
ON SOME TOPICS AROUND THE WADGE RANK ω2

TAKAYUKI KIHARA

Abstract. Kechris and Martin showed that the Wadge rank of the ω-th level of
the decreasing difference hierarchy of coanalytic sets is ω2 under the axiom of deter-
minacy. In this article, we give an alternative proof of the Kechris-Martin theorem,
by understanding the ω-th level of the decreasing difference hierarchy of coanalytic
sets as the (relative) hyperarithmetical processes with finite mind-changes. Based on
this viewpiont, we also examine the gap between the increasing and decreasing differ-
ence hierarchies of coanalytic sets by relating them to the Π1

1- and Σ1
1-least number

principles, respectively. We also analyze Weihrauch degrees of related principles.

1. Introduction

1.1. Summary. In this article, we investigate topological complexity of sets in the dif-
ference hierarchy of coanalytic sets. For a finite sequence (Am)m<n of sets, its difference
Dm≤nAm is defined as follows:

D
m≤n

Am = An \ (An−1 \ (· · · \ (A1 \ A0))).

One important aspect of the finite difference operator is that one can use this to
represent exactly all finite Boolean combinations, and another is that it has a natural
algorithmic interpretation, as we will see later. There are two ways of extending the
difference operator to certain transfinite sequences of sets. The first operator D is appli-
cable to increasing sequences of sets, and the second one D∗ is applicable to decreasing
sequences; see Section 1.2.

For a class Γ of sets, let us define Dξ(Γ) as the collection of all sets of the form
Dη<ξ Aη for some increasing sequence (Aη)η<ξ of Γ-sets, and D

∗
ξ(Γ) as the the collection

of all sets of the form D∗η<ξ Bη for some decreasing sequence (Bη)η<ξ of Γ-sets. Then,
(Dξ(Γ))ξ<ω1 is called the increasing difference hierarchy of Γ sets, and (D∗ξ(Γ))ξ<ω1 is
called the decreasing difference hierarchy of Γ sets. In this article, we give a detailed
analysis of these hierarchies for the case where Γ is the collection of all coanalytic sets,
i.e., Γ = Π˜ 1

1.
The formal definition (see Section 1.2) of the transfinite levels of the difference hier-

archy is rather non-intuitive. In order to make the meaning of the definition clearer,
we describe a computational interpretation of the difference hierarchy, which is much
easier to understand. It is well-known that Π1

1 is a higher analog of computable enu-
merability (based on a certain kind of ordinal-step computability; see e.g. [13, 18]). As
∆1

1 is also known as hyperarithmetic, let us call a higher analog of computability by
hyp-computability (so, one may refer to ∆1

1 as hyp-finite and Π1
1 as hyp-c.e.) Then,

roughly speaking:

(1) The η-th level Dη(Π
1
1) of the increasing difference hierarchy can be viewed as

hyp-computability with finite mind-changes along a countdown starting from η.
1
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More precisely, A ∈ Dη(Π
1
1) if and only if there exists a hyp-computable learner

guessing whether n ∈ A or not through the following trial-and-error process: At first
the ordinal η is displayed in the countdown indicator, and the learner guesses n ̸∈ A,
but during the process, the learner can change her mind and make another guess. Each
time the learner changes her mind, the learner has to choose some smaller ordinal than
the current value displayed in the countdown indicator. This newly chosen ordinal will
be the next value displayed in the indicator. As there is no infinite decreasing sequence
of ordinals, this guarantees that the learner changes her mind at most finitely often.

This is a higher analog of “computability with finite mind-changes along an ordinal
countdown,” which has been studied in various contexts, such as computational learning
theory, see e.g. [11, 1]. This notion must not be confused with hyp-computability with
ordinal mind-changes, which corresponds to the decreasing difference hierarchy. Indeed:

(2) The η-th level D∗η(Π
1
1) of the decreasing difference hierarchy can be thought of

as hyp-computability with at most η mind-changes.

To be more precise, as before, the hyp-computable learner guesses n ̸∈ A at first, but
during the process, the learner can change her mind and make another guess. However,
since this is an ordinal step computation, the learner has the opportunity to change
her mind ordinal many times. At a limit step, the learner may have changed her mind
unboundedly, in which case her guess is reset to state “n ̸∈ A” (as in infinite time Turing
computation [8]). During the computation, the number of mind-changes must be kept
below η. However, if it reaches η, the learner has to terminate the process with the final
guess “n ̸∈ A”.

In particular, the ambiguous class ∆(D∗ω(Π
1
1)) of the ω-th level of the decreasing

difference hierarchy corresponds to hyp-computability with finite mind-changes, where
∆(Γ) = Γ ∩ ¬Γ. Hence, Diff(Π˜ 1

1) ⊆ ∆(D∗ω(Π˜ 1
1)), where Diff(Γ) stands for the whole

increasing difference hierarchy
∪
ξ<ω1

Dξ(Γ). Similarly, the whole decreasing difference

hierarchy Diff∗(Π1
1) =

∪
ξ<ω1

D∗ξ(Γ) can be interpreted as hyp-computability with a fixed

countable ordinal mind-changes. A higher analog of the limit lemma (due to Monin;
see [6, Proposition 6.1]) also shows that hyp-computability with ordinal mind-changes
corresponds to the sets which are ∆0

1 relative to sets in Π1
1 ∪ Σ1

1. In summary, we get
the following inclusions:

Dn(Π˜ 1
1) = D∗n(Π˜ 1

1) ⊊ · · · ⊊ Diff(Π˜ 1
1) ⊆ ∆(D∗ω(Π˜ 1

1)) ⊊ · · · ⊊ Diff∗(Π˜ 1
1) ⊆ ∆˜ 0

1(Π˜ 1
1∪Σ˜ 1

1),

where ∆˜ 0
1(Π˜ 1

1 ∪Σ˜ 1
1) is the pointclass consisting of all sets which are ∆˜ 0

1 relative to sets
in Π˜ 1

1 ∪Σ˜ 1
1; see Section 3.3.

So far, we have introduced two hierarchies of length ω1; however, a question arises
here: Is it really the case that a hyp-computable procedure with finite mind-changes
is always along some countable ordinal (i.e., some ordinal below ω1) countdown? Sur-
prisingly, the answer is no. On the one hand, Fournier [9] showed that the Wadge rank
of D1+α(Π˜ 1

1) is ϕω1(α) for α < ω1, where ϕω1 is the ω1-st Veblen function of base ω1.
Hence, the Wadge rank of Diff(Π˜ 1

1) is ϕω1(ω1). On the other hand, according to Steel
[20], Kechris and Martin showed that the Wadge rank of D∗ω(Π˜ 1

1) is ω2 under the axiom
of determinacy.

Theorem 1.1 (Kechris-Martin (unpublished); see Steel [20]). Under the axiom of de-
terminacy AD, the order type of the Wadge degrees of ∆(D∗ω(Π˜ 1

1)) sets is ω2.
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This reveals the huge gap between Diff(Π˜ 1
1) and D∗ω(Π˜ 1

1). In other words, a hyp-
computable procedure with finite mind-changes is not necessarily along a countable
ordinal countdown.

Fact 1.2 (see also Fournier [10]). Under AD, the increasing difference hierarchy of
coanalytic sets is strictly included in the ωth level of the decreasing difference hierarchy
of coanalytic sets, i.e., Diff(Π˜ 1

1) ⊊ ∆(D∗ω(Π˜ 1
1)).

The proof for the lower bound ω2 ≤ otypeW (∆(D∗ω(Π˜ 1
1))) in Kechris-Martin’s the-

orem has been written down in Steel [20, Theorem 1.2] and Fournier [9, Proposition
5.10]. For the upper bound, only a very rough idea, no more than two lines long, is
commented on by Steel [20]. According to Steel [20], Martin’s proof of the inequality
otypeW (∆(D∗ω(Π˜ 1

1))) ≤ ω2 is based on the analysis of the ordinal games associated
to Wadge games involving sets in ∆(D∗ω(Π˜ 1

1)). In this article, we give a somewhat
constructive alternative proof of Martin’s upper bound which does not use any such
techniques.

As a by-product of our constructive ideas, we can give a very clear solution to
Fournier’s problem, which asks if the gap between the classes Diff(Π˜ 1

1) and ∆(D∗ω(Π˜ 1
1))

still exists even if we weaken the determinacy hypotheses (and may assume the axiom
of choice).

Question 1 (Fournier [10, Question 4.6]). Is the equality between Diff(Π˜ 1
1) and ∆(D∗ω(Π˜ 1

1))
consistent under weaker determinacy hypothesis?

To solve Question 1, we give a natural set which belongs to the ω-th level of the
decreasing difference hierarchy, but not to the increasing difference hierarchy (see Section
3.2).

Theorem 1.3. Without any extra set-theoretic hypothesis, the increasing difference hi-
erarchy of coanalytic sets is strictly included in the ω-th level of the decreasing difference
hierarchy of coanalytic sets, i.e., Diff(Π˜ 1

1) ⊊ ∆(D∗ω(Π˜ 1
1)) holds, constructively.

Beyond the decreasing difference hierarchy, we also turn our attention to the in-
clusion Diff∗(Π˜ 1

1) ⊆ ∆˜ 0
1(Π˜ 1

1 ∪ Σ˜ 1
1). As mentioned above, the former corresponds to

hyp-computability with fixed countable mind-changes, and the latter corresponds to
hyp-computability with ordinal mind-changes by the relative higher limit lemma. Then,
it is natural to ask the following:

Question 2. Does the equality between Diff∗(Π˜ 1
1) and ∆˜ 0

1(Π˜ 1
1 ∪Σ˜ 1

1) hold?

Our answer to Question 2 is that there is a huge gap between Diff∗(Π˜ 1
1) and ∆˜ 0

1(Π˜ 1
1∪

Σ˜ 1
1) (see Section 3.3), without assuming any extra set-theoretic hypothesis.

Theorem 1.4. Diff∗(Π˜ 1
1) ⊊ ∆˜ 0

1(Π˜ 1
1 ∪Σ˜ 1

1).

1.2. Preliminaries. For the basics of (effective) descriptive set theory, we refer the
reader to Moschovakis [17]. For background and basic facts about Wadge degrees, see
[2]. For higher computability, see e.g. [13, 18, 6].

We use φxe to denote the eth partial computable function relative to an oracle x. The
least non-computable ordinal is denoted by ωck

1 . Let WO ⊆ 2ω×ω ≃ 2ω be the set of
well-orders on N. For each y ∈ WO, we also write (N,≤y) for the corresponding well-
ordered set. We use |y| to denote the order type of y, and for each a ∈ N, define |a|y as
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the order type of {b ∈ N : b <y a}. It is known that WO is a Π˜ 1
1-complete set. Indeed,

if P ⊆ ωω is Π1
1, then there exists a computable function oP such that, for any x ∈ ωω,

x ∈ P if and only if oP (x) ∈ WO. We often use this reduction to approximate a Π1
1 set

and a Π1
1 function. For instance, if ψ :⊆ ω → ω is a partial Π1

1 function (i.e., the graph
of ψ is Π1

1), then for any s < ωck
1 the stage s approximation of ψ[s] can be defined as

follows: ψ(n)[s] ↓= m if and only if the order type of oP (n,m) is less than s, where P
is the graph of ψ.

For sets A,B ⊆ ωω, we say that A is Wadge reducible to B (written A ≤W B) if there
exists a continuous function θ : ωω → ωω, we have A = θ−1[B]. A set A is selfdual if
¬A ≤W A, where ¬A is the complement of A. For a pointclass Γ, we use ¬Γ to denote
its dual pointclass, that is, ¬Γ = {¬A : A ∈ Γ}. By Wadge’s lemma [21, 2], the Wadge
degrees are semi-well-ordered under AD, where AD stands for the axiom of determinacy.
Then, to each set A ⊆ ωω one can assign the order type |A|W of the collection of all
nonselfdual sets B ≤W A, which is called the Wadge rank of A.

2. Difference hierarchy

2.1. Difference of functions. In this article, we deal with two difference operators
D and D∗. However, the original definition of the increasing and decreasing difference
operators is asymmetrical and rather hard to understand. For the sake of clarity, we
consider the difference operators for functions instead of sets, which yield a symmetric
definition of the hierarchies.

Let X and Y be Polish spaces. A sequence (fξ)ξ<η of partial functions fξ :⊆ X → Y
is dom-increasing if (dom(fξ))ξ<η is increasing; and dom-decreasing if (dom(fξ))ξ<η is
decreasing. Fix c ∈ Y ∪ {↑}, where the symbol ↑ stands for “undefined”.

Definition 2.1. For a dom-increasing sequence (fξ)ξ<η of partial functions, we define
cDξ<η fξ :⊆ X → Y as follows:

c D
ξ<η

fξ(x) =

{
fγ(x), if γ = min{ξ < η : x ∈ dom(fξ)},
c, if no such γ exists.

For a dom-decreasing sequence (fξ)ξ<η of partial functions, we define cD∗ξ<η fξ : ⊆
X → Y as follows:

c D∗
ξ<η

fξ(x) =

{
fγ(x), if γ = max{ξ < η : x ∈ dom(fξ)},
c, if no such γ exists.

Note that if c ∈ Y then the resulting function is always total. The usual increasing
and difference hierarchies of Π˜ 1

1 sets are obtained by putting c = 0 and considering
constant functions fη : x 7→ i with Π˜ 1

1 domains where i ∈ {0, 1}; see Section 2.3.
Hereafter, to simplify our argument, we assume Y ⊆ ω. Let cDη(Π˜ 1

1) be the class
of all functions of the form cDξ<η fξ for a dom-increasing sequence (fξ)ξ<η of partial
Π1

1˜ functions. We also define cD∗η(Π˜ 1
1) in a similar manner. To give a computability-

theoretic interpretation of Definition 2.4, we also consider the lightface version of these
classes. For η < ωck

1 , let cDη(Π
1
1) be the class of all functions of the form cDξ<η fξ for

a uniform Π1
1 dom-increasing sequence (fξ)ξ<η of partial Π1

1 functions. We also define
cD∗η(Π

1
1) in a similar manner. Here, a sequence (fξ)ξ<η is uniformly Π1

1 if {(ξ, n,m) :
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fξ(n) ↓= m} is Π1
1, where a computable ordinal ξ is always identified with its notation;

see also 2.2.

2.2. Approximation with mind-changes. To explain the intuitive meaning of two
difference hierarchies, we first introduce the notion of finite-change approximations.
For a detailed study of approximations with mind-changes in the context of higher
computability theory, we refer the reader to Bienvenu-Greenberg-Monin [6]. The results
in Sections 2.2 and 2.3 are only used for us to get an intuition about two difference
hierarchies, and will not be used in later sections. For this reason, readers without prior
knowledge of higher computability may skip Sections 2.2 and 2.3.

Fix a Π1
1 path O1 through Kleene’s O whose order type is ωck

1 , and hereafter we
identify O1 with ωck

1 . For a function φ : ω × ωck
1 → ω, consider the set mcφ(n) of all

stages at which the value of φ changes:

mcφ(n) = {s < ωck
1 : φ(n, s) ̸= φ(n, s+ 1)}

We say that φ is a finite-change function if mcφ(n) is a finite set for any n ∈ ω. A
function ψ : ω×ωck

1 → η is antitone if s ≤ t implies ψ(n, s) ≥ ψ(n, t) for any n ∈ ω. An
antitone function is a countdown for φ : ω × ωck

1 → ω if for any n ∈ ω and s ∈ ωck
1 ,

φ(n, s) ̸= φ(n, s+ 1) =⇒ ψ(n, s) > ψ(n, s+ 1).

Observe that if φ has a countdown, then φ is a finite-change function. If φ changes
at most finitely often, the limit value, lims<t φ(n, s), always exists, where

lim
s<t

φ(n, s) = m ⇐⇒ φ(n, s) = m eventually holds for s < t.

Here, we say that A(s) eventually holds for s < t if there exists u < t such that
[u, t) ⊆ A holds, that is, for any v, u ≤ v < t implies A(v). We say that φ is continuous
if φ(n, t) = lims<t φ(n, s) for any limit ordinal t < ωck

1 .
Let η be a computable ordinal. A function φ : ω × ωck

1 → η is hyp-computable if its
graph is Π1

1, where recall that ωck
1 is identified with the Π1

1 set O1 ⊆ ω, and note that
η = {s < ωck

1 : s < η} ⊆ O1. Given c ∈ ω∪{↑}, we now show that cDη(Π
1
1) is equivalent

to hyp-computability with finite mind-changes along (η+1)-countdown with the initial
value c.

Proposition 2.2. A function f :⊆ ω → ω belongs to cDη(Π
1
1) if and only if there exists

a hyp-computable continuous function φ : ω × ωck
1 → ω such that for any n ∈ ω,

• φ has an (η + 1)-valued hyp-computable countdown,
• φ(n, 0) = c, and f(n) = lims<ωck

1
φ(n, s).

Proof. (⇒) Assume that f = Dξ<η fξ for a uniform sequence (fξ)ξ<η of partial Π1
1

functions. Fix a ∆1
1 approximation (fξ[s])s<ωck

1
of fξ, so that fξ[s] is a ∆1

1 function

uniformly in s < ωck
1 . Then, define ψ(n, s) = min{ξ < η : n ∈ dom(fξ[s])} if it exists;

otherwise put ψ(n, s) = η. It is clear that ψ is a hyp-computable function, since given
input (n, s) we only need to simulate at most η < ωck

1 many hyp-algorithms for ∆1
1

functions (fξ[s])ξ<η. Then we define φ(n, s) = fψ(n,s)(n) if ψ(n, s) < η; otherwise put
φ(n, s) = c. The function φ is also hyp-computable.

Clearly, ψ is an (η + 1)-valued antitone function, which is a countdown for φ. Let
γ < η be the least ordinal such that n ∈ dom(fγ) if it exists. Then f(n) = fγ(n)
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by the definition of the difference operator D. For such a γ, there exists s0 < ωck
1

such that n ∈ dom(fγ[s0]), and for such an s0, we have ψ(n, s) = γ for any s ≥ s0
by minimality of γ. Hence, φ(n, s) = fγ(n) = f(n) for any s ≥ s0. This means that
lims<ωck

1
φ(n, s) = f(n). If there is no such a γ, we have ψ(n, s) = η by the definition of

ψ, and therefore φ(n, s) = c for any s < ωck
1 . Hence, lims<ωck

1
φ(n, s) = c = f(n).

(⇐) Let φ be a function in the assumption, and ψ be a countdown for φ. Given
ξ < η and n ∈ ω, if we see ψ(n, s) ≤ ξ for some s < ωck

1 , then for the least such an s,
define fξ(n) = φ(n, s). If there is no such an s, then fξ(n) remains undefined. Clearly,
(fξ)ξ<η is dom-increasing. Note that (fξ)ξ<η is a Π1

1 sequence since φ and ψ are both
hyp-computable. We claim that Dξ<η fξ(n) = f(n), where f(n) = lims<ωck

1
φ(n, s) by

our assumption. Let γ < η be the least ordinal such that n ∈ dom(fγ) if it exists.
Then Dξ<η fξ(n) = fγ(n) by the definition of D. By the definition of fγ, the condition
n ∈ dom(fγ) implies that ψ(n, s) ≤ γ for some s < ωck

1 , and by minimality of γ, there
is no s < ωck

1 such that ψ(n, s) < γ. Let s0 < ωck
1 be the least ordinal such that

ψ(n, s0) = γ. Then we have fγ(n) = φ(n, s0) by our definition of fγ. Since there
is no t > s0 such that ψ(n, t) < ψ(n, s0) = γ, by the countdown condition, we have
φ(n, t) = φ(n, s0) for any t > s0. This means that Dξ<η fξ(n) = fγ(n) = lims<ωck

1
φ(n, s).

If there is no such a γ, fξ(n) is undefined for all ξ < η, and thus, ψ(n, s) = η for any
s < ωck

1 . Since ψ is a countdown for φ, we have φ(n, s) = φ(n, 0) = c for any s < ωck
1 .

Therefore, Dξ<η fξ(n) = c = lims<ωck
1
φ(n, s). □

Next, let us move on to a function which may change infinitely often. For such
a function φ, in general, lims<t φ(n, s) does not necessarily exist. Instead, for any
constant c ∈ ω and ordinal β < ωck

1 , we define

c lim
s<t

φ(n, s) =

{
m, if φ(n, s) = m eventually holds for s < t,

c, if there exists no such m.

We say that φ is c-semicontinuous if φ(n, t) = c lims<t φ(n, s) for any limit ordinal
t < ωck

1 . Note that any function φ yields a semicontinuous function φc by defining
φ(n, 0) = c; φc(n, t+1) = φ(n, t) for any t < ωck

1 ; and φc(n, t) = c lims<t φ(n, s) for any
limit ordinal t < ωck

1 . This is, for example, exactly the same as the behavior of infinite
time Turing machines at limit steps.

Fix c ∈ ω ∪ {↑}, and let η be a computable ordinal. We characterize cD∗η(Π
1
1) as

hyp-computability with at most η mind-changes with the initial and reset value c.

Proposition 2.3. A function f : ω → ω belongs to cD∗η(Π
1
1) if and only if there exists

a hyp-computable c-semicontinuous function φ : ω × ωck
1 → ω such that for any n ∈ ω,

• otype(mcφ(n)) ≤ η,
• φ(n, 0) = c, and f(n) = c lims<ωck

1
φ(n, s).

Proof. (⇐) Let φ be a function in the assumption, and for each n ∈ ω, let (snξ )ξ<λ(n) be
the increasing enumeration of the set mcφ(n) of all mind-change stages. Since there is an
order embedding of mcφ(n) into η by our assumption, we have λ(n) ≤ η. For any n ∈ ω
and ξ < λ(n), define fξ(n) = φ(n, snξ + 1). If ξ ≥ λ(n), fξ(n) is undefined. Clearly
(fξ)ξ<η is dom-decreasing since we have dom(fξ) = {n ∈ ω : ξ < λ(n)}. Note also
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that (fξ)ξ<η is a Π1
1 sequence since φ is hyp-computable, and mcφ has a hyp-computable

increasing enumeration.
We claim that cD∗ξ<η fξ(n) = f(n), where f(n) = c lims<ωck

1
φ(n, s) by our assumption.

If λ(n) is a successor ordinal, then γ := λ(n) − 1 is the greatest ordinal such that n ∈
dom(fγ). Then cD∗ξ<η fξ(n) = fγ(n) by definition. Then, snγ exists, and by maximality,
there is no t > snγ such that φ(n, t) ̸= φ(n, t+ 1). Hence, we have

f(n) = c lim
s<ωck

1

φ(n, s) = φ(n, snγ + 1) = fγ(n) = c D∗
ξ<η

fξ(n).

If λ(n) is a limit ordinal, there is no greatest ordinal γ such that n ∈ dom(fγ), so
cD∗ξ<η fξ(n) = c. Moreover, for sn = supξ<λ(n) s

n
ξ , we have φ(n, s

n) = c lims<sn φ(n, s) =
c since φ(n, snξ ) ̸= φ(n, snξ + 1) for any ξ < λ(n). Therefore, cD∗ξ<η fξ(n) = c =
c lims<sn φ(n, s) = f(n).

(⇒) Assume that f = cD∗ξ<η fξ for a dom-decreasing sequence (fξ)ξ<η of partial Π1
1

functions. Then, we have a hyp-approximation (fξ[s])s<ωck
1

for f for each ξ < η. Fix

n ∈ ω. Let sξ be the least stage s such that fξ(n)[s] is defined if such an s exists.
Clearly, we may assume that ζ ≤ ξ implies sζ ≤ sξ since (fξ)ξ<η is dom-decreasing.
Moreover, we claim that if we choose a hyp-approximation for fξ appropriately, we may
assume that sξ is successor for each ξ < η, and (sξ)ξ<η is strictly increasing. To see
this, put s(ξ, t) = (η + 1) · t + ξ + 1. Then, s : η × ωck

1 → ωck
1 is injective. Fix ξ < η,

and first declare that f ′ξ(n)[0] is undefined. If s = s(ξ, t) for some ordinal t < ωck
1 , then

put f ′ξ(n)[s] = fξ(n)[t]. Assume that s is not of the form s(ξ, t). If s is successor, say
s = s′+1, then put f ′ξ(n)[s] = f ′ξ(n)[s

′]. If s is limit, then put f ′ξ(n)[s] = limt<s f
′
ξ(n)[t].

It is easy to see that (f ′ξ[s])s<ωck
1
is a hyp-approximation for fξ for each ξ < η. Moreover,

since s(ξ, t) is successor, and s is injective, one can see that this approximation has the
desired property. Then, replace (fξ[s])s<ωck

1
with (f ′ξ[s])s<ωck

1
.

For a successor ordinal s < ωck
1 , let ψ(n, s) be the least ordinal ξ < η such that

n ̸∈ dom(fξ[s]). If there is no such ξ, put ψ(n, s) = η. Note that ψ(n, s) = min({ξ < η :
s < sξ}∪ {η}), so ξ < ψ(n, s) if and only if sξ ≤ s. If ψ(n, s) is successor, say ψ(n, s) =
γ+1, then define φ(n, s) = fγ(n). If ψ(n, s) is limit, then define φ(n, s) = c. For a limit
ordinal s < ωck

1 , define φ(n, s) = c limt<s φ(n, s). Obviously, φ is c-semicontinuous. One
can also check that φ is hyp-computable.

We inductively define an order embedding h : mcφ(n) → η which, given t ∈ mcφ(n),
returns an ordinal less than ψ(n, t + 1). Put s = t + 1. If ψ(n, s) is successor, define
h(t) = ψ(n, s) − 1. If ψ(n, s) is limit, note that s∗ := sup{sξ : ξ < ψ(n, s)} < s since
(sξ)ξ<η is strictly increasing and s is successor. Note that if u is a successor ordinal
with s∗ < u ≤ s then ψ(n, u) = ψ(n, s) by the definitions of s∗ and ψ. Moreover,
t ∈ mcφ(n) implies that φ(n, t) ̸= φ(n, s), so we must have s∗ = t. First suppose
that, for any ξ < ψ(n, s) there exists ζ such that ξ < ζ < ψ(n, s) and fξ(n) ̸= fζ(n).
In this case, as (sξ)ξ<η is a strictly increasing sequence of successor ordinals, we have
φ(n, sξ − 1) = fξ(n) ̸= fζ(n) = φ(n, sζ − 1). This implies that φ(n, t) = φ(n, s∗) =
c limt<s∗ φ(n, t) = c. Moreover, φ(n, s) = c since ψ(n, s) is limit by our assumption.
This contradicts t ∈ mcφ(n).

Thus, there exists ξ < ψ(n, s) such that ξ ≤ ζ < ψ(n, s) implies fξ(n) = fζ(n), for
any ζ. Then, one might think that we can just define h(t) as ξ + 1; however recall
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that if ψ(n, u) is a limit ordinal, then the value of φ(n, u) is reset to c. Thus, the
value of φ(n, u) may change even if (fζ(n))ξ≤ζ<ψ(n,s) is constant. Of course, if the
value of fξ(n) is c, there is no problem. If fξ(n) = c, for any u with sξ ≤ u ≤ s,
we have φ(n, u) = φ(n, sξ) = fξ(n). In this case, we put h(t) = ξ + 1, which implies
h(t) < ψ(n, s). Note that u < s and u ∈ mcφ(n) implies u < sξ, so u + 1 < sξ+1 as
(sξ)ξ<η is strictly increasing. This implies ψ(n, u+1) ≤ ξ+1 by the definition of ψ. By
the induction hypothesis, h(u) < ψ(n, u+1) ≤ ξ+1. Hence, u < t implies h(u) < h(t).

If fξ(n) ̸= c, then there are two cases: If ψ(n, s) is a limit of limit ordinals, say
ψ(n, s) = supk∈ω λk where each λk is limit, then we have φ(n, sλk−1) = c since ψ(n, sλk−
1) = λk, which is limit. Then s∗ = sup{sλk : k ∈ ω}, and t = s∗ as seen before, so
we have φ(n, t) = c limu<s∗ φ(n, u) = c. However, φ(n, u) = c as ψ(n, s) is limit by
our assumption. Again, t ∈ mcφ(n) implies that φ(n, t) ̸= φ(n, s), which is impossible.
Next, if ψ(n, s) is not a limit of limit ordinals (while ψ(n, s) is limit by our assumption),
then ψ(n, s) is of the form λ + ω. Then choose k ∈ ω such that ξ ≤ λ + k, and define
h(t) = λ + k + 1, which implies h(t) < ψ(n, s). Note that for any successor ordinal u
with sλ+k ≤ u < s∗ = sup{sλ+ℓ : ℓ ∈ ω} we have ψ(n, u) = λ + ℓ for some k < ℓ < ω.
In particular, ψ(n, u) is successor, so φ(n, u) = fλ+ℓ(n) = fξ(n). Hence, for any u with
sλ+k ≤ u ≤ s, we have φ(n, u) = fξ(n). Therefore, by the same argument as in the case
fξ(n) = c, one can see that u < t implies h(u) < h(t). Hence, h is an order embedding.

We claim that f(n) = c lims<ωck
1
φ(n, s). Let us consider γ = max{ξ < η : n ∈

dom(fξ)} if it exists. Then, f(n) = fγ(n) since f = D∗ξ<η fξ. Let s be the least stage
such that n ∈ dom(fξ[s]). By maximality of γ, for any successor ordinal t ≥ s we
have ψ(n, t) = γ + 1, and thus φ(n, t) = fγ(n) by definition. Therefore, we have
c lims<ωck

1
φ(n, s) = fγ(n) = f(n). If there is no such a γ, then f(n) = c. Put λ =

min{ξ < η : n ̸∈ dom(fξ)} Then, λ must be a limit ordinal as γ is undefined. Let
us consider (sξ)ξ<λ. Note that ξ 7→ sξ : λ → ωck

1 is a total Π1
1 function, and thus ∆1

1

since the domain is a computable ordinal. Hence, by Spector’s boundedness theorem
(see e.g. [18, Corollary I.5.6]), we have s∗ := sup{sξ : ξ < λ} < ωck

1 . For any successor
ordinal s ≥ s∗, we have ψ(n, s) = λ, and thus φ(n, s) = c since λ is limit. Hence, we
have c lims<ωck

1
φ(n, s) = c = f(n). □

As a corollary, one can see that for any n ∈ ω, and η < ωck
1 , we have

cDn(Π
1
1) = cD∗n(Π

1
1) ⊆ · · · ⊆ cDω(Π

1
1) ⊆ · · · ⊆ cDη(Π

1
1) ⊆ · · · ⊆ cD∗ω(Π

1
1).

By relativizing Propositions 2.2 and 2.3, one can show the similar results for Baire
space ωω.

2.3. Difference hierarchy for sets. Now let us return to the original unintuitive
definition of difference operators for sets. For a countable ordinal ξ, if (Aη)η<ξ is an
increasing sequence of sets, then its difference Dη<ξ Aη is defined as follows:

D
η<ξ

Aη =
∪
η<ξ

par(η)̸=par(ξ)

(
Aη \

∪
γ<η

Aγ

)
,

where par(ξ) = 1 if ξ is odd; otherwise, par(ξ) = 0. If n is a natural number, one can
see that Dm≤nAm = An \ (An−1 \ (· · · \ (A1 \A0))). If (Bη)η<ξ is a decreasing sequence
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of sets, then its difference D∗η<ξ Bη is defined as follows:

D∗
η<ξ

Bη =
∪
η<ξ
η even

(Bη \Bη+1) ,

where if ξ is odd, put Bξ = ∅. If n is a natural number, one can see that D∗m≤nBm =
B0 \ (B1 \ (· · · \ (Bn−1 \Bn))).

Let Dη(Π˜ 1
1) be the class of all sets of the form Dξ<η Aξ for an increasing sequence

(Aξ)ξ<η of Π
1
1˜ sets. Similarly, let Dη(Π

1
1) be the class of all sets of the form Dξ<η fξ for

a uniform Π1
1 increasing sequence (Aξ)ξ<η of Π

1
1 sets. We also define the classes D∗η(Π˜ 1

1)

and D∗η(Π
1
1) in a similar manner. To understand the relationship between the difference

operators for sets and function, it is useful to introduce the following hybrid version of
difference operators. Let X and Y be Polish spaces, and fix c ∈ Y ∪ {↑}.

Definition 2.4. For an increasing sequence (Aξ)ξ<η of sets and a sequence (fξ)ξ<η of
partial functions, we define cDξ<η[fξ/Aξ] :⊆ X → Y as follows:

c D
ξ<η

[fξ/Aξ](x) =

{
fγ(x), if γ = min{ξ < η : x ∈ Aξ},
c, if no such γ exists.

For a decreasing sequence (Bξ)ξ<η of sets and sequence (fξ)ξ<η of partial functions,
we define cD∗ξ<η[fξ/Bξ] :⊆ X → Y as follows:

c D∗
ξ<η

[fξ/Bξ](x) =

{
fγ(x), if γ = max{ξ < η : x ∈ Bξ},
c, if no such γ exists.

Let cDη(Σ˜ 0
1/Π˜ 1

1) be the class of all sets of the form cDξ<η[fξ/Aξ] for an increasing
sequence (Aξ)ξ<η of Π

1
1˜ sets, and a sequence (fξ)ξ<η of continuous functions. Similarly,

let cDη(Σ
0
1/Π

1
1) be the class of all sets of the form cDξ<η[fξ/Aξ] for a uniform Π1

1 in-
creasing sequence (Aξ)ξ<η of Π

1
1 sets, and a computable sequence (fξ)ξ<η of computable

functions. We also define the classes cD∗η(Σ˜ 0
1/Π˜ 1

1) and cD∗η(Σ
0
1/Π

1
1) in a similar man-

ner. Obviously, cDη(Σ˜ 0
1/Π˜ 1

1) ⊆ cDη(Π˜ 1
1) and cD

∗
η(Σ˜ 0

1/Π˜ 1
1) ⊆ cD∗η(Π˜ 1

1). The lightface
versions also hold.

These hybrid difference operators seem relevant for studying σ-continuous functions
(ω-decomposable functions; see e.g. [12]). As in Propositions 2.2 and 2.3, the classes
cDη(Σ

0
1/Π

1
1) and cD

∗
η(Σ

0
1/Π

1
1) are characterized as hyp-computability of an index γ with

mind-changes. Such an index-guessing has been extensively studied in the theory of
inductive inference (identification in the limit; see [14]).

Observe that the characteristic function of a set in Dη(Π˜ 1
1) belongs to 0Dη(Σ˜ 0

1/Π˜ 1
1):

Given an increasing sequence (Aξ)ξ<η of sets, define fξ : Aξ → 2 by fξ(x) = 1 if par(ξ) ̸=
par(η); otherwise fξ(x) = 0. Similarly, the characteristic function of a set in D∗η(Π˜ 1

1)

belongs to 0D∗η(Σ˜ 0
1/Π˜ 1

1): Given a decreasing sequence (Aξ)ξ<η of sets, define fξ : Aξ → 2
by fξ(x) = 1 if par(ξ) = 0; otherwise fξ(x) = 0.

As a corollary of Proposition 2.2, the classDη(Π
1
1) is characterized as hyp-computability

with finite mind-changes along (η + 1)-countdown with the initial value 0.

Corollary 2.5. A set A ⊆ ω belongs to Dη(Π
1
1) if and only if there exists a hyp-

computable continuous finite-change function φ : ω × ωck
1 → 2 such that for any n ∈ ω,
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• φ has an (η + 1)-valued hyp-computable countdown,
• φ(n, 0) = 0, and A(n) = lims<ωck

1
φ(n, s).

Similarly, as a corollary of Proposition 2.3, the class D∗η(Π
1
1) is characterized as hyp-

computability with at most η mind-changes with the initial value 0.

Corollary 2.6. A set A ⊆ ω belongs to D∗η(Π
1
1) if and only if there exists a hyp-

computable c-semicontinuous function φ : ω × ωck
1 → ω such that for any n ∈ ω,

• otype(mcφ(n)) ≤ η,
• φ(n, 0) = 0, and A(n) = 0 lims<ωck

1
φ(n, s).

It is easy to show the following analogues of Post’s theorem.

Proposition 2.7. A set A ⊆ ω belongs to ∆(Dη(Π
1
1)) if and only if there exists a

hyp-computable continuous finite-change function φ : ω × ωck
1 → 2 such that for any

n ∈ ω,

• φ has an η-valued hyp-computable countdown,
• and A(n) = lims<ωck

1
φ(n, s).

Proposition 2.8. A set A ⊆ ω belongs to ∆(D∗η(Π
1
1)) if and only if there exists a

hyp-computable c-semicontinuous function φ : ω × ωck
1 → ω such that for any n ∈ ω,

• otype(mcφ(n)) < η,
• and A(n) = c lims<ωck

1
φ(n, s).

In particular, ∆(D∗ω(Π
1
1)) corresponds to hyp-computability with finite mind-changes.

3. Solution to Fournier’s problem

3.1. Weihrauch lattice. Let us explain that the class cDη(Σ˜ 0
1/Π˜ 1

1) is to some extent
a natural one in terms of the Weihrauch lattice. This perspective will also be used to
solve Fournier’s Question 1. The study of the Weihrauch lattice aims to measure the
computability theoretic difficulty of finding a choice function witnessing the truth of a
given ∀∃-theorem (cf. [7]) as an analogue of reverse mathematics [19]. The notion of
Weihrauch degree is used as a tool to classify certain ∀∃-statements by identifying each
∀∃-statement with a partial multivalued function. Informally speaking, a (possibly false)
statement S ≡ ∀x ∈ X [Q(x) → ∃yP (x, y)] is transformed into a partial multivalued
function f : ⊆ X ⇒ Y such that dom(f) = {x : Q(x)} and f(x) = {y : P (x, y)}.
Then, measuring the degree of difficulty of witnessing the truth of S is identified with
that of finding a choice function for f . Here, we consider choice problems for partial
multivalued functions rather than relations in order to distinguish the hardest instance
f(x) = ∅ and the easiest instance x ∈ X \ dom(f).

If one only considers subspaces of NN, one can use the following version of Weihrauch
reducibility: For partial multivalued functions f and g, we say that f is Weihrauch
reducible to g (written f ≤W g) if there are partial computable functions h and k such
that the following holds: Given an instance x of f -problem (i.e., x ∈ dom(f)), if we know
a solution y to the instance h(x) of g-problem (i.e., y ∈ g(h(x))), then the algorithm k
tells us that k(x, y) is a solution to the instance x of f -problem (i.e., k(x, y) ∈ f(x)).
In other words,

(∀x ∈ dom(f))(∀y) [y ∈ g(h(x)) =⇒ k(x, y) ∈ f(x)].
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The functions h and k are often called an inner reduction and an outer reduction,
respectively. To discuss Weihrauch reducibility in other spaces, we introduce some
auxiliary concepts. A representation of a set X is a partial surjection δX :⊆ ωω → X.
If δX(p) = x, then p is called a δX-name of x (or simply, a name of x if δX is clear from
the context). A pair of a set and its representation is called a represented space.

Example 3.1. Perhaps, one of the best known examples of represented spaces in de-
scriptive set theory is the space Bor of Borel sets in a Polish space, where consider the
representation δBor :⊆ ωω → Bor defined by δBor(p) = A if and only if p is a Borel code
of A. In other words, a δBor-name of A is exactly a Borel code of A.

Definition 3.2 (see also [7]). Let X, Y , Z and W be represented spaces with represen-
tations δX , δY , δZ and δW , respectively. For partial multivalued functions f :⊆ X ⇒ Y
and g :⊆ Z ⇒ Y , we say that f is Weihrauch reducible to g (written f ≤W g) if there are
partial computable functions h and k such that the following holds: Given a δX-name
x of an instance x of f -problem, the algorithm h tells us a δZ-name h(x) of an instance
x∗ of g-problem, and if we know a δW -name y of a solution y to the instance x∗ of
g-problem, then the algorithm k tells us that k(x, y) is a δY -name of a solution to the
instance x of f -problem. In other words,

(∀x ∈ dom(f ◦ δX))(∀y) [δW (y) ∈ g ◦ δZ(h(x)) =⇒ δY ◦ k(x, y) ∈ f ◦ δX(x)].

We now consider the following ∀∃-principles related to the difference hierarchy:

• Γ-least number principle: For any nonempty Γ˜ set A ⊆ ω, there exists the least
element of A.

• Γ-counting: For any finite Γ˜ set A ⊆ ω, the value #A exists.

We consider the case where Γ is either Π1
1 or Σ1

1. For such a Γ, note that if X is a
Polish space then the collection Γ˜ (X) of all Γ˜ subsets of X has a total representation
δΓ : ω

ω → Γ˜ (X). For instance, if X = N and Γ = Π1
1 then, for any e ∈ ω and p ∈ ωω,

the concatenation e⌢p is a δΠ1
1
-name of A ⊆ ω if and only if A is the e-th Π1

1(p) set.

Hereafter, we also use Px to denote δΠ1
1
(x); that is, Px is the Π˜ 1

1 set coded by x.

Definition 3.3. We define the Γ-least number principle Γ-LNP :⊆ Γ˜ (ω) → ω as follows:

Γ-LNP(A) =

{
minA, if A ̸= ∅,
undefined, if A = ∅.

We define the Γ-counting principle #Γ:⊆ Γ˜ (ω) → ω as follows:

#Γ(A) =

{
#A, if #A is finite,

undefined, otherwise.

Let (X, δX) be a represented space. We say that a partial function f : ⊆ X → ω
is cDω(Γ)-complete if f ◦ δX :⊆ ωω → ω belongs to cDω(Γ), and any cDω(Γ)-function
g :⊆ ωω → ω is Weihrauch reducible to f . We define cD∗ω(Γ)-completeness in a similar
manner. We now consider the case c = ↑ (indicating “undefined”).

Proposition 3.4. Π1
1-LNP is ↑Dω(Σ

0
1/Π

1
1)-complete.
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Proof. To see that Π1
1-LNP is in ↑Dω(Σ

0
1/Π

1
1), define An = {x : (∃k ≤ n) k ∈ Px} where

Px is the xthΠ˜ 1
1 set, and consider the constant function cn : x 7→ n. Then, (An)n<ω is an

increasing sequence of Π˜ 1
1 sets. One can easily see that minPx = min{n ∈ ω : x ∈ An}

whenever Px is empty. Recall from Definition 2.4 that ↑Dn<ω[cn/An](x) = min{n ∈ ω :
x ∈ An} if it exists. Therefore, ↑Dn<ω[cn/An] is a realizer for Π1

1-LNP. To show the
completeness, assume that a sequence (An, fn)n<ω of pairs of Π˜ 1

1 sets and continuous
functions is given. To see that ↑Dn<ω[fn/An] is Weihrauch reducible to Π1

1-LNP, let us
consider the inner reduction h which maps x to a δΠ1

1
-name of Qx = {n ∈ ω : x ∈ An},

and the outer reduction k which maps (x, n) to fn(x). If m = minQx exists, then
↑Dn<ω[fn/An](x) = fm(x) = k(x,minQx). If no such m exists, ↑Dn<ω[fn/An](x) is
undefined. This verifies the assertion. □

Proposition 3.5. Σ1
1-LNP is ↑D∗ω(Σ0

1/Π
1
1)-complete.

Proof. To see that Σ1
1-LNP is in ↑D∗ω(Σ0

1/Π
1
1), define Bn = {x : (∀k < n) k ∈ Px},

and consider cn : x 7→ n. Then, (Bn)n<ω is an decreasing sequence of Π˜ 1
1 sets. Put

Sx = ω\Px, and then one can see that minSx = max{n < ω : x ∈ Bn} whenever Sx ̸= ∅.
Therefore, ↑D∗n<ω[cn/Bn] is a realizer for Σ1

1-LNP. To show the completeness, assume
that a sequence (Bn, fn) of pairs of Π˜ 1

1 sets and continuous functions is given. Let us
consider the inner reduction h which maps x to a δΣ1

1
-name of Ux = {n ∈ ω : x ̸∈ Bn},

and the outer reduction k which maps (x, n + 1) to fn(x), where k(x, 0) ↑. Note that
minUx = m + 1 if and only if {n < ω : x ∈ Bn} = m as (Bn)n<ω is decreasing. If
minUx > 0, say minUx = m+ 1, then ↑D∗n<ω[fn/Bn](x) = fm(x) = k(x,minUx). If no
such m exists, ↑D∗n<ω[fn/Bn](x) is undefined. This verifies the assertion. □

Proposition 3.6. Π1
1-LNP ≡W #Σ1

1 and Σ1
1-LNP ≡W #Π1

1.

Proof. Given A ⊆ ω, define A∗ = {n ∈ ω : (∀m < n) m ̸∈ A}. Clearly, minA = #A∗.
If A is Π˜ 1

1 then A∗ is Σ˜ 1
1, and moreover A 7→ A∗ : Π˜ 1

1(ω) → Σ˜ 1
1(ω) is computable, that

is, given a Π˜ 1
1-code of A, one can effectively find a Σ˜ 1

1-code of A∗. Similarly, if A is Σ1
1

then A∗ is Π1
1, and moreover A 7→ A∗ : Σ˜ 1

1(ω) → Π˜ 1
1(ω) is computable. Thus, the inner

reduction A 7→ A∗ witnesses that Π1
1-LNP ≤W #Σ1

1 and Σ1
1-LNP ≤W #Π1

1.
For the converse direction, assume that a Σ1

1 set A ⊆ ω is given. If A is finite,
then this fact is witnessed at some stage < ωck

1 since (∃n)(∀m > n) m ̸∈ A[s] is a ∆1
1

property, where A[s] is the stage s hyp-approximation of A. Here, recall that Σ1
1 is a

higher analogue of “co-c.e.,” so (A[s])s∈ω is a co-enumeration of A, that is, s < t implies
A[s] ⊇ A[t]. At each stage s, check if A[s] is finite. If so, enumerate #A[s] into B.
Then, one can easily see minB = #A. Moreover, given a Σ1

1-code of A, one can easily
find a Π1

1-code of B. This argument can be uniformly relativizable. Thus, the inner
reduction A 7→ B witnesses that #Σ1

1 ≤W Π1
1-LNP.

Assume that a Π1
1 set B ⊆ ω is given. If we see that the nth element is enumerated

into B, i.e., #B[s] ≥ n, then co-enumerate [0, n) from A. Then, minA = #B. Given
a Π1

1-code of B, one can easily find a Σ1
1 code of A. This argument can be uniformly

relativizable. The inner reduction B 7→ A witnesses that #Π1
1 ≤W Σ1

1-LNP. □

One can also consider the least number principle on a well-ordered set. For a countable
ordinal α, let ≤α be a well-order on N whose order type is α. Then, we use Γ-LNPα to
denote the least number principle with respect to ≤α; that is, Γ-LNPα(A) is defined as
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the ≤α-smallest element of A if it exists. As in the above argument, one can observe
that Π1

1-LNPα and Σ1
1-LNPα correspond to ↑Dα(Σ˜ 0

1/Π˜ 1
1) and ↑D∗α(Σ˜ 0

1/Π˜ 1
1), respectively.

This idea leads to our solution to Question 1.

3.2. Fournier’s problem. The increasing difference hierarchy can be defined by the
combination of the parity function and the least number principle on countable well-
orders. Recall that the parity function par : Ord → 2 returns 1 if a given input is odd;
otherwise, returns 0. For a countable ordinal η, let (Aξ)ξ<η be an increasing sequence
of subsets of ωω, and put Aη = ωω. Then, it is not hard to check the following:

D
ξ<η

Aξ =
{
x ∈ ωω : par

(
min{α ≤ η : x ∈ Aα}

)
̸= par(η)

}
.

Similarly, if (Bξ)ξ<η is an decreasing sequence of subsets of ωω, then(
D∗
ξ<η

Bξ

)
(x) =

{
1 if par(max{ξ < η : x ∈ Bξ}) = 0,

0 if max{ξ < η : x ∈ Bξ} does not exist.

The Π1
1-least number principle on a well-ordered set (ω,⪯) states that any nonempty

Π1
1 set P ⊆ ω has the ⪯-smallest element. We represent the Π1

1-least number principle
as a function as in Section 3.1. Here, recall that we have a total representation δΠ1

1
of

Π˜ 1
1(N). A δΠ1

1
-name is often called a Π˜ 1

1-code. Let us use Px to denote the subset of ω

whose Π˜ 1
1-code is x, i.e., Px = δΠ1

1
(x). For y ∈ WO and A ⊆ N, we define miny A as the

≤y-least element of A, i.e., a = miny A if and only if a ∈ A and b ̸∈ A for any b <y a.
To be more precise, we define Π˜ 1

1-LNPWO as the partial function which, given a Π˜ 1
1-

code x of P ⊆ N and a well-order y = (N,≤y), returns the ≤y-smallest element of P
whenever P is nonempty, that is,

dom(Π˜ 1
1-LNPWO) = {(x, y) : Px ̸= ∅ and y ∈ WO},

Π˜ 1
1-LNPWO(x, y) = minyPx.

We consider totalizations of Π˜ 1
1-LNPWO. For each c ∈ ω, define c ∗ Π˜ 1

1-LNPWO as
follows:

(c ∗Π˜ 1
1-LNPWO)(x, y) =

{
minyPx if Px ̸= ∅ and y ∈ WO,

c otherwise.

Note that, contrary to Section 3.1, we deal with a realizer (i.e., a function on codes)
rather than a function between represented spaces. This ensures that c ∗ Π˜ 1

1-LNPWO

is a total N-valued function on ωω. However, to discuss the Wadge degree, it must be
restricted to a two-valued function. To simplify our argument, we assume that c = 0.
Then define Π˜ 1

1-LNP
↾2
WO as follows:

(Π˜ 1
1-LNP

↾2
WO)(x, y) =

{
pary(minyPx) if Px ̸= ∅ and y ∈ WO,

0 otherwise.

Here, pary(n) is the parity of the ≤y-rank of n. Then, Π˜ 1
1-LNP

↾2
WO is a two-valued

function on ωω.

Proposition 3.7. For any countable ordinal η, every Dη(Π˜ 1
1) set is Wadge reducible

to Π˜ 1
1-LNP

↾2
WO.
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Proof. Assume that η is even. Fix a well-order ≤η on ω whose order type is η, and put
η̄ = (ω,≤η). Let A = Dξ<η Aξ be a Dη(Π˜ 1

1) set. Then, the set Q = {(x, n) : x ∈ A|n|η} is
Π˜ 1

1, where recall that |n|η is the ≤η-rank of n ∈ N (see Section 1.2). Thus, one can find
a continuous function θ which, given x, returns a Π˜ 1

1-code of Qx = {n ∈ N : x ∈ A|n|η}.
We claim that x 7→ (θ(x), η̄) is a Wadge reduction witnessing A ≤W Π˜ 1

1-LNP
↾2
WO. Since

η is even, x ∈ A if and only if min{ξ ≤ η : x ∈ Aξ} is odd if and only if minη({n ∈ N :

x ∈ A|n|η}) is odd if and only if Π˜ 1
1-LNP

↾2
WO(θ(x), η̄) = 1. This verify the claim. The

case where η is odd can be proved in almost the same way. □
As a consequence, c∗Π˜ 1

1-LNPWO is not hyp-computable with finite mind-changes along
any countable ordinal (since the hierarchy (Dη(Π˜ 1

1))η<ω1 does not collapse). On the
other hand, it is intuitively clear that c∗Π˜ 1

1-LNPWO is hyp-computable with finite mind-
changes. Indeed, it is hyp-computable with finite mind-changes along the uncountable
ordinal ω1 + 1. To see this, let (x, y) be an input. Begin with the guess c and ordinal
counter ω1 < ω1 + 1. If y is found to be WO, then change the ordinal counter to the
order type |y| of y, which is smaller than ω1. When something is first enumerated into
Px, we guess the current ≤y-least element n ∈ Px as a correct answer, and change the
ordinal counter to |n|y < |y|. If some number which is ≤y-smaller than the previous
guess is enumerated into Px, then change the guess as above. Continue this procedure.
This algorithm eventually guesses the correct output of c ∗ Π˜ 1

1-LNPWO(x, y). Clearly,
this procedure is hyp-computable with finite mind-changes along ω1+1. Thus, we only
need to formalize this argument as a D∗ω(Π˜ 1

1) set.

Proposition 3.8. Π˜ 1
1-LNP

↾2
WO ∈ D∗ω(Π˜ 1

1).

Proof. Define Bn as the set of all (x, y) such that the parity (w.r.t. the ≤y-rank) of the
≤y-least element of Px changes at least n times under the cannonical hyp-computable
guessing process. In other words, Bn is the set of all (x, y) satisfying the following
conditions:

y ∈ WO ∧ (∃s1 < · · · < sn)
[
pary(minyPx[s1]) = 1

∧ (∀i < n) pary(minyPx[si]) ̸= pary(minyPx[si+1])
]
.

The standard hyperarithmetical quantification argument shows that Bn is Π1
1 since

we only need to search for x-computable ordinals si. To be more precise, first recall
that the condition n ∈ Px is equivalent to oP (n, x) ∈ WO. In this case, oP (n, x) is an x-
computable well-order since oP is computable. Similarly, the condition a = miny Px[s]
is equivalent to that |oP (a, x)| < s and |oP (b, x)| ≥ s for any b <y a. This is a
∆1

1 condition on the Π1
1 assumption that s is an ordinal. Putting it all together, the

condition (x, y) ∈ Bn can be written as follows:

y ∈ WO ∧ (∃e1, . . . , en)
[
(∀i ≤ n) φxei ∈ WO ∧ |φxe1 | < · · · < |φxen |

∧ (∃a1, . . . , an)[pary(a1) = 1 ∧ (∀i < n) pary(ai) ̸= pary(ai+1)]

∧ (∀i ≤ n) [|oP (ai, x)| < |φxei| ∧ (∀b) (b <y ai → |oP (b, x)| ≥ |φxei|)]
]

This only involves number quantification (with some Π1
1 sets), so this property is

Π1
1. It is clear that (Bn)n∈N is decreasing. Given (x, y), let n be the largest number

such that (x, y) ∈ Bn with witnesses s1 < · · · < sn. Then, we have pary(miny Px) =
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pary(miny Px[sn]); otherwise, we must find sn+1 > sn such that pary(miny Px[sn+1]) ̸=
pary(miny Px[sn]), which is impossible by the maximality of n. Put pi = pary(miny Px[si]).
Then, since p1 = 1 and pi ̸= pi+1, we have pi = par(i), and therefore, pary(miny Px) =
pn = par(n). Consequently, if n is the largest number such that (x, y) ∈ Bn then
pary(miny Px) = par(n). Moreover, if there is no such an n then y ̸∈ WO or Px is empty.
This shows that

Π˜ 1
1-LNP

↾2
WO(x, y) =

(
D∗
n<ω

Bn

)
(x, y) =

{
par(n) if n = max{n : (x, y) ∈ Bn},
0 if there is no such an n.

Hence, Π˜ 1
1-LNP

↾2
WO ∈ D∗ω(Π˜ 1

1). □

Consequently, Π˜ 1
1-LNP

↾2
WO is contained in the ω-th level of the decreasing difference

hierarchy, but not in the increasing difference hierarchy. This solves Fournier’s question:

Proof of Theorem 1.3. By Proposition 3.8, Π˜ 1
1-LNP

↾2
WO belongs to the ω-th level of the

decreasing difference hierarchy. IfΠ˜ 1
1-LNP

↾2
WO ∈ Diff(Π˜ 1

1) would hold, thenΠ˜ 1
1-LNP

↾2
WO ∈

Dη(Π˜ 1
1) for some η < ω1. However, by Proposition 3.7, every Dη+1(Π˜ 1

1) set is Wadge

reducible to Π˜ 1
1-LNP

↾2
WO. A simple diagonalization argument shows the existence of a

Dη+1(Π˜ 1
1) set which is not Wadge reducible to a Dη(Π˜ 1

1) set. This implies a contradic-

tion; hence, Π˜ 1
1-LNP

↾2
WO ̸∈ Diff(Π˜ 1

1). □

3.3. Beyond the decreasing difference hierarchy. The decreasing difference hier-
archy over Π˜ 1

1 sets occupies a very small part of the smallest σ-algebra including all Π˜ 1
1

sets. Let us turn our attention to the first level of the σ-algebra.

Definition 3.9 (see e.g. Becker [5, Page 719]). For a pointclass Γ, let Σ˜ 0
1(Γ) be the

smallest family including all Γ sets and closed under countable union, finite intersection,
and continuous preimage. A set A is in∆˜ 0

1(Γ) if both A and its complement is contained
in Σ˜ 0

1(Γ).

Higher limit lemma [6, Proposition 6.1] states that ∆0
1(Σ

1
1 ∪ Π1

1) is equivalent to
hyp-computability with ordinal mind-changes. Note that this result does not imply
that ∆0

1(Σ
1
1 ∪ Π1

1) is equivalent to Diff∗(Π˜ 1
1). This is because Diff∗(Π1

1) corresponds to
hyp-computability with ordinal mind-changes involving some countable ordinal which
bounds the number of mind-changes for all inputs, while in the case of ∆0

1(Σ
1
1∪Π1

1), the
number of mind-changes can be different for each input, and it is not always possible to
give their upper bound by a single countable ordinal. Indeed, using a similar argument
as above, we show that Diff∗(Π˜ 1

1) is a proper subclass of ∆˜ 0
1(Σ˜ 1

1 ∪Π˜ 1
1).

The Σ1
1-least number principle on a well-ordered set (ω,⪯) states that any nonempty

Σ1
1 set S ⊆ ω has the ⪯-smallest element. Let us use Sx to denote the subset of ω whose

Σ˜ 1
1-code is x, i.e., Sx = ω \ Px. One can define the totalization c ∗ Σ˜ 1

1-LNPWO of the
partial ω-valued function Σ˜ 1

1-LNPWO as above. Then define its two-valued restriction

Σ˜ 1
1-LNP

↾2
WO as follows:

(Σ˜ 1
1-LNP

↾2
WO)(x, y) =

{
pary(minySx) if Sx ̸= ∅ and y ∈ WO,

0 otherwise.

Then, Σ˜ 1
1-LNP

↾2
WO is a two-valued total function on ωω.
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Proposition 3.10. For any countable ordinal η, every D∗η(Π˜ 1
1) set is Wadge reducible

to Σ˜ 1
1-LNP

↾2
WO.

Proof. Fix a well-order ≤η on ω whose order type is η, and put η̄ = (ω,≤η). Let
B = Dξ<η Bξ be a D∗η(Π˜ 1

1) set. Then, the set U = {(x, n) : x ̸∈ B|n|η} is Σ˜ 1
1. Thus, one

can find a continuous function θ which, given x, returns a Σ˜ 1
1-code of Ux = {n ∈ N : x ̸∈

B|n|η}. We claim that x 7→ (θ(x), η̄) is a Wadge reduction witnessing B ≤W Σ˜ 1
1-LNP

↾2
WO.

If γ = max{ξ ≤ η : x ∈ Bξ} exists, x ∈ B if and only if γ is even. In this case,

the ≤η-rank of minη Ux is γ + 1, which is odd, and therefore, Σ˜ 1
1-LNP

↾2
WO(θ(x), η̄) = 1.

If no such a γ exists, then x ̸∈ B, and the ≤η-rank of minη Ux is a limit ordinal,

which is even, and therefore, Σ˜ 1
1-LNP

↾2
WO(θ(x), η̄) = 0. In either case, we have B(x) =

Σ˜ 1
1-LNP

↾2
WO(θ(x), η̄). □

As a consequence, c ∗Σ˜ 1
1-LNPWO is not hyp-computable with fixed countable ordinal

mind-changes (since the hierarchy (D∗η(Π˜ 1
1))η<ω1 does not collapse). On the other hand,

it is intuitively clear that c ∗Σ˜ 1
1-LNPWO is hyp-computable with ordinal mind-changes.

To see this, let (x, y) be an input, and begin with the guess c. If y is found to be WO,
we guess the current ≤y-least element n ∈ Sx as a correct answer. If all numbers which
are ≤y-smaller than or equal to the previous guess is removed from Sx, then change the
guess as above. Continue this procedure. This algorithm eventually guesses the correct
output of c ∗Σ˜ 1

1-LNPWO(x, y). Clearly, this procedure is hyp-computable with ordinal
mind-changes. Thus, we only need to formalize this argument as a ∆˜ 0

1(Σ˜ 1
1 ∪Π˜ 1

1) set.

Proposition 3.11. Σ˜ 1
1-LNP

↾2
WO ∈ ∆˜ 0

1(Σ˜ 1
1 ∪Π˜ 1

1).

Proof. We first consider the set of stages at which the least value of Sx changes later.
In other words, define W as follows:

(x, y, s) ∈ W ⇐⇒ y, s ∈ WO ∧ ∃t ≤T x⊕ y (t ∈ WO

∧ |t| > |s| ∧ (minySx[s] < minySx[t] ∨ Sx[t] = ∅)).

It is easy to see that W is Π1
1. We claim that if Sx ̸= ∅ and y ∈ WO then there

exists an ordinal s ≤T x ⊕ y such that minySx[s] = minySx. To see this, assume that
a = minySx. Then, for any b <y a there exists an x-computable ordinal sb ∈ WO such
that b ∈ Px[sb]. Note that A = {b ∈ ω : b <y a} is a ∆1

1(y) set. Then consider the map
b 7→ eb, where eb is an x-computable index of such sb, which is a ∆1

1(x ⊕ y) function.
The usual Σ1

1-bounding argument (i.e., the relativized Spector boundedness theorem)
ensures that s = sup{sb : b <y a} is an (x ⊕ y)-computable ordinal. This verifies the
claim.

This claim shows that, for any y ∈ WO and i < 2, the statement Sx ̸= ∅ and
pary(miny Sx) = i holds if and only if there exists an ordinal s ≤T x ⊕ y such that
(x, y, s) ̸∈ W and pary(miny Sx[s]) = i. Therefore,

Σ˜ 1
1-LNP

↾2
WO(x, y) = 1 ⇐⇒ y ∈ WO ∧ ∃s ≤T x⊕ y

(s ∈ WO ∧ (x, y, s) ̸∈ W ∧ pary(minySx[s]) = 1),
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and similarly

Σ˜ 1
1-LNP

↾2
WO(x, y) = 0 ⇐⇒ y ̸∈ WO ∨ ∀s ≤T x⊕ y (x, y, s) ∈ W

∨ [y ∈ WO ∧ ∃s ≤T x⊕ y

(s ∈ WO ∧ (x, y, s) ̸∈ W ∧ pary(minySx[s]) = 0)].

The former formula is clearly Σ˜ 0
1(Σ˜ 1

1 ∪Π˜ 1
1). The latter formula contains a universal

quantification, but the first line and the second line are separated, and the subformula
“∀s ≤T x⊕ y (x, y, s) ∈ W” is Π1

1. Hence, the latter formula is also Σ˜ 0
1(Σ˜ 1

1∪Π˜ 1
1). Note

also that the first line in the latter formula is equivalent to the statement that either
y ̸∈ WO or Sx = ∅ holds. Consequently, we get Σ˜ 1

1-LNP
↾2
WO ∈ ∆˜ 0

1(Σ˜ 1
1 ∪Π˜ 1

1). □

Consequently, Σ˜ 1
1-LNP

↾2
WO is contained in the first ∆˜ -level of the σ-algebra containing

Π˜ 1
1 sets, but not in the decreasing difference hierarchy. That is, Σ˜ 1

1-LNP
↾2
WO witnesses

the properness of the inclusion Diff∗(Π˜ 1
1) ⊊ ∆˜ 0

1(Π˜ 1
1 ∪Σ˜ 1

1). This solves Question 2:

Proof of Theorem 1.4. By Proposition 3.11, Σ˜ 1
1-LNP

↾2
WO belongs to ∆˜ 0

1(Σ˜ 1
1 ∪ Π˜ 1

1). If

Σ˜ 1
1-LNP

↾2
WO ∈ Diff∗(Π˜ 1

1) would hold, then Σ˜ 1
1-LNP

↾2
WO ∈ D∗η(Π˜ 1

1) for some η < ω1.

However, by Proposition 3.10, every D∗η+1(Π˜ 1
1) set is Wadge reducible to Σ˜ 1

1-LNP
↾2
WO.

A simple diagonalization argument shows the existence of a D∗η+1(Π˜ 1
1) set which is not

Wadge reducible to a D∗η(Π˜ 1
1) set. This implies a contradiction; hence, Σ˜ 1

1-LNP
↾2
WO ̸∈

Diff∗(Π˜ 1
1). □

4. The ω-th level of the decreasing difference hierarchy

4.1. ω1-prewellordered coproduct. Next, we analyze the structure of ∆(D∗ω(Π˜ 1
1))

sets. We first show the following useful characterization of ∆(D∗ω(Π˜ 1
1)) sets.

Proposition 4.1. A set P ⊆ ωω belongs to ∆(D∗ω(Π˜ 1
1)) if and only if there exists an

infinite decreasing sequence (Pn)n∈ω of Π˜ 1
1 sets such that

∩
n<ω Pn = ∅ and P = D∗n<ω Pn.

Proof. If P ∈ ∆(D∗ω(Π˜ 1
1)), then there exist infinite decreasing sequences (An)n∈ω and

(Bn)n∈ω of Π˜ 1
1 sets such that P = D∗nAn and ¬P = D∗nBn. Note that x ∈

∩
nAn implies

x ̸∈ D∗nAn, so x ∈ P , and similarly, x ∈
∩
nBn implies x ̸∈ P . Hence,

∩
nAn ∩

∩
nBn =

∅. Then, define Pn = An ∩ Bn+1. Then,
∩
n Pn ⊆

∩
nAn ∩

∩
nBn = ∅. Moreover, it is

not hard to check that P = D∗n Pn.
For the converse direction, let (Pn) be such that

∩
n Pn = ∅ and P = D∗n Pn. Then,

define An = Pn, B0 = ωω, and Bn = Pn+1. It is easy to check that P = D∗nAn and
¬P = D∗nBn. □

As we have already mentioned, the class ∆(D∗ω(Π˜ 1
1)) corresponds to hyp-computability

with finite mind-changes. As usual, the process of mind-changes can be represented by
a well-founded tree. We describe the details below.

Under AD, recall that every nonselfdual subset of ωω is Wadge equivalent to a subset
of 2ω; see e.g. [16, Lemma 1.5], and any selfdual set is Wadge equivalent to the join of
countably many nonselfdual set; see e.g. [2]. Therefore, one may assume that everything
is a subset of the σ-compact space C = ω × 2ω. Recall that WO ⊆ 2ω×ω ≃ 2ω is the set
of all well-orders on ω.
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Let (Pn)n∈ω be an infinite decreasing sequence of Π˜ 1
1 sets in C such that

∩
n∈ω Pn = ∅.

Since WO is Π˜ 1
1-complete, there exists a continuous function θn witnessing Pn ≤W WO.

Then, define Pn[c, α] = θ−1n {α} ∩ ({c} × 2ω) for any c ∈ ω and α ∈ WO. Clearly,
Pn[c, α] is compact, and we have Pn =

∪
c,α Pn[c, α]. Hereafter we omit c to simplify the

notation.

Definition 4.2. Given such a sequence P = (Pn)n∈ω, one can define a system on a
labeled WO-branching well-founded tree TP ⊆ WO<ω as follows:

To each node σ of TP of length n, assign the sequence (Pn[α])α∈WO. If the length n
is even, then the node is labeled by 0; otherwise, it is labeled by 1. The domain on σ is
defined as Qσ :=

∩
m<n Pm[σ(m)]. We add the α-th immediate successor of σ whenever

Qσ ∩ Pn[α] is nonempty. In other words, define TP = {σ ∈ WO<ω : Qσ ̸= ∅}.

Note that if x ∈ Qσ then σ = ⟨θ0(x), θ1(x), . . . , θ|σ|−1(x)⟩ since x ∈ Pm[σ(m)] if and
only if θm(x) = σ(m).

Observation 4.3. For P = (Pn)n<ω, if
∩
n∈ω Pn = ∅ then TP is well-founded.

Proof. If TP has an infinite path p ∈ WOω, then for any n, the compact set
∩
m≤n Pm[p(m)]

is nonempty. Therefore, by compactness, the whole intersection
∩
n<ω Pn[p(n)] ⊆

∩
n Pn

is also nonempty, which contradicts our assumption on (Pn)n∈ω. □
Note also that TP is Borel on WO<ω. One can recover the information on D∗n Pn in

the following manner.

Observation 4.4. Let P and (θn) be as above. For x ∈ ωω, define σx as the maximal
initial segment of (θℓ(x))ℓ<ω which is contained in TP . Then, x ∈ D∗n<ω Pn if and only
if σx is labeled by 1.

Proof. Assume that σx = (θℓ(x))ℓ<k. Then, x ∈ Qσx ⊆
∩
m<k Pm. Since this is maximal,

σ′x := σx
⌢θk(x) is not contained in TP . If θk(x) ∈ WO then we have x ∈ Qσ′

x
, so σ′x must

be contained in TP . Hence, θk(x) ̸∈ WO, so x ̸∈ Pk. Therefore, max{ℓ : x ∈ Pℓ} = k−1.
Thus, x ∈ D∗n Pn if and only if par(k−1) = 0, so par(k) = 1. This means that the length
of σx is odd. In this case, σx is labeled by 1. □

In a more inductive manner, one can recover the information of D∗n Pn. For σ ∈ TP ,
inductively define fσ : ω

ω → {0, 1} as follows: If a leaf ρ is labeled by 0, define fρ : x 7→ 0.
If a leaf ρ is labeled by 1, define fρ : x 7→ 1. If a node σ is not a leaf, and is labeled by
i, define

fσ(α, x) := i ∗
⊔

α∈WO

fσα(x) :=

{
fσα(x) if α ∈ WO,

i if α ̸∈ WO.

Lemma 4.5. x ∈ D∗n Pn ⇐⇒ f⟨⟩((θℓ(x))ℓ<ω) = 1, where ⟨⟩ is the empty string.

Proof. Let σx = (θm(x))m<n is a string as in Observation 4.4. Then n be the least
number such that θn(x) ̸∈ WO. For σ = σx, by the definition of fσ, note that

f⟨⟩(θ0(x), θ1(x), θ2(x), . . . ) = fσ(θn(x), θn+1(x), . . . ).

If σ is labeled by i then fσ(θn(x), y) = i for any y since θn(x) ̸∈ WO. Hence, σ is
labeled by i if and only if f⟨⟩((θℓ(x))ℓ<ω) = i. By Observation 4.4, σ = σx is labeled by
1 if and only if x ∈ D∗n Pn. This verifies the claim. □
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Thus, D∗n Pn is constructed from constant functions and the WO-indexed coproduct.
To formalize this idea, given a pointclass Γ, define ∆ = Γ ∩ ¬Γ as usual.

Definition 4.6. We say that (Aα)α∈I is a uniform ∆ collection if there are B,C ∈ Γ
such that for any α and z,

α ∈ I =⇒ [z ∈ Aα ⇐⇒ (α, z) ∈ B ⇐⇒ (α, z) ̸∈ C].

We say that a pointclass Γ is strictly closed under ω1-prewellordered (ω1-pwo) coprod-
uct if, for any uniform ∆ collection (Aα)α∈WO, we have⊔

α∈WO

Aα := {(α, x) : α ∈ WO ∧ x ∈ Aα} ∈ ∆.

If we identify a set A ⊆ ωω with its characteristic function χA : ω
ω → 2, then

⊔
αAα

and 0 ∗
⊔
αAα are the same. One can also see that if Γ is strictly closed under ω1-pwo

coproduct, then we have 1 ∗
⊔
α∈WOAα ∈ ∆. To see this, first note that A ∈ ∆ implies

¬A ∈ ∆. Similarly, if (Aα)α∈WO is uniformly ∆, so is (¬Aα)α∈WO. Thus,

1 ∗
⊔

α∈WO

Aα := {(α, x) : α ̸∈ WO ∨ x ∈ Aα} = ¬
⊔

α∈WO

(¬Aα) ∈ ∆.

Observation 4.7. D∗ω(Π˜ 1
1) is strictly closed under ω1-pwo coproduct.

Proof. The algorithmic reason for this can be explained as follows: Given an input
(α, x), we have α ̸∈ WO at the first stage, so the learner guesses that (α, x) ∈

⊔
α∈WOAα

is false. If the learner sees α ∈ WO at some stage, change her mind, and then since
Aα ∈ ∆(D∗ω(Π˜ 1

1)), the learner only needs to simulate a guessing process to answer
whether x ∈ Aα or not with finite mind-changes.

The set-theoretic reason for this is as follows: Let a pair (B,C) be a ∆-definition of
(Aα)α∈WO as in Definition 4.6. It is easy to see that

⊔
α∈WOAα and its complement can

be written as π−10 [WO] ∩ B and π−10 [¬WO] ∪ C, respectively. Since D∗ω(Π˜ 1
1) is closed

under finite union with Σ˜ 1
1 sets and finite intersection with Π˜ 1

1 sets, both sets belong
to D∗ω(Π˜ 1

1). □
A key basic fact on the closure property for ∆ under AD is that, if ∆ is closed under

something, then it is closed uniformly, as shown by Becker [4]. As a special case, we
have the following:

Fact 4.8 (Becker [4], AD). If Γ is strictly closed under ω1-pwo coproduct, then there
exists a continuous function which, given a uniform ∆-code of (Aα)α∈WO, returns a
∆-code of

⊔
α∈WOA.

The Wedge reducibillity is too fine-grained to handle this level of pointclasses, and
for this reason we first deal with a coarser reducibility. For A,B ⊆ ωω, we say that
A is Borel-Wadge reducible to B (written A ≤BW B) if there exists a Borel function
θ : ωω → ωω such that, for any x ∈ ωω, x ∈ A if and only if θ(x) ∈ B. The Borel-Wadge
degrees are semi-well-ordered, and therefore, one can assign a Borel-Wadge rank |A|BW
to each set A ⊆ ωω. A Borel-Wadge pointclass is a class of subsets of ωω downward
closed under Borel-Wadge reducibility, i.e., A ∈ Γ and B ≤BW A implies B ∈ Γ. For
basic information on Borel-Wadge reducibility, see Andretta-Martin [3].

Now we give a key result connecting the class D∗ω(Π˜ 1
1) and the ω1-pwo coproduct.
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Proposition 4.9 (AD). D∗ω(Π˜ 1
1) is a minimal nonselfdual Borel-Wadge pointclass which

is strictly closed under ω1-pwo coproduct.

Proof. By Observation 4.7, D∗ω(Π˜ 1
1) is strictly closed under ω1-pwo coproduct. Thus,

we only need to show the minimality. Assume that Γ is strictly closed under ω1-pwo
coproduct. It suffices to show that ∆(D∗ω(Π˜ 1

1)) ⊆ ∆. As in Definition 4.2, anyD∗n<ω Pn ∈
D∗ω(Π˜ 1

1) can be represented as a system on a labeled WO-branching tree TP , where
P = (Pn)n<ω. Then, assign a function fσ : ω

ω → 2 to each node σ ∈ TP as above, and
define Zσ = f−1σ {1}. To be precise, if ρ is a leaf then Zρ is either ∅ or ωω depending on
the label of ρ, and if σ ∈ TP is not a leaf then Zσ = i ∗

⊔
α∈WO Zσα, where i is the label

of σ.

Claim. Zσ ∈ ∆ for any σ ∈ TP .

Proof. By Fact 4.8, there exists a continuous function which, given a uniform ∆-code of
(Aα)α∈WO, returns a ∆-code of i ∗

⊔
α∈WOAα. We define a partial function h : WO<ω →

ωω such that h(σ) is a ∆-code of Zσ. The recursion theorem allows us to use a self-
referential definition such as “let h(σ) be a ∆-code of the ω1-pwo coproduct of the ∆-sets
(Zσα)α∈WO coded by (h(σα))α∈WO.”

To discuss the complexity of h, we give the details of the above argument: Given
σ ∈ WO<ω, first check whether σ extends a leaf of TP or not. This is a Borel prop-
erty, so it is doable by a Π˜ 1

1-measurable way, and the recursion theorem holds for Π˜ 1
1,

cf. Moschovakis [17, Theorem 7A.2]. If σ extends a leaf ρ, then h(σ) is a ∆-code of
either ∅ or ωω, depending on the length of the leaf ρ. If σ does not extend a leaf,
calculate a Π˜ 1

1-code of α 7→ h(σα). Then, by applying Lemma 4.8 to this code, we hope
to obtain the ∆-code c of of the ω1-pwo coproduct of the ∆ sets coded by (h(σα))α∈WO,
and define h(σ) = c. However, the problem is that since h is Π˜ 1

1-measurable, it is not
immediately guaranteed that (Zσα)α∈WO is a uniform ∆ collection.

In order to overcome this difficulty, let us notice thatQσ :=
∩
n<|σ| Pn[σ(n)] is compact

uniformly in σ ∈ WO<ω (even in σ ∈ (ωω)<ω). In other words, we have a continuous
function which, given σ, returns a Π˜ 0

1-code of Qσ. Hence, one can decide whether σ
extends a leaf by a partial stable Baire-one function ψ, where a function f is stable
Baire-one if there exists a partial continuous function f̃ such that for any x ∈ dom(f)

we have f(x) = f̃(n, x) for all but finitely many n. In particular, such an f is Baire-one,
and therefore, the domain of f can be extended to a Borel set. The recursion theorem for
partial stable Baire-one functions follows from the classical recursion theorem applied
to the partial continuous function f̃ .

Now, the definition of h is given as follows: If ψ(σ) = 1 (i.e., σ extends a leaf ρ),
then h(σ) is a code of Zσ, which is either ∅ or ωω, depending on the length of the leaf
ρ. Otherwise, if σα ∈ dom(h) and h(σα) is a ∆-code of Zσα, for a fixed Γ-universal set
G, we have

x ∈ Zσα ⇐⇒ (π0h(σα), x) ̸∈ G ⇐⇒ (π1h(σα), x) ∈ G.

Since Γ is a Borel-Wadge pointclass, we have

Gi
σ := {(α, x) : σα ∈ dom(h) & (πih(σα), x) ∈ G} ∈ Γ.

Moreover, a Γ-code ciσ of Gi
σ can be uniformly obtained from σ and a code of h.

This ensures that, whenever h(σα) is defined for all α ∈ WO, the collection (Zσα)α∈WO
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is uniformly ∆, whose code is given by (c0σ, c
1
σ). Then, let τ0 be a partial continuous

function obtained by Fact 4.8 and τ1 be its dual. In particular, τi(c
0
σ, c

1
σ) is a code of

i ∗
⊔
α∈WO Zσα. Then, h(σ) is defined as τi(c

0
σ, c

1
σ), where i is the label of σ. If h(σα)

is defined as a ∆-code for all α ∈ WO, then h(σ) is also defined, and gives a code of
Zσ = i ∗

⊔
α∈WO Zσα.

The recursion theorem ensures that h is well-defined, and by transfinite recursion, we
conclude that h(σ) is a ∆-code of Zσ for any σ ∈ TP . □

It remains to show that D∗n Pn ∈ ∆. By Lemma 4.5, given x, we have

x ∈ D∗
n<ω

Pn ⇐⇒ (θ0(x), θ1(x), θ2(x), . . . ) ∈ Z⟨⟩.

Consequently, D∗n Pn ≤W Z⟨⟩ via (θ0, θ1, θ2, . . . ), and thus D∗n Pn ∈ ∆ by the above
claim. □

4.2. Lower bound. A lower bound of the Wadge rank of ∆(D∗ω(Π˜ 1
1)) can be given

by an argument explained in Steel [20, Theorem 1.2]; see also Fournier [9, Proposition
5.10].

Lemma 4.10 (AD). Assume that Γ is strictly closed under ω1-pwo coproduct. Then,
the cofinality of the Wadge rank of Γ is at least ω2.

Proof. Let ψ : ω1 → ∆ be any function. Consider the following Solovay game: Player I
chooses a large countable ordinal α and Player II chooses a ∆ set whose Wadge rank is
greater than ψ(α). More precisely, Player I chooses α ∈ ωω and then Player II chooses
Γ-codes of sets D and E. Player II wins if, whenever α ̸∈ WO, D = ¬E and the Wadge
rank of D is greater than or equal to ψ(|α|).

Player I does not have a winning strategy τ . Otherwise, by Σ1
1-bounding, there is an

upper bound ξ of ordinals in the image of τ . Then, (ψ(α))α<ξ gives countably many ∆
sets, and by the closure property of ∆, one can easily obtain a ∆ set whose Wadge rank
is greater than or equal to supα<ξ ψ(α). Hence, Player II wins.

By the axiom of determinacy AD, Player II has a winning strategy τ . Let G be a
universal Γ set. Then, define

A = {(α, x) ∈ ωω : x ∈ Gπ0τ(α)}.

In other words, Aα = Gπ0τ(α) = ¬Gπ1τ(α). Hence, (Aα)α∈WO is uniformly ∆. By
the closure property,

⊔
α∈WOAα ∈ ∆, whose Wadge rank is greater than or equal to

(ψ(α))α<ω1 . Hence, ψ cannot be a cofinal sequence. □

Under AD, it is known that cf(ωn) = ω2 whenever 2 ≤ n < ω; see [15, Corollary 28.8].

4.3. Upper bound. By Proposition 4.9, D∗ω(Π˜ 1
1) is the minimal Wadge pointclass

which is strictly closed under ω1-pwo coproduct. Therefore, for any A ∈ ∆(D∗ω(Π˜ 1
1)),

the pointclass ΓA = {B ⊆ ωω : B ≤W A} is not strictly closed under ω1-pwo coproduct.
In this section, we analyze the Wadge rank of such a pointclass.

Let (Aα)α∈WO be a uniform ∆ collection. Then, for any ξ < ω1, put A<ξ :=
⊔
|α|<ξ Aα,

where |α| is the order type of α if α is well-ordered. We say that Γ is strictly closed
under (< ω1)-coproduct if, for any uniformly ∆ collection (Aα)α∈WO and any ξ < ω1, we
have A<ξ ∈ ∆.
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Lemma 4.11. Assume that Γ is strictly closed under (< ω1)-coproduct, but not strictly
closed under ω1-pwo coproduct, witnessed by (Aα)α∈WO. Then, (A<ξ)ξ<ω1 is a cofinal
sequence in the Borel-Wadge degrees of ∆ sets.

Proof. Put A =
⊔
α∈WOAα. Then, A ̸∈ ∆ by our assumption. If B ∈ ∆, by Wadge’s

lemma, we have B ≤W A via some θ and B ≤W ¬A via some η. Let |x|θ be the rank
of the 1st corrdinate of θ(x). In other words, |x|θ = α if and only if θ(x) ∈ Aα. Define
|x|η in the similar manner. Then, since (¬WO)× ωω ⊆ ¬A and A ⊆ WO× ωω, we have

|x|η = ∞ =⇒ x ∈ B =⇒ |x|θ <∞.

Thus, there exists no x such that both “|x|θ = ∞” and “|x|η = ∞” hold. Moreover,
these properties are Σ˜ 1

1. Hence, the properties “|x|θ = ∞” and “|x|η = ∞” determine a
disjoint pair of Σ˜ 1

1 sets. Therefore, by Lusin’s separation theorem, there exists a Borel
set C such that

|x|η = ∞ =⇒ x ∈ C =⇒ |x|θ <∞.

In particular, x ∈ C implies |x|θ <∞ and x ̸∈ C implies |x|η <∞. Since C is Borel,
and θ and η are continuous, by Σ˜ 1

1-boundedness, there exists ξ < ω1 such that, for any
x ∈ ωω, x ∈ C implies |x|θ < ξ (i.e., θ(x) ∈ A<ξ), and x ̸∈ C implies |x|η < ξ (i.e.,
η(x) ∈ A<ξ). Now, we define a Borel reduction γ as follows:

γ(x) =

{
(0, θ(x)) if x ∈ C,

(1, η(x)) if x ̸∈ C.

Then, we claim that B is Borel-Wadge reducible to A<ξ ⊔ ¬A<ξ via γ, where A<ξ ⊔
¬A<ξ = ({0} × A<ξ) ∪ ({1} × ¬A<ξ). Since θ witnesses B ≤W A, x ∈ B if and only if
θ(x) ∈ A. Hence, if x ∈ C then x ∈ B if and only if γ(x) = (0, θ(x)) ∈ {0} × A, and
the latter is equivalent to γ(x) ∈ {0}×A<ξ as we must have |x|θ < ξ. Similarly, since η
witnesses B ≤W ¬A, x ∈ B if and only if η(x) ̸∈ A. Hence, if x ̸∈ C then x ∈ B if and
only if γ(x) = (1, η(x)) ∈ {1} × ¬A, and the latter is equivalent to γ(x) ∈ {1} × ¬A<ξ
as we must have |x|η < ξ. This verifies the claim. □

By combining Lemma 4.11 and Proposition 4.9, the desired upper bound can be
almost obtained: The Borel-Wadge rank of D∗ω(Π˜ 1

1) is at most ω2.

4.4. Inside Borel-Wadge degrees. Unfortunately, Lemma 4.11 only gives a result
on Borel-Wadge degrees. To prove Theorem 1.1, this result has to be transformed into
a result for Wadge degrees.

Proposition 4.12 (AD). The Wadge rank of A is ω2 if and only if its Borel-Wadge
rank is ω2.

Proof. Clearly, the Wadge rank of A is greater than or equal to its Borel-Wadge rank.
For the other direction, we claim that if the Wadge rank of A has the cofinality at least
ω2, so is its Borel-Wadge rank. This claim implies that if the Wadge rank of A is ω2

then its Borel-Wadge rank has to be at least ω2, so it concludes the proof.
Assume that the cofinality of the Borel-Wadge rank of A is at most ω1. Then, there

exists a sequence (Aξ)ξ<ω1 such that Aξ <BW A for any ξ < ω1, and for any B <BW A
we have B ≤BW Aξ for some ξ < ω1. Now, fix a total Σ˜ 0

α+1-measurable function
λα : ω

ω → ωω such that for any Σ˜ 0
α-measurable function θ : ωω → ωω we have θ = λα ◦η
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for some continuous function η : ωω → ωω. One can easily construct such a λα; for
instance, if G ⊆ ωω × ω2 is a universal Σ˜ 0

α set, then define λα(z)(n) = m if m is the
least number such that (z, n,m) ∈ G; if such an m does not exist, put λα(z)(n) = 0.
Note that B ≤BW C if and only if there exists α < ω1 such that B = θ−1[C] for some
Σ˜ 0
α-measurable function θ. The last condition is equivalent to that B = η−1[λ−1α [C]] for

some continuous function η. This means that B ≤W λ−1α [C]. Hence, B ≤BW C if and
only if B ≤W λ−1α [C] for some α < ω1.

Put Aαξ = λ−1α [Aξ], and consider the sequence (Aαξ )ξ,α<ω1 . Note that we have Aαξ ≤W

A; otherwise, ¬A ≤W Aαξ since ≤W is semi-well-ordered under AD, and this implies
¬A ≤BW Aξ by the above characterization of Borel-Wadge reducibility. Then, however,
we have ¬A ≤BW Aξ <BW A, which is impossible (as ¬A ≤BW A implies ¬A ≡BW A).
Hence, Aαξ ≤W A for any ξ, α < ω1. Indeed, A

α
ξ <W A since A ̸≤BW Aξ. As (Aξ)ξ<ω1 is

cofinal below the Borel-Wadge degree of A, for any B <W A there is ξ < ω1 such that
B ≤BW Aξ, which means that B ≤W Aαξ for some α < ω1. Hence, (Aαξ )ξ,α<ω1 is cofinal
below the Wadge degree of A. Consequently, the cofinality of the Wadge rank of A is
at most ω1. □

For a set A ⊆ ωω, recall that the pointclass ΓA is defined as {B ⊆ ωω : B ≤W A}.

Lemma 4.13 (AD). If the Wadge rank of A is ω2, then ΓA is strictly closed under
(< ω1)-coproduct.

Proof. By Proposition 4.12, if |A|W = ω2 then |A|BW = ω2. In particular, |A|BW has an
uncountable cofinality. Therefore, by Andretta-Martin [3, Corollary 17 (a)], A is Borel
non-self-dual, i.e., [A]BW ̸= [¬A]BW. Then, by [3, Proposition 20], we have [A]W = [A]BW.

Let (Aα)α∈WO be a uniformly ∆A collection, where ∆A = ΓA ∩ ¬ΓA. Then, there
exist B,C ∈ ΓA such that, whenever α ∈ WO, x ∈ Aα iff (α, x) ∈ B iff (α, x) ̸∈ C. We
claim that, for any ξ < ω1, A<ξ is Borel-Wadge reducible to B and ¬C. To see this,
first note that WO<ξ = {α ∈ WO : |α| < ξ} is Borel for any ξ < ω1. Then, consider the
reduction θB defined by θB(α, x) = (α, x) if x ∈ WO<ξ, and θB(α, x) = z if x ̸∈ WO<ξ,
where z is an arbitrary element of ωω which is not contained in B. Then, θB witnesses
that A<ξ ≤BW B. Similarly, one can construct a reduction θC witnessing A<ξ ≤BW ¬C.
Since B,C ≤W A, we have A<ξ ≤BW A and A<ξ ≤BW ¬A.

As discussed above, we have [A]W = [A]BW ̸= [¬A]BW = [¬A]W. Combining all of
these, we obtain that A<ξ ≤W A and A<ξ ≤W ¬A. Therefore, A<ξ ∈ ∆A. This means
that ΓA is strictly closed under (< ω1)-coproduct. □

Indeed, the above proof shows that if the Borel Wadge rank of A has an uncountable
cofinality, then ΓA is strictly closed under (< ω1)-coproduct. Now, we give an alternative
proof of the Kechris-Martin theorem saying that the Wadge rank of D∗ω(Π˜ 1

1) is ω2.

Proof of Theorem 1.1. By Proposition 4.9, D∗ω(Π˜ 1
1) is strictly closed under ω1-pwo co-

product. Then, by Lemma 4.10, the order type of the Wadge degrees of ∆(D∗ω(Π˜ 1
1))

sets is at least ω2. If it is greater than ω2, then there exists a ∆(D∗ω(Π˜ 1
1)) set A ⊆ ωω

whose Wadge rank is exactly ω2. By Proposition 4.12, the Borel Wadge rank of A is
also ω2. The minimality of D∗ω(Π˜ 1

1) ensured by Proposition 4.9 implies that ΓA is not
strictly closed under ω1-pwo coproduct. Moreover, by Lemma 4.13, ΓA is strictly closed
under (< ω1)-coproduct. Therefore, by Lemma 4.11, there exists a cofinal sequence
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Figure 1. Key principles

(A<ξ)ξ<ω1 of length at most ω1 in the Borel-Wadge degrees of ∆A sets. This implies
that the cofinality of |A|BW is at most ω1. However, since |A|BW = ω2, it contradicts
the fact that cf(ω2) = ω2. □

5. Beyond ω2

5.1. Π1
1-process with infinite mind-changes. The relationships among key point-

classes mentioned in Sections 3 and 4 are summarized as in Figure 1.
We now move to the (ω + 1)-st level, (D∗ω+1(Π˜ 1

1)), of the decreasing difference hier-
archy. That is, we consider the following ω + 1 sequence (Pα)α<ω+1 of Π˜ 1

1 sets:

P0 ⊇ P1 ⊇ P2 ⊇ · · · ⊇
∩
n<ω

Pn ⊇ Pω.

In this section, we deal with the following question:

Question 3. Calculate the Wadge rank of ∆(D∗ω+1(Π˜ 1
1)).

To tackle this problem, we first show, perhaps somewhat surprisingly, that any infinite
level of the decreasing difference hierarchy is strictly closed under ω1-pwo coproduct even
if it is a successor level.

Proposition 5.1. For any infinite ordinal η ≥ ω, D∗η(Π˜ 1
1) is strictly closed under

ω1-pwo coproduct.

Proof. Abbreviate ∆(D∗η(Π˜ 1
1)) as ∆. Let (Aα)α∈WO be a uniform ∆ collection. Then,

there exists a sequence (Pξ, P̌ξ)ξ<η of Π˜ 1
1 sets such that Aα = D∗ξ<η P

[α]
ξ = ¬D∗ξη P̌

[α]
ξ

for any α ∈ WO, where S[α] is the αth section of S. Then put Qξ = π−10 [WO] ∩ Pξ.
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Moreover, put Q̌0 = ωω, Q̌1 = π−10 [WO], and Q̌2+ξ = π−10 [WO] ∩ P̌ξ. Note that ξ < η
implies 2 + ξ < η since η is infinite. Moreover, Qξ and Q̌ξ are Π˜ 1

1.
We claim that

⊔
α∈WOAα = D∗ξ<ηQξ = ¬D∗ξ<η Q̌ξ. Given (α, x), if α ∈ WO then one

can easily see that max{ξ : (α, x) ∈ Qξ} = max{ξ : x ∈ P
[α]
ξ } if it exists. Therefore,

(α, x) ∈ D∗ξ<ηQξ if and only if x ∈ D∗ξ<η P
[α]
ξ = Aα. Moreover, if α ̸∈ WO then

(α, x) ̸∈ Q0, and therefore (α, x) ̸∈ D∗ξ<ηQξ. Hence,
⊔
α∈WOAα = D∗ξ<ηQξ. Again, given

(α, x), if α ∈ WO and {ξ : x ∈ P̌
[α]
ξ } = ∅, then x ̸∈ D∗ξ<η P̌

[α]
ξ = ¬Aα, and moreover

(α, x) ∈ Q̌1 \ Q̌2; hence (α, x) ̸∈ D∗ξ<η Q̌ξ. If α ∈ WO and {ξ : x ∈ P̌
[α]
ξ } ̸= ∅ then

one can easily see that max{ξ : (α, x) ∈ Q̌ξ} = 2 + max{ξ : x ∈ P̌
[α]
ξ } if it exists. In

particular, both values have the same parity, and therefore, (α, x) ∈ D∗ξ<η Q̌ξ if and only

if x ∈ D∗ξ<η P̌
[α]
ξ = ¬Aα. If α ̸∈ WO then (α, x) ∈ Q̌0\Q̌1, and therefore (α, x) ∈ D∗ξ<η Q̌ξ.

Hence,
⊔
α∈WOAα = ¬D∗ξ<η Q̌ξ. □

As a consequence of Proposition 5.1, combined with Lemma 4.10, one can see that
the Wadge rank of ∆(D∗ω+η(Π˜ 1

1)) is at least ω2 ·(1+η) for each η < ω1. As a special case,

we conclude that the Wadge rank of ∆(D∗ω+1(Π˜ 1
1)) is at least ω2 · 2. In fact, however,

one can observe that the Wadge rank of ∆(D∗ω+1(Π˜ 1
1)) is not such a small value. For

instance, one can obtain the following lower bound:

Theorem 5.2. The Wadge rank of ∆(D∗ω+1(Π˜ 1
1)) is greater than ω2 · ω1.

We will now prepare a proof of this theorem. Let (Pα)α<ω+1 be a decreasing ω + 1
sequence of Π˜ 1

1 sets. If moreover we have a Π˜ 1
1 set P̌ω such that

∩
n<ω Pn = Pω ∪ P̌ω

and Pω ∩ P̌ω = ∅, we call the sequence (Pn, P̌ω)n≤ω type ∆(ω + 1). A decreasing ω + 1
sequence (Pα)α<ω+1 defines a set P as in the usual difference hierarchy; that is, at the
first ω levels, a hyp-computable learner proceeds as follows:

0 → 1 → 0 → . . .

If the guess changes infinitely many often, then the guess becomes 0. After that, we
will be able to change the guess to 1:

0 → 1 → 0 → · · · (ω changes) · · · 0 → 1

A type ∆(ω + 1) sequence (Pα, P̌ω)α<ω+1 defines a set P in a similar manner, where
if the guess changes infinitely many often (which means x ∈

∩
n<ω Pn) then we soon

decide the final value is 0 or 1 (which corresponds to either x ∈ P̌ω or x ∈ Pω):

0 → 1 → 0 → · · · (ω changes) · · · i

Lemma 5.3. A set A is defined by a type ∆(ω + 1) sequence if and only if A ∈
∆(D∗ω+1(Π˜ 1

1)).

Proof. The forward direction is trivial. For the backward direction, we have two se-
quences P,Q of type ω + 1 guessing A. Given x, the first guessing process P returns 0
when the guess changes infinitely often but does not declare the ωth mind-change, i.e.,
x ∈

∩
n Pn but x ̸∈ Pω. Another guessing process Q returns 1 when x ∈

∩
nQn but

x ̸∈ Qω. We construct a guessing sequence D of type ∆(ω + 1).
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At stage α, if the number of changes of P is smaller than Q, then the process D
emulates P ; otherwise, D emulates Q whenever at least one of the numbers is finite. In
other words, compare nP = sup{n < ω : x ∈ Pn[α]} and nQ = sup{n < ω : x ∈ Qn[α]}.
If t = min{nP , nQ} is finite and even, returns 1. If t = min{nP , nQ} is finite and odd,
returns 0. If t is infinite, we have x ∈

∩
n Pn[α] and x ∈

∩
nQn[α]. In this case, either

P or Q declare the ωth mind-change; otherwise, P ’s final guess is “A(x) = 0” but Q’s
final guess is “A(x) = 1”, which is impossible. Thus, wait for seeing stage β ≥ α such
that either P or Q declare the ωth mind-change, i.e., x ∈ Pω[β] or x ∈ Qω[β]. In the
former case, D’s final guess is “A(x) = 1”, i.e., x ∈ Dω. In the latter case, D’s final
guess is “A(x) = 0”, i.e., x ∈ Ďω. It is not hard to check that D gives a process of type
∆(ω + 1) guessing A. □

5.2. ω-change matrix. In order to prove Theorem 5.2, it suffices to show that there
are at least ω1 many classes between D∗ω(Π˜ 1

1) and D∗ω+1(Π˜ 1
1). First, we observe that

there are at least ω many such classes. A key observation is that, as we have seen above,
∆(D∗ω+1(Π˜ 1

1)) corresponds to hyp-computability with at most ω mind-changes. What
we will show is that there is a finer hierarchy within hyp-computability with at most ω
mind-changes. The following definition is hard to understand, so we give an intuitive
explanation after the definition.

Definition 5.4. A double sequence A = (Ajn)(j,n)∈ℓ×ω of Π˜ 1
1 sets is called an ω-change

ℓ× ω matrix if the following holds (w.r.t. some approximation of (Ajn)(j,n)∈ℓ×ω):

(1) For any j < ℓ, (Ajn)n∈ω is a decreasing sequence.
(2) For any j < k < ℓ and α ∈ WO, we have Ak0[α] ∩ Ajn ⊆ Ajn[α] for any n ∈ ω.

Given c, we define a new difference operator cD′ℓ×ω, which takes an ω-change ℓ × ω
matrix A and an ℓ × ω matrix a = (ajn) as input. To define this operator, we first
introduce auxiliary parameters vk(x) for each k ≤ ℓ. Then, we first put v0(x) = c. For
each k < ℓ, define vk+1 as follows:

vk+1(x) =

{
akm if m = max{n < ω : x ∈ Akn},
vk(x) if no such m exists.

Then we define cD′ℓ×ω[a/A] as follows:

c D
ℓ×ω
′[a/A](x) =

{
vk(x) if k = min

{
j < ℓ : x ∈

∩
n<ω A

j
n

}
,

vℓ(x) if no such k exists.

Let cD′ℓ×ω(Π˜ 1
1) be the class of all sets of the form cD′ℓ×ω[a/A] for some ω-change ℓ×ω

matrix A = (Ajn) of Π˜ 1
1 sets and ℓ × ω matrix a = (ajn) with a

j
n ∈ {0, 1}. If c = 0 and

ajn = par(n) we simply write D′ℓ×ω(Π˜ 1
1).

Let us explain an intuitive meaning of this definition. Each row of an ℓ × ω matrix
acts in the same way as the class vD∗ω(Π˜ 1

1) for some v. In other words, for each k < ℓ,
a hyp-computable process Ψk is assigned to the k-th row, which may change the guess
at most ω times, and when the ω-th change occurs, the final guess is set to vk. The first
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guess is also set to vk.

Ak0 ⊇ Ak1 ⊇ Ak2 ⊇ · · · (ω changes) · · ·
vk → ak0 → ak1 → ak2 → · · · (ω changes) · · · vk

However, this value vk can vary if k > 0. A candidate ak−1s for the value vk is
determined by a guessing process Ψk−1 assigned to the row just one above it. However,
Ψk−1 may also change the guess ω times, so the final value vk−1 depends on a guessing
process Ψk−2 assigned to the (k−1)-th row if k−1 > 0. Continue this argument, and if
this process arrives the 0-th row, and if the ω-th change of Ψ0 occurs, then the final guess
is set to c. Note, however, that although this explanation seems to proceed in order
from the bottom row, the condition (2) in Definition 5.4 guarantees that the process
starts from the top row; that is, if we start the guessing process in some row, then
the guessing processes in the rows above it has already terminated. This assumption
ensures that the guesses in each line can be integrated into a single hyp-computable
process with at most ω mind-changes:

Lemma 5.5. For any ℓ < ω, D′ℓ×ω(Π˜ 1
1) ⊆ ∆(D∗ω+1(Π˜ 1

1)).

Proof. Let P ∈ D′ℓ×ω(Π˜ 1
1) be given. Then, P is of the form cD′ℓ×ω[a/A] for some ω-

change ℓ × ω matrix A = (Ajn) and ℓ × ω matrix a = (ajn), where c = 0 and ajn =
par(n). To simplify our argument, one can assume that for any x and α there are at
most one (j, n) such that x is enumerated into Ajn at stage α; that is, x ∈ Ajn[α] but
x ̸∈ Ajn[β]. For instance, one can assume that we only enumerate something into Ajn at
stage ω2 ·α+ω ·j+n for some α. We construct a guessing sequence D of type ∆(ω+1).

Our guessing algorithm to compute P (x) can be described as follows:

• At each stage α, starting from the top row, one can calculate the current value
vj(x)[α] of vj for each j ≤ ℓ. Indeed, it is easy to check that (α, k, x) 7→ vk(x)[α]
is Borel.

• As the first case, if mind-changes occur infinitely often at some row k, then the
guess is set to vk(x)[α], and the computation terminates. The condition (2) in
Definition 5.4 guarantees that at most one row is active at any stage α, and
thus, there is at most one row j at which mind-changes occur infinitely often at
α. Moreover, the condition (2) inductively ensures that the value of vj(x) will
not change after stage α for any j ≤ k, so the guess vk(x)[α] matches the output
value P (x).

• As the second case, if the mind-changes has not yet occurred infinitely many
times at any row, then the algorithm currently guesses that the output value of
P (x) is vℓ(x)[α]. Since vℓ(x) only changes when mind-changes occur at some row,
and there are only a finite number of rows, the number of times of mind-changes
has is kept finite in this case.

To be more precise, first check if there exists k such that x ∈
∩
n<ω A

k
m[α]. If true,

this is the first case. If α is the least such stage, and k is the least such row, then our
algorithm returns vk(x). By the condition (2) in Definition 5.4, since x ∈ Ak0[α0] we have
Ajn[α] = Ajn for any j < n. This means that vk(x)[α] = vk(x), and k is the least row
such that x ∈

∩
n<ω A

k
m. Hence cD

′
k<ω[a/A](x) = vk(x) by definition. If there exists no

k such that x ∈
∩
n<ω A

k
m[α], then this is the second case. If this is true for any stage α,
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then x ̸∈
∩
n<ω A

k
m for any k < ℓ, so the output of our guessing algorithm converges to

vℓ(x). In this case, by the definition of D′, we also have cD′k<ω[a/A](x) = vℓ(x). Hence,
our algorithm correctly guess the value of P (x) = cD′k<ω[a/A](x).

As mentioned above, the mind-changes in the guess of our algorithm due to the second
case occur only a finite number of times, and once the first case is reached, the guess
never changes. Also, in the first case, the guess is determined immediately. Hence, this
is a ∆(ω + 1) guessing process. This completes the proof. □

To ensure that it is a reasonable pointclass, it should be closed under continuous
substitution.

Lemma 5.6. D′ℓ×ω(Π˜ 1
1) is closed under continuous substitution, that is, B ≤W A ∈

D′ℓ×ω(Π˜ 1
1) implies B ∈ D′ℓ×ω(Π˜ 1

1).

Proof. More generally, let f ∈ cD′ℓ×ω(Π˜ 1
1) be given, and assume that g = f ◦ θ for some

continuous function θ. It suffices to show that g ∈ cD′ℓ×ω(Π˜ 1
1). Then, f is of the form

cD′ℓ×ω[a/A] for some ω-change ℓ×ω matrix A = (Ajn) and ℓ×ω matrix a = (ajn). Then,
put Bj

n = θ−1[Ajn], and then Bj
n[α] = θ−1[Ajn[α]] yields an approximation of Bj

n for any
j < ℓ and n ∈ ω. The property that A is an ω-change matrix is inherited by B = (Bj

n).
Moreover, one can see that g = cD′ℓ×ω[a/B] since θ−1[

∩
n<ω A

k
n] =

∩
n<ω θ

−1[Akn], and
θ−1[Akn \ Akn+1] = θ−1[Akn] \ θ−1[Akn+1]. Therefore, g ∈ cD′ℓ×ω(Π˜ 1

1). □

Lemma 5.7. For any ℓ < ω, D′ℓ×ω(Π˜ 1
1) is strictly closed under ω1-pwo coproduct.

Proof. Put ∆ = ∆(D′ℓ×ω(Π˜ 1
1)). Let a uniform ∆-collection (Pα)α∈WO be given. Then it

is obtained by a collection of ω-change matrices Aα = (Aα,jn ). Put Bj
n =

⊔
α∈WOA

α,j
n for

each n < ω. Then, Bj
n is Π˜ 1

1 for each n < ω since the ω1-pwo-coproduct of a uniform
collection of Π˜ 1

1 sets is Π˜ 1
1. Moreover, B = (Bj

n)j,n is an ω-change matrix: For the

condition (2), if j < k and (α, x) ∈ Bk
0 [β] ∩ Bj

n then x ∈ Aα,k0 [β] ∩ Aα,jn ⊆ Aα,jn [β], so
(x, α) ∈ Bj

n[β].
To see the equality D′ℓ×ω B =

⊔
α∈WO Pα, let (α, x) be given. Clearly, if α ̸∈ WO then

(α, x) ̸∈ Bj
0, and therefore, x ̸∈ D′ℓ×ω B. If α ∈ WO, then (α, x) ∈ Bj

n if and only if
x ∈ Aα,jn . Therefore, (α, x) ∈ D′ℓ×ω B if and only if x ∈ D′ℓ×ω Aα = Pα. This completes
the proof. □

Lemma 5.8. The hierarchy (D′ℓ×ω(Π˜ 1
1))ℓ<ω does not collapse; that is, for any k < ℓ <

ω, D′ℓ×ω(Π˜ 1
1) \D′k×ω(Π˜ 1

1) is nonempty.

Proof. We first construct a universal D′ℓ×ω(Π˜ 1
1) set G. The existence of a universal Π˜ 1

1

set clearly yields a total representation of all ℓ × ω matrices of Π˜ 1
1 sets which are not

necessarily ω-change matrices. Given ε ∈ ωω, let (Ajn) be the ℓ × ω matrix coded by
ε. Then, define an ℓ × ω matrix (Bj

n) as follows: Given α < ω1, if x ̸∈ Bk
0 [α] for any

k > j then we declare that x ∈ Bj
n[α] if and only if x ∈ Ajn[α]. If x ∈ Bk

0 [α] for some
k > j, declare that x ∈ Bj

n[α] if and only if x ∈ Bj
n[β] for some β < α. That is, once

a mind-change occurs in a lower row k > j, no more changes in the row j will occur.
Then, put Bj

n =
∪
α<ω1

Bj
n[α], and then it is easy to see that Bε = (Bj

n)(n,j)∈ℓ×ω is an

ω-change matrix of Π˜ 1
1 sets. Clearly, for any ω-change ℓ × ω matrix A there exists ε

such that Bε = A. We define G as the set of all (ε, x) such that x ∈ D′ℓ×ω Bε. Note that
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G ∈ D′ℓ×ω(Π˜ 1
1) since G is of the form D′ℓ×ω C for the ω-change matrix C = (Cj

n) defined
by Cj

n = {(ε, x) : x ∈ Bε,j
n }, where Bε = (Bε,j

n ).
Next, it is easy to see that the dual class of D′ℓ×ω(Π˜ 1

1), i.e., ¬D′ℓ×ω(Π˜ 1
1), is also

included in ∆(D′(ℓ+1)×ω(Π˜ 1
1)), by shifting the components of each row by one, and

by adding the topmost row which always guesses 1. Hence, it remains to show that
¬D′ℓ×ω(Π˜ 1

1) is not included inD′ℓ×ω(Π˜ 1
1). The rest of the proof is an easy diagonalization

argument. Let us consider Q = {x : (x, x) ̸∈ G}. We claim that Q does not belong
to Dℓ×ω(Π˜ 1

1). Otherwise, there exists x such that Q = D′ℓ×ω Bx. However, x ∈ Q if
and only if (x, x) ̸∈ G if and only if x ̸∈ D′ℓ×ω Bx, a contradiction. This concludes the
proof. □

Lemmas 5.5, 5.6, 5.7, and 5.8, combined with Lemma 4.10, imply that the Wadge
rank of ∆(D∗ω+1(Π˜ 1

1)) is at least ω2 · ω. It is straightforward to consider the transfinite
version of this argument. That is, for a limit ordinal λ, one may define D′λ×ω(Π˜ 1

1)
as the class of all sets which can be written as countable disjoint unions of sets from
D′λ[n]×ω(Π˜ 1

1), n < ω, where (λ[n])n<ω a fundamental sequence for λ. For a successor

ordinal ξ = ζ + 1, in order to define D′ξ×ω(Π˜ 1
1), one can simply add one more row to

D′ζ×ω(Π˜ 1
1).

As a consequence, inside ∆(D∗ω+1(Π˜ 1
1)), there are at least ω1 many classes strictly

closed under ω1-pwo coproduct. Hence, by Lemma 4.10, we conclude that the Wadge
rank of ∆(D∗ω+1(Π˜ 1

1)) is at least ω2 ·ω1. However, by using ω1-pwo coproduct to combine
these ω1 many classes, we can create a new class inside ∆(D∗ω+1(Π˜ 1

1)). This concludes
the proof of Theorem 5.2. By repeating this process, it seems possible to construct ω1+
ω1 many, ω2

1 many, or ω2 many different classes strictly closed under ω1-pwo coproduct.
If this is the case, by Lemma 4.10, one can show that the Wadge rank of ∆(D∗ω+1(Π˜ 1

1))
is at least ω2

2.

Question 4. Under AD, is the Wadge rank of ∆(D∗ω+1(Π˜ 1
1)) at least ω

2
2?

One may also ask a similar question:

Question 5. Under AD, is the Wadge rank of ∆(D∗ω+n(Π˜ 1
1)) at least ω

n+1
2 ?

We now move to the next level of (D∗ω+n(Π˜ 1
1))n<ω. It is reasonable to ask the following

question.

Question 6. Under AD, calculate the Wadge rank of ∆(D∗ω+ω(Π˜ 1
1)).

However, we have the impression that answering this question is incredibly diffi-
cult. This is because we feel that there is also a tremendously vast hierarchy between
(D∗ω+n(Π˜ 1

1))n<ω and ∆(D∗ω+ω(Π˜ 1
1)). The first step is given by “Π1

1-processes with [for-
ward ω]+[backward ω] mind-changes”. More precisely, we consider the following ω + ω
sequence (Pα)α<ω+ω of Π˜ 1

1 sets:

P0 ⊇ P1 ⊇ P2 ⊇ · · · ⊇
∩
n<ω

Pn ⊇
∪
n<ω

Pω+n ⊇ · · · ⊇ Pω+2 ⊇ Pω+1 ⊇ Pω.

We call such a sequence type ω→ + ω←. If moreover we have
∩
n<ω Pn =

∪
n<ω Pω+n,

we call it type ∆(ω→ + ω←). A type ω→ + ω← sequence (Pα)α<ω+ω defines a set P as
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in the usual difference hierarchy; that is, at the first ω levels, a Π1
1 guess proceeds as

follows:

0 → 1 → 0 → · · · (ω changes) · · · 0
If the guess changes infinitely many often, then the guess becomes 0. After that, we

will have a fresh mind-change counter ω controlling our next finite mind-changes.

Question 7. Under AD, calculate the Wadge rank of ∆(ω→ + ω←).

In general, one can consider “Π1
1-processes with [forward ω]+[backward α] mind-

changes” for any α < ω1. Then we get the corresponding pointclass ∆(ω→ + α←), and
we still have ∆(ω→+α←) ⊆ ∆(D∗ω+ω(Π˜ 1

1)) for any α < ω1. Based on these observations,
we conjecture that the answer to Question 6 is at least ωω2

2 , but we do not have a method
to calculate this at this time.
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