continuous
function obtained by Fact 4.8 and 7; be its dual. In particular, 7;(c2, cl) is a code of
i % | Jyewo Zoa- Then, h(o) is defined as 7;(c, c}), where i is the label of 0. If h(ca)

o) o

is defined as a A-code for all &« € WO, then h(c) is also defined, and gives a code of
Zy = 1% | ewo Zoa-

The recursion theorem ensures that h is well-defined, and by transfinite recursion, we
conclude that h(o) is a A-code of Z, for any o € Tp. O

It remains to show that D) P, € A. By Lemma 4.5, given z, we have

x € ]D<>* P, <= (0o(x),0:(x),0:(x),...) € Zy.

Consequently, Dy, P, <w Z via (6o, 01,02,...), and thus D}, P, € A by the above
claim. Il

4.2. Lower bound. A lower bound of the Wadge rank of A(D7(II1)) can be given
by an argument explained in Steel [20, Theorem 1.2]; see also Fournier [9, Proposition
5.10).

Lemma 4.10 (AD). Assume that T is strictly closed under wy-pwo coproduct. Then,
the cofinality of the Wadge rank of T is at least ws.

Proof. Let ©: w; — A be any function. Consider the following Solovay game: Player I
chooses a large countable ordinal o and Player II chooses a A set whose Wadge rank is
greater than ¢ («). More precisely, Player I chooses o € w* and then Player II chooses
['-codes of sets D and E. Player II wins if, whenever a« ¢ WO, D = —F and the Wadge
rank of D is greater than or equal to ¥ (|a]).

Player I does not have a winning strategy 7. Otherwise, by ¥1-bounding, there is an
upper bound ¢ of ordinals in the image of 7. Then, (¢(®))a<¢ gives countably many A
sets, and by the closure property of A, one can easily obtain a A set whose Wadge rank
is greater than or equal to sup,.. 1 (a). Hence, Player IT wins.

By the axiom of determinacy AD, Player II has a winning strategy 7. Let G be a
universal I' set. Then, define

A={(o,z) ew” 12 € Gryr(a) }-

In other words, Ay = Gryr(a) = 7Grir(a)- Hence, (Ay)aewo is uniformly A. By
the closure property, | |,cwo Aa € A, whose Wadge rank is greater than or equal to
(¥())a<w,- Hence, ¥ cannot be a cofinal sequence. d

Under AD, it is known that cf (w,,) = ws whenever 2 < n < w; see [15, Corollary 28.8].

4.3. Upper bound. By Proposition 4.9, D*(IIi) is the minimal Wadge pointclass
which is strictly closed under w;-pwo coproduct. Therefore, for any A € A(D}(II})),
the pointclass I'y = {B C w® : B <y A} is not strictly closed under w;-pwo coproduct.
In this section, we analyze the Wadge rank of such a pointclass.

Let (Aa)aewo be a uniform A collection. Then, for any § < wi, put A<¢ == |, o¢ 4a;
where |a| is the order type of « if v is well-ordered. We say that T is strictly closed
under (< wy)-coproduct if, for any uniformly A collection (A, )aewo and any & < wq, we

have A.c € A.



22 T. KIHARA

Lemma 4.11. Assume that I is strictly closed under (< wy)-coproduct, but not strictly
closed under wi-pwo coproduct, witnessed by (An)aewo. Then, (Acg)ecw, is a cofinal
sequence in the Borel-Wadge degrees of A sets.

Proof. Put A = | | cwo Aa- Then, A & A by our assumption. If B € A, by Wadge’s
lemma, we have B <y A via some 6 and B < —A via some 7. Let |z|s be the rank
of the 1st corrdinate of #(x). In other words, |z|p = « if and only if §(z) € A,. Define
||, in the similar manner. Then, since (WWO) x w* C = A and A € WO x w*, we have

|z|, =00 = € B = |z|p < 0.

Thus, there exists no x such that both “|z|p = 0c0” and “|x|, = c0” hold. Moreover,
these properties are 31. Hence, the properties “|z|p = 00” and “|z|, = c0” determine a
disjoint pair of X! sets. Therefore, by Lusin’s separation theorem, there exists a Borel
set C' such that

|z|, =00 = 2 € (C = |z]p < 0.

In particular, z € C implies |z]yp < oo and ¢ C implies |z, < co. Since C'is Borel,
and # and 7 are continuous, by Xi-boundedness, there exists £ < w; such that, for any
r € w’, v € C implies |z|p < & (ie., O(z) € A¢), and z ¢ C implies |z|, < £ (i.e.,
n(z) € A<¢). Now, we define a Borel reduction v as follows:

o) — (0,0(x)) ifzxeC,
(@) {(1,n(x)) ifzdC.

Then, we claim that B is Borel-Wadge reducible to A.¢ LI " A, via 7, where A, L
—Ace = ({0} x Ace) U ({1} x 2A~¢). Since 6 witnesses B <w A, x € B if and only if
6(z) € A. Hence, if x € C then z € B if and only if y(z) = (0,6(z)) € {0} x A, and
the latter is equivalent to y(z) € {0} x A¢ as we must have |z|y < £. Similarly, since 7
witnesses B <y —A, x € B if and only if n(x) ¢ A. Hence, if z & C then z € B if and
only if v(z) = (1,n(z)) € {1} x =A, and the latter is equivalent to y(z) € {1} x =A¢
as we must have |z|, < & This verifies the claim. O

By combining Lemma 4.11 and Proposition 4.9, the desired upper bound can be
almost obtained: The Borel-Wadge rank of D*(II}) is at most ws.

4.4. Inside Borel-Wadge degrees. Unfortunately, Lemma 4.11 only gives a result
on Borel-Wadge degrees. To prove Theorem 1.1, this result has to be transformed into
a result for Wadge degrees.

Proposition 4.12 (AD). The Wadge rank of A is wsy if and only if its Borel-Wadge
rank is wq.

Proof. Clearly, the Wadge rank of A is greater than or equal to its Borel-Wadge rank.
For the other direction, we claim that if the Wadge rank of A has the cofinality at least
wy, so is its Borel-Wadge rank. This claim implies that if the Wadge rank of A is ws
then its Borel-Wadge rank has to be at least wo, so it concludes the proof.

Assume that the cofinality of the Borel-Wadge rank of A is at most w;. Then, there
exists a sequence (Ag)ecw, such that A <gw A for any { < wy, and for any B <gw A
we have B <gw A¢ for some & < w;. Now, fix a total X2, -measurable function
Aot w¥ — w* such that for any X%-measurable function §: w* — w* we have § = \,on
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for some continuous function 7: w* — w“. One can easily construct such a \,; for
instance, if G C w” x w? is a universal X? set, then define \,(2)(n) = m if m is the
least number such that (z,n,m) € G; if such an m does not exist, put \,(z)(n) = 0.
Note that B <gw C' if and only if there exists a < w; such that B = 07'[C] for some
39 measurable function §. The last condition is equivalent to that B = n~[A\;![C]] for
some continuous function 7. This means that B <w A;![C]. Hence, B <gw C if and
only if B <y A;'[C] for some o < w.

Put Ag = A\ '[A¢], and consider the sequence (Ag)¢a<w,. Note that we have Ag <w
A; otherwise, =A < A? since <y is semi-well-ordered under AD, and this implies
—A <gw A¢ by the above characterization of Borel-Wadge reducibility. Then, however,
we have =A <gw A¢ <gw A, which is impossible (as =A <gw A implies =A =gw A).
Hence, A¢ <w A for any §, o < w;. Indeed, Ay <w A since A £pw A¢. As (Ag)ecw, 18
cofinal below the Borel-Wadge degree of A, for any B <y A there is £ < w; such that
B <gw Ag¢, which means that B <w Ag for some o < w;. Hence, (A?)ﬁ,a<w1 is cofinal
below the Wadge degree of A. Consequently, the cofinality of the Wadge rank of A is
at most w;. |

For a set A C w*, recall that the pointclass I'4 is defined as {B C w* : B <y A}.

Lemma 4.13 (AD). If the Wadge rank of A is wsy, then T4 is strictly closed under
(< wq)-coproduct.

Proof. By Proposition 4.12, if |A|lw = ws then |A|gw = ws. In particular, |Algw has an
uncountable cofinality. Therefore, by Andretta-Martin [3, Corollary 17 (a)], A is Borel
non-self-dual, i.e., [A]gw # ["A]gw. Then, by [3, Proposition 20|, we have [Alw = [A]sw.

Let (Aa)aewo be a uniformly A, collection, where Ay = I'y N =['4. Then, there
exist B,C € I'4 such that, whenever &« € WO, x € A, iff (o, x) € B iff (a,x) € C. We
claim that, for any § < w;, A-¢ is Borel-Wadge reducible to B and —C'. To see this,
first note that WO, = {a € WO : |a| < £} is Borel for any £ < w;. Then, consider the
reduction 0 defined by (o, ) = (o, x) if * € WO¢, and (o, ) = 2z if v ¢ WO,
where z is an arbitrary element of w* which is not contained in B. Then, 65 witnesses
that A.¢ <gw B. Similarly, one can construct a reduction 6o witnessing A., <gw —C.
Since B, C SW A, we have A<£ SBW A and A<§ SBW -A.

As discussed above, we have [Alw = [Alsw # ["A]sw = [7AJw. Combining all of
these, we obtain that A <w A and A <w —A. Therefore, A, € A4. This means
that I"4 is strictly closed under (< wy)-coproduct. d

Indeed, the above proof shows that if the Borel Wadge rank of A has an uncountable
cofinality, then I 4 is strictly closed under (< wy)-coproduct. Now, we give an alternative
proof of the Kechris-Martin theorem saying that the Wadge rank of D} (II1}) is ws.

Proof of Theorem 1.1. By Proposition 4.9, D*(II}) is strictly closed under w;-pwo co-
product. Then, by Lemma 4.10, the order type of the Wadge degrees of A(D?(II7))
sets is at least wy. If it is greater than ws, then there exists a A(D}(II1)) set A C w®
whose Wadge rank is exactly ws. By Proposition 4.12, the Borel Wadge rank of A is
also wo. The minimality of D} (II7) ensured by Proposition 4.9 implies that "4 is not
strictly closed under w;-pwo coproduct. Moreover, by Lemma 4.13, "4 is strictly closed
under (< wj)-coproduct. Therefore, by Lemma 4.11, there exists a cofinal sequence
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A relative to IT}: hyp-computable with ordinal mind-changes

)

1L LNPwo: hyp-computable with w; + 1 mind-changes

)

Diff}, (I'H ): hyp-computable with w; mind-changes

T

Diff’ (I1] ), X }-LNP: hyp-computable with finite mind-changes | w2

)

I11-LNPwo: hyp-computable with finite mind-changes along w; + 1 countdown

T

Diff,,, (I11 ): hyp-computable with finite mind-changes along w; countdown | @, (w1)

T

Diff ,(I11), II1{-LNP: hyp-computable with finite mind-changes along w countdown
Pun (W)

FicUre 1. Key principles

(Acg)ecw, of length at most wy in the Borel-Wadge degrees of Ay sets. This implies
that the cofinality of |A|gw is at most w;. However, since |A|lgw = wo, it contradicts
the fact that cf(ws) = ws. O

5. BEYOND wy

5.1. Ij-process with infinite mind-changes. The relationships among key point-
classes mentioned in Sections 3 and 4 are summarized as in Figure 1.

We now move to the (w + 1)-st level, (D}, (II})), of the decreasing difference hier-
archy. That is, we consider the following w + 1 sequence (P,)a<y+1 of II7 sets:

PhROPL D22 ﬂPnQPw-
n<w

In this section, we deal with the following question:
Question 3. Calculate the Wadge rank of A(Dy, (I17)).

To tackle this problem, we first show, perhaps somewhat surprisingly, that any infinite
level of the decreasing difference hierarchy is strictly closed under w;-pwo coproduct even
if it is a successor level.

Proposition 5.1. For any infinite ordinal n > w, D;‘](I:I%) s strictly closed under
w1 -pwo coproduct.

Proof. Abbreviate A(D;(I11)) as A. Let (Aq)acwo be a uniform A collection. Then,

there exists a sequence (Pe, P)ey of II} sets such that A, = Df_, Ps[a] = - D, Pg[a}
for any a € WO, where Sl is the ath section of S. Then put Q¢ = 7, '[WO] N P%.
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Moreover, put Qy = w*, Q; = 7, [WO], and Q2+5 = 75 {[WO] N Pg. Note that £ < n
implies 2 + £ < 7 since 7 is infinite. Moreover, Q¢ and Q)¢ are II}.
We claim that [ |,cwo Aa = Di, Qe = ~Di_, Q¢. Given (a,x), if & € WO then one

can easily see that max{{ : (o, z) € Q¢} = max{¢ : z € Pg[a}} if it exists. Therefore,

(,z) € Dg, Q¢ if and only if x € Dy, Pg[a] = A,. Moreover, if a ¢ WO then
(o, 2) € Qo, and therefore (o, ) ¢ Di_, Q¢. Hence, | | o Aa = Di.,, Q¢. Again, given

&<n

(o, ), if « € WO and {{ : = € Pg[a]} = (), then x ¢ D;_, Pg[a} = —A,, and moreover
(o, ) € Q1 \ Qo; hence (a,7) & D, Qc. If @ € WO and {¢ : = € pg[a]} # (0 then

£<n
one can easily see that max{¢ : (a,7) € Q¢} = 2+ max{¢ : z € Pg[a]} if it exists. In
particular, both values have the same parity, and therefore, (a, r) € Df_, Q£ if and only

if v € D Pg[a] = —A,. Ifa ¢ WO then (o, z) € Qo\Q1, and therefore (o, z) € D, Qe.

&<n

Hence, | | cwo 4a = " Di, Qg. d

As a consequence of Proposition 5.1, combined with Lemma 4.10, one can see that
the Wadge rank of A(Dj,, (IT1)) is at least wy - (1+7) for ecach 7 < w;. As a special case,
we conclude that the Wadge rank of A(D?,,(II7)) is at least wy - 2. In fact, however,
one can observe that the Wadge rank of A(D}_,(II})) is not such a small value. For
instance, one can obtain the following lower bound:

Theorem 5.2. The Wadge rank of A(D} . (I17)) is greater than ws - wy.

We will now prepare a proof of this theorem. Let (P,)s<w+1 be a decreasing w + 1
sequence of TI1 sets. If moreover we have a IT} set P, such that Mpew Pn = P U P,
and P, N P, = (), we call the sequence (P,, pw)ngw type A(w + 1). A decreasing w + 1
sequence (P,)a<w+1 defines a set P as in the usual difference hierarchy; that is, at the
first w levels, a hyp-computable learner proceeds as follows:

0—-1—20—...

If the guess changes infinitely many often, then the guess becomes 0. After that, we
will be able to change the guess to 1:

0—>1—0—--(wchanges)---0—1

A type A(w + 1) sequence (P,, P,)acwi1 defines a set P in a similar manner, where
if the guess changes infinitely many often (which means x € (,_, P,) then we soon

decide the final value is 0 or 1 (which corresponds to either x € B, or = € P,):
0—1—0—--(w changes)---i

Lemma 5.3. A set A is defined by a type A(w + 1) sequence if and only if A €
A(D 4, (7).

Proof. The forward direction is trivial. For the backward direction, we have two se-
quences P, Q) of type w + 1 guessing A. Given z, the first guessing process P returns 0
when the guess changes infinitely often but does not declare the wth mind-change, i.e.,
z € (), P, but x ¢ P,. Another guessing process () returns 1 when z € (), @, but
x & Q.. We construct a guessing sequence D of type A(w + 1).
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At stage a, if the number of changes of P is smaller than @, then the process D
emulates P; otherwise, D emulates () whenever at least one of the numbers is finite. In
other words, compare np = sup{n < w: z € P,[a]} and ng = sup{n < w: z € Q,[a]}.
If ¢ = min{np,ng} is finite and even, returns 1. If ¢ = min{np,ng} is finite and odd,
returns 0. If ¢ is infinite, we have z € ), P,[o] and = € [, Q»]a]. In this case, either
P or @ declare the wth mind-change; otherwise, P’s final guess is “A(x) = 0” but @’s
final guess is “A(x) = 1”7, which is impossible. Thus, wait for seeing stage 5 > « such
that either P or @ declare the wth mind-change, i.e., x € P,[5] or x € Q,[f]. In the
former case, D’s final guess is “A(x) = 17, i.e., z € D,. In the latter case, D’s final
guess is “A(z) =07, i.e., x € D,,. It is not hard to check that D gives a process of type
A(w + 1) guessing A. O

5.2. w-change matrix. In order to prove Theorem 5.2, it suffices to show that there
are at least w; many classes between D} (II{) and D}, (II}). First, we observe that
there are at least w many such classes. A key observation is that, as we have seen above,
A(Dy,(I17)) corresponds to hyp-computability with at most w mind-changes. What
we will show is that there is a finer hierarchy within hyp-computability with at most w
mind-changes. The following definition is hard to understand, so we give an intuitive
explanation after the definition.

Definition 5.4. A double sequence A = (A7) (jn)eexw Of II sets is called an w-change
¢ x w matriz if the following holds (w.r.t. some approximation of (A7) n)erxw):

(1) For any j < ¢, (A7),e, is a decreasing sequence.
(2) For any j < k < £ and o € WO, we have A%[a] N AJ C Al[a] for any n € w.

Given ¢, we define a new difference operator ¢y, , which takes an w-change ¢ X w
matrix A and an / X w matrix a = (a’)) as input. To define this operator, we first
introduce auxiliary parameters vg(z) for each k < ¢. Then, we first put vo(x) = ¢. For
each k < ¢, define vi4, as follows:

ak, if m=max{n <w:ze A"}
Uk () = . .
vg(z)  if no such m exists.

Then we define ¢}, [a/A] as follows:

Oxw ve(x)  if no such k exists.

¢ D'[a/Al(z) = {"Uk($) ifk:min{j <[l:x¢€ ﬂn<wAgL}’

Let ¢Dj, (II}) be the class of all sets of the form ¢y, [a/A] for some w-change ¢ X w

matrix A = (A7) of II{ sets and ¢ X w matrix a = (a) with a/ € {0,1}. If ¢ = 0 and
al = par(n) we simply write D), (II7).

Let us explain an intuitive meaning of this definition. Each row of an ¢ x w matrix
acts in the same way as the class v D} (II]) for some v. In other words, for each k < ¢,
a hyp-computable process Uy is assigned to the k-th row, which may change the guess
at most w times, and when the w-th change occurs, the final guess is set to vg. The first
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guess is also set to vy.
A D A D AE D ... (w changes) - - -
v — af — a¥ — af — - (w changes) - - - v

However, this value v;, can vary if k& > 0. A candidate a*~! for the value v is
determined by a guessing process Wy _; assigned to the row just one above it. However,
U, may also change the guess w times, so the final value v;_; depends on a guessing
process V.5 assigned to the (k—1)-th row if £k —1 > 0. Continue this argument, and if
this process arrives the O-th row, and if the w-th change of W occurs, then the final guess
is set to c. Note, however, that although this explanation seems to proceed in order
from the bottom row, the condition (2) in Definition 5.4 guarantees that the process
starts from the top row; that is, if we start the guessing process in some row, then
the guessing processes in the rows above it has already terminated. This assumption
ensures that the guesses in each line can be integrated into a single hyp-computable
process with at most w mind-changes:

Lemma 5.5. For any { < w, D}, (II}) C A(D:,(I17)).

Proof. Let P € D), (II7) be given. Then, P is of the form c¢Dj, [a/A] for some w-
change ¢ X w matrix A = (A7) and ¢ x w matrix a = (a?), where ¢ = 0 and o/ =
par(n). To simplify our argument, one can assume that for any x and « there are at
most one (j,n) such that z is enumerated into A7 at stage «; that is, x € Al[a] but
x & AJ[B]. For instance, one can assume that we only enumerate something into A7 at
stage w?-a+w-j+n for some o. We construct a guessing sequence D of type Alw+1).

Our guessing algorithm to compute P(x) can be described as follows:

e At each stage «, starting from the top row, one can calculate the current value
vj(x)]a] of v; for each j < ¢. Indeed, it is easy to check that (o, k, z) — vi(x)[c]
is Borel.

e As the first case, if mind-changes occur infinitely often at some row k, then the
guess is set to vg(x)[a], and the computation terminates. The condition (2) in
Definition 5.4 guarantees that at most one row is active at any stage «, and
thus, there is at most one row ;7 at which mind-changes occur infinitely often at
a. Moreover, the condition (2) inductively ensures that the value of v;(x) will
not change after stage « for any j < k, so the guess vi(x)[a] matches the output
value P(x).

e As the second case, if the mind-changes has not yet occurred infinitely many
times at any row, then the algorithm currently guesses that the output value of
P(z) is ve(x)[a]. Since v,(z) only changes when mind-changes occur at some row,
and there are only a finite number of rows, the number of times of mind-changes
has is kept finite in this case.

To be more precise, first check if there exists k such that « € (N, _ A¥ [a]. If true,
this is the first case. If « is the least such stage, and k is the least such row, then our
algorithm returns v;(x). By the condition (2) in Definition 5.4, since z € AE[cy] we have
Alla] = AJ for any j < n. This means that vy (z)[a] = vi(z), and k is the least row
such that = € (), A¥. Hence ¢, [a/A](z) = vg(z) by definition. If there exists no
k such that x €

new AF [a], then this is the second case. If this is true for any stage a,
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then = € (), AF for any k < ¢, so the output of our guessing algorithm converges to
ve(x). In this case, by the definition of D', we also have ¢ _ [a/A](x) = v,(x). Hence,
our algorithm correctly guess the value of P(z) = cDy_ [a/A](x).

As mentioned above, the mind-changes in the guess of our algorithm due to the second
case occur only a finite number of times, and once the first case is reached, the guess
never changes. Also, in the first case, the guess is determined immediately. Hence, this
is a A(w + 1) guessing process. This completes the proof. O

To ensure that it is a reasonable pointclass, it should be closed under continuous
substitution.

Lemma 5.6. D), (II}]) is closed under continuous substitution, that is, B <w A €
Dy, (1Y) implies B € D}, ,(IT}).

Proof. More generally, let f € ¢Dj, (II]) be given, and assume that g = f o6 for some
continuous function . It suffices to show that g € ¢D),, (II7). Then, f is of the form
cDf,,la/A] for some w-change ¢ x w matrix A = (A7) and ¢ x w matrix a = (a/,). Then,
put BJ = 071[AJ], and then B![a] = 671[A?[a]] yields an approximation of BJ for any
j < ¢and n € w. The property that A is an w-change matrix is inherited by B = (BY).
Moreover one can see that g = ¢y, [a/B] since 071, ., AL] = N, 0 [AL], and

0L A%,] = 01 [AX]\ 0 1[AE, ], Therefore, g € e (II1). O

Lemma 5.7. For any { < w, D,

o (ILT) is strictly closed under wi-pwo coproduct.

Proof. Put A = A(Dj, (I11)). Let a uniform A-collection (P,),ewo be given. Then it
is obtained by a collection of w-change matrices A, = (A%7). Put B, = | |, oo A% for
each n < w. Then, B/ is II] for each n < w since the w;-pwo-coproduct of a uniform
collection of II} sets is II{. Moreover, B = (BY),, is an w-change matrix: For the
condition (2), if j < k and (a,z) € BF[S] N BJ then z € AY*[5] N A% C A%9[3)], so
(z,0) € B[]

To see the equality D}, , B = | |,cwo Pa» let (o, z) be given. Clearly, if o ¢ WO then
(o, z) ¢ B}, and therefore, z ¢ D, B. If a € WO, then (a,z) € BJ if and only if
€ AX. Therefore, (a, ) € Dy, B if and only if z € D}, , A, = P,. This completes
the proof. O

Lemma 5.8. The hierarchy (D), (I11))i., does not collapse; that is, for any k < £ <
w, Dy, (II})\ Dy, (II7) is nonempty.

Proof. We first construct a universal D), (II}) set G. The existence of a universal II]
set clearly yields a total representation of all £ X w matrices of II1 sets which are not
necessarily w-change matrices. Given € € w*, let (A7) be the ¢ x w matrix coded by
e. Then, define an ¢ x w matrix (BJ) as follows: Given a < wy, if z ¢ Bf[a] for any
k > j then we declare that = € Bi[a] if and only if z € AJ[a]. If z € Bf|a] for some
k > j, declare that € Bl[a] if and only if z € BJ[f3] for some 8 < . That is, once
a mind-change occurs in a lower row k > j, no more changes in the row j will occur.
Then, put B = {J,.,, Bila], and then it is easy to see that B, = (B},)njjerxw is an
w-change matrix of II] sets. Clearly, for any w-change ¢ x w matrix A there exists ¢
such that B. = A. We define G as the set of all (¢, z) such that x € D, , B.. Note that
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G € Dy, (I1}) since G is of the form D}, C for the w-change matrix C' = (CY) defined
by CJ = {(¢,x) : * € B57}, where B. = (BZ7).

Next, it is easy to see that the dual class of D), (II}), ie., =D, (II}), is also
included in A<D/z+1)xw(ﬂl)>’ by shifting the components of each row by one, and
by adding the topmost row which always guesses 1. Hence, it remains to show that
=D, (II1) is not included in D), (II}). The rest of the proof is an easy diagonalization
argument. Let us consider @ = {z : (z,z) ¢ G}. We claim that @) does not belong
to Dyxw(II1). Otherwise, there exists x such that Q = D), B,. However, z € Q if
and only if (z,2) € G if and only if x & D, B,, a contradiction. This concludes the
proof. O

Lemmas 5.5, 5.6, 5.7, and 5.8, combined with Lemma 4.10, imply that the Wadge
rank of A(D +1(Hl)) is at least wy - w. It is straightforward to consider the transfinite
version of this argument. That is, for a limit ordinal A, one may define D}, _(II1)
as the class of all sets which can be written as countable disjoint unions of sets from

D! MXW(H%), n < w, where (A[n)),<, a fundamental sequence for A\. For a successor
ordinal £ = ¢ + 1, in order to define Dg, (II), one can simply add one more row to
Do (1),

As a consequence, inside A(D}_(II})), there are at least w; many classes strictly
closed under wi-pwo coproduct. Hence, by Lemma 4.10, we conclude that the Wadge
rank of A(Dy,,,(II1)) is at least wy-w;. However, by using wi-pwo coproduct to combine
these wy many classes, we can create a new class inside A(D},,(II{)). This concludes
the proof of Theorem 5.2. By repeating this process, it seems possible to construct wy +
wi many, w? many, or wy many different classes strictly closed under w;-pwo coproduct.
If this is the case, by Lemma 4.10, one can show that the Wadge rank of A(D}_,(I1}))
is at least w3.

Question 4. Under AD, is the Wadge rank of A(D},,(I1})) at least w3 ?
One may also ask a similar question:

Question 5. Under AD, is the Wadge rank of A(D? ., (I11)) at least wyt'?

We now move to the next level of (D, (II})),<.. It is reasonable to ask the following

w+n
question.
Question 6. Under AD, calculate the Wadge rank of A(Dy,,(I17)).

However, we have the impression that answering this question is incredibly diffi-
cult. This is because we feel that there is also a tremendously vast hierarchy between
(D% (1)) new and A(D, (II7)). The first step is given by “IIj-processes with [for-
ward w]+[backward w] mind-changes”. More precisely, we consider the following w + w

sequence (Py)a<wiw of I sets:
PR2P2P2 2 (P2 JPon 2 2 P2 2 Py 2 P
n<w n<w

We call such a sequence type w™ + w* . If moreover we have (. _ P, = U, -, Putns
we call it type A(w™ + w*). A type w™ 4+ w® sequence (P,)a<wiw deﬁnes a set P as
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in the usual difference hierarchy; that is, at the first w levels, a I} guess proceeds as
follows:
0—1—0—--(wchanges)---0

If the guess changes infinitely many often, then the guess becomes 0. After that, we
will have a fresh mind-change counter w controlling our next finite mind-changes.

Question 7. Under AD, calculate the Wadge rank of Alw™ + w*).

In general, one can consider “IT}-processes with [forward w]+[backward «] mind-
changes” for any o < wy. Then we get the corresponding pointclass A(w™ + o), and
we still have A(w™+a) C A(D?, (IT11)) for any a < w;. Based on these observations,

w+tw
we conjecture that the answer to Question 6 is at least ws?, but we do not have a method

to calculate this at this time.
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