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We introduce the point degree spectrum of a represented space as a substructure of the
Medvedev degrees, which integrates the notion of Turing degrees, enumeration degrees, con-
tinuous degrees, and so on. The notion of point degree spectrum creates a connection among
various areas of mathematics including computability theory, descriptive set theory, infinite
dimensional topology and Banach space theory. Through this new connection, for instance,
we construct a family of continuum many infinite dimensional Cantor manifolds with prop-
erty C whose Borel structures at an arbitrary finite rank are mutually non-isomorphic. This
provides new examples of Banach algebras of real valued Baire class two functions on metriz-
able compacta, and strengthen various theorems in infinite dimensional topology such as Pol’s
solution to Alexandrov’s old problem.

1 Introduction

Computability Theory

In computable analysis [62, 77], there has for a long time been an interest in how complicated
the set of codes of some element in a suitable spaces may be. Pour-El and Richards [62]
observed that any real number, and more generally, any point in a Euclidean space, has a Turing
degree. They subsequently raised the question whether the same holds true for any computable
metric space. Miller [45] later proved that various infinite dimensional metric spaces such as
the Hilbert cube and the space of continuous functions on the unit interval contain points which
lack Turing degrees, i.e. have no simplest code w.r.t. Turing reducibility. A similar phenomenon
was also observed in algorithmic randomness theory. Day and Miller [15] showed that no
neutral measure has Turing degree by understanding each measure as a point in the infinite
dimensional space consisting of probability measures on an underlying space.

These previous works convince us of the need for a reasonable theory of degrees of unsolv-
ability of points in an arbitrary represented space. To establish such a theory, we associate a
substructure of the Medvedev degrees with a represented space, which we call its point degree
spectrum. A wide variety of classical degree structures are realized in this way, e.g., Turing de-
grees [72], enumeration degrees [19], continuous degrees [45], degrees of continuous functionals
[29]. What is more noteworthy is that the concept of a point degree spectrum is closely linked
to infinite dimensional topology. For instance, we shall see that for a Polish space all points
have Turing degrees if and only if the small transfinite inductive dimension of the space exists.

In a broader context, there are various instances of smallness properties (i.e., σ-ideals) of
spaces and sets that start making sense for points in an effective treatment; e.g., arithmetical
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2 Point degree spectra

(Cohen) genericity [51, 53], Martin-Löf randomness [51], and effective Hausdorff dimension [41].
In all these cases, individual points can carry some amount of complexity – e.g. a Martin-Löf
random point is in some sense too complicated to be included in a computable Gδ set having
effectively measure zero. A recent important example [60, 80] from forcing theory is genericity
with respect to the σ-ideal generated by finite-dimensional compact metrizable spaces. Our
work provides an effective notion corresponding to topological invariants such as small inductive
dimension or metrizability, and e.g. allows us to say that certain points are too complicated to
be (computably) a member of a (finite-dimensional) Polish space.

Additionally, the actual importance of point degree spectrum is not merely conceptual, but
also applicative. Indeed, unexpectedly, our notion of point degree spectrum turned out to be a
powerful tool in descriptive set theory and infinite dimensional topology, in particular, in the
study of restricted Borel isomorphism problems, as explained in more depth below.

Descriptive Set Theory

A Borel isomorphism problem (see [9, 42, 31, 25]) asks to find a nontrivial isomorphism type
in a certain class of Borel spaces (i.e., topological spaces together with their Borel σ-algebras).
An α-th level Borel/Baire isomorphism between X and Y is a bijection f such that E ⊆ X
is of additive Borel/Baire class α if and only if f [E] ⊆ Y is of additive Borel/Baire class α.
These restricted Borel isomorphisms are introduced by Jayne [33], in Banach space theory,
to obtain certain variants of the Banach-Stone Theorem and the Gelfand-Kolmogorov
Theorem for Banach algebras of the forms B∗

α(X) for realcompact spaces X. Here, B∗
α(X) is the

Banach algebra of bounded real valued Baire class α functions on a space X with respect to the
supremum norm and the pointwise operation [7, 14, 33]. The first and second level Borel/Baire
isomorphic classifications have been studied by several authors (see [34, 35]). However, it is
not certain even whether there is an uncountable Polish space whose Gδσ-structure is neither
isomorphic to the real line nor to the Hilbert cube:

Problem 1.1 (The Second-Level Borel Isomorphism Problem). Are all uncountable Polish
spaces second-level Borel isomorphic either to R or to RN?

Jayne’s result [33] shows that this is equivalent to asking the following problem on Banach
algebras.

Problem 1.2 (see also Motto Ros [48]). If X is an uncountable Polish space. Then does
there exist n ∈ N such that B∗

n(X) is linearly isometric (or ring isomorphic) either to B∗
n([0, 1])

or to B∗
n([0, 1]

N)?

The very recent successful attempts to generalize the Jayne-Rogers theorem and the Solecki
dichotomy (see [48, 58] and also [37] for a computability theoretic proof) revealed that two
Polish spaces are second-level Borel isomorphic if and only if they are σ-homeomorphic. Here,
a topological space X is σ-homeomorphic to Y (written as X ∼=T

σ Y) if there are countable
covers {Xi}i∈ω and {Yi}i∈ω of X and Y such that Xi is homeomorphic to Yi for every i ∈ ω.
Therefore, the second-level Borel isomorphism problem can be reformulated as the following
equivalent problem.

Problem 1.3 (Motto Ros et al. [49]). Is any Polish space X either σ-embedded into R or
σ-homeomorphic to RN?
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Unlike the classical Borel isomorphism problem, which was able to be reduced to the same
problem on zero-dimensional Souslin spaces, the second-level Borel isomorphism problem is in-
escapably tied to infinite dimensional topology [44], since all transfinite dimensional uncountable
Polish spaces are mutually second-level Borel isomorphic.

The study of σ-homeomorphic maps in topological dimension theory dates back to a clas-
sical work by Hurewicz-Wallman [32] characterizing transfinite dimensionality. Alexan-
drov [2] asked whether there exists a weakly infinite dimensional compactum which is not
σ-homeomorphic to the real line. Roman Pol [61] solved this problem by constructing such a
compactum. Roman Pol’s compactum is known to satisfy a slightly stronger covering property,
called property C [1, 3, 26].

Our notion of degree spectrum on Polish spaces serves as an invariant under second-level
Borel isomorphism. Indeed, an invariant which we call degree co-spectrum, a collection of Turing
ideals realized as lower Turing cones of points of a Polish space, plays a key role in solving the
second-level Borel isomorphism problem. By utilizing these computability-theoretic concepts,
we will construct a continuum many pairwise incomparable σ-homeomorphism types of compact
metrizable C-spaces, that is:

There is a collection (Xα)α<2ℵ0 of continuum many compact metrizable C-spaces such
that, whenever α ̸= β, Xα cannot be written as a countable union of homeomorphic
copies of subspaces of Xβ.

As mentioned above, this also shows that there are continuum many second-level Borel isomor-
phism types of compact metric spaces. More generally, a finite-level Borel embedding of X into
Y is a finite-level Borel isomorphism between X and a subset of Y of finite Borel rank. Then,
our result entails the following as a corollary:

There is a collection (Xα)α<2ℵ0 of continuum many compact metrizable C-spaces such
that, whenever α ̸= β, Xα cannot be finite-level Borel embedded into Xβ.

The key idea is measuring the quantity of all possible Scott ideals realized within the degree
co-spectrum of a given space. Our spaces are completely described in the terminology of com-
putability theory (based on Miller’s work on the continuous degrees [45]). Nevertheless, the
first of our examples turns out to be second-level Borel isomorphic to Roman Pol’s compactum
(but of course, other continuummany examples cannot be second-level Borel isomorphic to Pol’s
compactum). Hence, our solution can also be viewed as a refinement of Roman Pol’s solution
to Alexandrov’s problem.

Summary of Results

This work is part of a general development to study the descriptive theory of represented spaces
[54], together with approaches such as synthetic descriptive set theory proposed in [57, 56]. In
Section 3, we introduce the notion of point degree spectrum, and clarify the relationship with
σ-continuity. In Section 4, we introduce the notion of an ω-left-CEA operator in the Hilbert cube
as an infinite dimensional analogue of an ω-CEA operator (in the sense of classical computability
theory), and show that the graph of a universal ω-left-CEA operator is an individual counterex-
ample to Problems 1.1, 1.2, and 1.3. In Section 5, we describe a general procedure to construct
uncountably many mutually different compacta under σ-homeomorphism. In Section 6, we clar-
ify the relationship between a universal ω-left-CEA operator and Roman Pol’s compactum.
In Section 7, we characterize represented spaces with effectively-fiber-compact representations
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(which are relevant for approaches to complexity theory along the lines of Weihrauch ’s [79])
as precisely the computable metric spaces. In Section 8, we also look at the degree structures
of nonmetrizable spaces and transfer techniques in the other direction: Employing geometric
reasoning about Rn, we prove results about semirecursive enumerations degrees. The methods
used in Sections 7–8 do not depend on those developed in Sections 4–5.

Future work

The methods introduced in this paper, in particular the notion of the point degree spectrum
and the associated connection between topology and recursion theory, have already inspired
and enabled several other studies. In [22], Gregoriades, Kihara and Ng are attacking the
generalized Jayne Rogers conjecture from descriptive set theory. A core aspect of this work is
whether certain degree-theoretic results like the Shore-Slaman join theorem and Friedberg jump
inversion theorem hold for the point degree spectra of Polish spaces.

Building upon Section 7, Andrews, Igusa, Miller and Soskova [16] used an effective
metrization argument to show that the point degree spectrum of the Hilbert cube coincides
with the almost-total enumeration degrees, which in turn is used to show the purely recursion-
theoretic consequence that PA above is definable in the enumeration degrees.

Kihara, Lempp, Ng and Pauly [38] have embarked on the systematic endeavour to classify
the point degree spectra of second-countable spaces from Counterexample in Topology [73]. This
has already proven to be a rich source for the fine-grained study of the enumeration degrees,
as both previously studied substructures as well as new ones of interest to recursion theorists
appear in this fashion.

Based on the results both in the present paper, and in the extension mentioned here, we
are confident that both directions of the link between topology and recursion theory established
here have significant potential for applications.

2 Preliminaries

2.1 Computability Theory

2.1.1 Basic Notations

We use the standard notations from modern computability theory and computable analysis. We
refer the reader to [53, 52, 72] for the basics on computability theory, and to [62, 77, 55] for the
basics on computable analysis.

By f :⊆ X → Y , we mean a function from a subset of X into Y . Such a function is called
a partial function. We fix a pairing function (m,n) 7→ ⟨m,n⟩, which is a computable bijection
from N2 onto N such that ⟨m,n⟩ 7→ m and ⟨m,n⟩ 7→ n are also computable. For x, y ∈ NN,
the join x ⊕ y ∈ NN is defined by (x ⊕ y)(2n) = x(n) and (x ⊕ y)(2n + 1) = y(n). An oracle
is an element of {0, 1}N or NN. By the notation Φz

e we denote the computation of the e-th
Turing machine with oracle z. We often view Φz

e as a partial function on {0, 1}N or NN. More
precisely, Φz

e(x) = y if and only if given an input n ∈ N with oracle x ⊕ z, the e-th Turing
machine computation halts and outputs y(n). The terminology “c.e.” stands for “computably
enumerable.” For an oracle z, by “z-computable” and “z-c.e.,” we mean “computable relative
to z” and “c.e. relative to z.” For an oracle x, we write x′ for the Turing jump of x, that is,
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the halting problem relative to x. Generally, for a computable ordinal α, we use x(α) to denote
the α-th Turing jump of x. Here, regarding the basics on computable ordinals and transfinite
Turing jumps, see [13, 67].

We will repeatedly use the following fact, known as the Kleene recursion theorem or the
Kleene fixed point theorem.

Fact 2.1 (The Kleene Recursion Theorem; see [53, Theorem II.2.10]). Given an oracle z and a
computable function f : N → N, one can effectively find an index e ∈ N such that Φz

e and Φz
f(e)

are the same partial function.

2.1.2 Represented spaces

A represented space is a pair X = (X, δX) of a set X and a partial surjection δX :⊆ NN → X.
Informally speaking, δX (called a representation) gives names of elements in X by using infinite
words. It enables tracking of a function f on abstract sets by a function on infinite words (called
a realizer of f). This is crucial for introducing the notion of computability on abstract sets
because we already have the notion of computability on infinite words.

Formally, a function between represented spaces is a function between the underlying sets.
For f : X → Y and F :⊆ NN → NN, we call F a realizer of f , iff δY (F (p)) = f(δX(p)) for all
p ∈ dom(fδX), i.e. if the following diagram commutes:

NN F−−−−→ NNyδX

yδY

X
f−−−−→ Y

A map between represented spaces is called computable (continuous), iff it has a computable
(continuous) realizer. In other words, a function f is computable (continuous) if there is a
computable (continuous) function F on infinite words such that, given a name p of a point
x, F (p) returns a name of f(x). We also use the same notation Φz

e to denote a function on
represented spaces realized by the e-th partial z-computable function. Similarly, we call a point
x ∈ X computable, iff there is some computable p ∈ NN with δX(p) = x, that is, x has a
computable name. In this way, we think of a represented space as a kind of space equipped with
the notion of computability.

If a set X is already topologized, the above notion of continuity can be inconsistent with
topological continuity. To eliminate such an undesired situation, we shall consider a restricted
class of representations which are consistent with a given topological structure, so-called ad-
missible representations. We will not go into the details of admissibility here, but just mention
that if a T0-space has a countable cs-network (a.k.a. a countable sequential pseudo-base), then
it always has an admissible representation (see Schröder [69]).

A particularly relevant subclass of represented spaces are the computable Polish spaces,
which are derived from complete computable metric spaces by forgetting the details of the
metric, and just retaining the representation (or rather, the equivalence class of representations
under computable translations). Forgetting the metric is relevant when it comes to compatibility
with definitions in effective descriptive set theory as shown in [23].

Example 2.2. The following are examples of admissible representations.
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1. The representation of N is given by δN(0
n10N) = n. It is straightforward to verify that the

computability notion for the represented space N coincides with classical computability
over the natural numbers.

2. A computable metric space is a tuple M = (M,d, (an)n∈N) such that (M,d) is a metric
space and (an)n∈N is a dense sequence in (M,d) such that the relation

{(t, u, v, w) | νQ(t) < d(au, av) < νQ(w)}

is recursively enumerable. The Cauchy representation δM :⊆ NN → M associated with
the computable metric space M = (M,d, (an)n∈N) is defined by

δM(p) = x :⇐⇒

{
d(ap(i), ap(k)) ≤ 2−i for i < k

and x = lim
i→∞

ap(i)

3. Another, more general subclass are the quasi-Polish spaces introduced by de Brecht [8].
A represented space X = (X, δX) is quasi-Polish, if it is countably based, admissible and
δX : NN → X is total. These include the computable Polish spaces as well as ω-continuous
domains.

4. Generally, a topological T0-space X with a countable base B = ⟨Bn⟩n∈N is naturally
represented by defining δ(X,B)(p) = x iff p enumerates the code of a neighborhood basis
for x, that is, range(p) = {n ∈ N : x ∈ Bn}. One can also use a network to give a
representation of a space as suggested above.

We always assume that {0, 1}N, Rn, and [0, 1]N are admissibly represented by the Cauchy
representations obtained from their standard metics. A real x ∈ R is left-c.e. if there is a
computable sequence (qn)n∈N of rationals such that x = supn qn. Generally, a real x ∈ R is
left-c.e. relative to y ∈ X if there is a partial computable function f :⊆ X → QN such that
x = supn f(y)(n). If (M,d, (an)n∈N) is a computable metric space, there is a computable list
(Be)e∈N of open balls of the form B(an; q), where B(an; q) is the open ball of radius q centered
at an. We say that a set P ⊆M is Π0

1 if there is a c.e. set W ⊆ N such that P =M \
∪

e∈W Be.
By Π0

1(z), we mean Π0
1 relative to an oracle z, which is defined using a z-c.e. set W instead of

a c.e. set. See also Section 2.1.4 for an abstract definition of Π0
1 which is applicable to general

spaces.

2.1.3 Degree structures

The Medvedev degrees M [43] are a cornerstone of our framework. These are obtained by taking
equivalence classes from Medvedev reducibility ≤M , defined on subsets A, B of Baire space NN

via A ≤M B iff there is a computable function F : B → A. Important substructures of M
also relevant to us are the Turing degrees DT , the continuous degrees Dr and the enumeration
degrees De, these satisfy DT ( Dr ( De ( M.

Turing degrees are obtained from the usual Turing reducibility ≤T defined on points p, q ∈ NN

with p ≤T q iff there is a computable function F :⊆ NN → NN with F (q) = p. We thus see
p ≤T q ⇔ {p} ≤M {q}, and can indeed understand the Turing degrees to be a subset of the
Medvedev degrees. The continuous degrees were introduced by Miller in [45]. Enumeration
degrees have received a lot of attention in computability theory, and were originally introduced
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by Friedberg and Rogers [19] (see also [52, Chapter XIV]). In both cases, we can provide a
simple definition directly as a substructure of the Medvedev degrees later on.

A further reducibility notion is relevant, although we are not particularly interested in its
degree structure. This is Muchnik reducibility ≤w [50], defined again for sets A,B ⊆ NN via
A ≤w B iff, for any p ∈ B, there is q ∈ A such that q ≤T p. Clearly A ≤M B implies A ≤w B,
but the converse is false in general. A detailed investigation on the difference between Medvedev
and Muchnik degrees can be found in [27, 28, 74].

2.1.4 Preliminaries for Sections 7–8

We briefly present some fundamental concepts on represented spaces following [55]. An impor-
tant feature of the category of admissibly represented spaces and continuous functions is that it is
cartesian closed, that is, closed under exponential, based on the UTM-theorem. More explicitly,
given represented spaces X and Y, recall that every partial continuous function f :⊆ X → Y
is of the form Φz

e for some index e ∈ N and oracle z, and then, one can think of the pair ⟨e, z⟩
as a name of f . That is, the map ⟨e, z⟩ 7→ Φz

e yields a representation of the space C(X,Y) of
continuous functions between X and Y so that function evaluation and the other usual notions
are computable.

In the following, we will want to make use of a special represented space, the Sierpiński space
S = ({⊥,⊤}, δS). The representations is given by δS(0

N) = ⊥ and δS(p) = ⊤ for p ̸= 0N. We
then have the space O(X) ∼= C(X, S) of open subsets of a represented space X by identifying
a set with its characteristic function, and the usual set-theoretic operations on this space are
computable, too. We write A(X) for the space of closed subsets, where names are names
of the open complement. Traditionally in computability theory, a computable element of the
hyperspace O(X) is called a Σ0

1 set, a Σ0
1 class or a c.e. open set, and a computable element of

the hyperspace A(X) is called a Π0
1 set, a Π0

1 class or a co-c.e. closed set.
The canonic function κX : X → O(O(X)) mapping x to {U ∈ O | x ∈ U} is always

computable. If it has a computable inverse, then we call X computably admissible. Admissibility
in this sense was introduced by Schröder [69, 68]. As mentioned above, the computably
admissible represented spaces are those that can be understood fully as topological spaces.

2.2 Topology and Dimension

2.2.1 Isomorphism and Classification

We are now interested in isomorphisms of a particular kind, this always means a bijection in
that function class, such that the inverse is also in that function class. For instance, consider
the following morphisms. For a function f : X → Y,

1. f is σ-computable (σ-continuous, resp.) if there are sets (Xn)n∈N such that X =
∪

n∈NXn

and each f |Xn is computable (continuous, resp.)

2. f is Γ-piecewise continuous if there are Γ-sets (Xn)n∈N such that X =
∪

n∈NXn and each
f |Xn is continuous.

3. f is n-th level Borel measurable if f−1[A] is Σ0
n+1 for every Σ0

n+1 set A ⊆ X.

In particular, f is second-level Borel measurable iff f−1[A] is Gδσ for every Gδσ set A ⊆ X. We
also say that f is finite-level Borel measurable if it is n-th level Borel measurable for some n ∈ N.
Note that σ-continuity is also known as countable continuity.
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Note that if X and Y have uniformly proper representations (this includes all computable
metric spaces, see Subsection 7.1 for details), then the Xn in the definition of σ-continuity
may be assumed to be Π0

2-sets. Moreover, by recent results from descriptive set theory (see
[37, 48, 58]), we have the following implication for functions on Polish spaces:

Π0
2-piecewise continuous ⇒ second-level Borel measurable ⇒ countably continuous

Consequently, the second-level Borel isomorphic classification and the σ-continuous isomor-
phic classification of Polish spaces are exactly the same. More precisely, three classification
problems, Problems 1.1, 1.2 and 1.3 in Section 1 are equivalent.

Hereafter, for notation, let ∼= be computable isomorphism, ∼=T continuous isomorphism (i.e.,
homeomorphism), ∼=σ be isomorphism by σ-computable functions and ∼=T

σ is σ-continuous iso-
morphism. We also use the terminologies such as σ-homeomorphism and σ-embedding to denote
σ-continuous isomorphism and σ-continuous embedding.

For any of these notions, we write X ≤ Y with the same decorations on ≤ if X is isomorphic
to a subspace of Y (i.e., X is embedded into Y) in that way. If X ≤ Y and X is not isomorphic
to Y in the designated way, then we also write X < Y, again with the suitable decorations on
<. If neither X ≤ Y nor Y ≤ X, we write X | Y (again, with the same decorations). The
Cantor-Bernstein argument shows the following.

Observation 2.3. Let X and Y be represented spaces. Then, X ∼=σ Y if and only if X ≤σ Y
and Y ≤σ X

2.2.2 Topological Dimension theory

As general source for topological dimension theory, we point to Engelking [17]. See also van
Mill [44] for infinite dimensional topology. A topological space X is countable dimensional if it
can be written as a countable union of finite dimensional subspaces. Recall that a Polish space
is countable dimensional if and only if it is transfinite dimensional, that is, its transfinite small
inductive dimension is less than ω1 (see [32, pp. 50–51]). One can see that a Polish space X is
countable dimensional if and only if X ≤T

σ {0, 1}N.
To investigate the structure of uncountable dimensional spaces, Alexandrov introduced

the notion of weakly/strongly infinite dimensional space. We say that C is a separator (usually
called a partition in dimension theory) of a pair (A,B) in a space X if there are two pairwise
disjoint open sets A′ ⊇ A and B′ ⊇ B such that A′ ⊔ B′ = X \ C. A family {(Ai, Bi)}i∈Λ of
pairwise disjoint closed sets in X is essential if whenever Ci is a separator of (Ai, Bi) in X for
every i ∈ N,

∩
i∈NCi is nonempty. A space X is said to be strongly infinite dimensional if it has

an essential family of infinite length. Otherwise, X is said to be weakly infinite dimensional.
We also consider the following covering property for topological spaces. Let O[X] be the

collection of all open covers of a topological space X, and O2[X] = {U ∈ O[X] : |U| = 2},
i.e. the collection of all covers by two open sets. Then, X ∈ Sc(A,B) if for any sequence
(Un)n∈N ∈ A[X]N, there is a sequence (Vn)n∈N of pairwise disjoint open sets such that Vn refines
Un for each n ∈ N and

∪
n∈N Vn ∈ B[X].

Note that a topological space X is weakly infinite dimensional if and only if X ∈ Sc(O2,O).
We say that X is a C-space [1, 26] or selectively screenable [6] if X ∈ Sc(O,O). We have the
following implications:

countable dimensional ⇒ C-space ⇒ weakly infinite dimensional.
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Alexandrov’s old problem was whether there exists a weakly infinite dimensional com-
pactum X >T

σ {0, 1}N. This problem was solved by R. Pol [61] by constructing a compact
metrizable space of the form R ∪ L for a strongly infinite dimensional totally disconnected
subspace R and a countable dimensional subspace L. Such a compactum is a C-space, but
not countable-dimensional. Namely, R. Pol’s theorem says that there are at least two σ-
homeomorphism types of compact metrizable C-spaces.

There are previous studies on the structure of continuous isomorphism types (Fréchet dimen-
sion types) of various kinds of infinite dimensional compacta, e.g., strongly infinite dimensional
Cantor manifolds (see [11, 12]). For instance, by combining the Baire category theorem and the
result by Chatyrko-Pol [12], one can show that there are continuum many first-level Borel isomor-
phisms types of strongly infinite dimensional Cantor manifolds. However, there is an enormous
gap between first- and second-level, and hence, such an argument never tells us anything about
second-level Borel isomorphism types. Concerning weakly infinite dimensional Cantor mani-
folds, Elżbieta Pol [59] (see also [11]) constructed a compact metrizable C-space in which no
separator of nonempty subspaces can be hereditarily weakly infinite dimensional. We call such
a space a Pol-type Cantor manifold.

3 Point Degree Spectra

3.1 Generalized Turing Reducibility

Recall that the notion of a represented space involves the notion of computability. More precisely,
every point in a represented space is coded by an infinite word, called a name. Then, we estimate
how complicated a given point is by considering the degree of difficulty of calling a name of the
point. Of course, it is possible for each point to have many names, and this feature yields the
phenomenon that there is a point with no easiest names with respect to Turing degree.

Formally, we associate analogies of Turing reducibility and Turing degrees with an arbitrary
represented space in the following manner.

Definition 3.1. Let X and Y be represented spaces. We say that y ∈ Y is point-Turing
reducible to x ∈ X if there is a partial computable function f :⊆ X → Y such that f(x) = y,
that is, δ−1

Y (y) is Medvedev reducible to δ−1
X (x). In this case, we write yY ≤M xX, or simply,

y ≤M x.

Roughly speaking, by the condition y ≤M x we mean that if one knows a name of x, one
can call a name of y, in a uniformly computable manner. This pre-ordering relation ≤M clearly
yields an equivalence relation ≡M on points xX of represented spaces, and we then call each
equivalence class [xX]≡M the point-Turing degree of x ∈ X, denoted by deg(xX). In other words,

deg(xX) = [δ−1
X (x)]≡M = “the Medvedev degree of the set of all δX -names of x.”

Then, we introduce the notion of point degree spectrum of a represented space as follows.

Definition 3.2. For a represented space X and a point x ∈ X, define

Spec(X) = {deg(xX) | x ∈ X} ⊆ M.

We call Spec(X) the point degree spectrum of X. Given an oracle p, we also define the relativized
point degree spectrum by degp(xX) = [{p} × δ−1

X (x)]≡M and Specp(X) = {degp(xX) : x ∈ X}.
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Clearly, one can identify the Turing degrees DT , the continuous degrees Dr and the enumer-
ation degrees De with degree spectra of some spaces as follows:

• Spec({0, 1}N) = Spec(NN) = Spec(R) = DT ,

• (Miller [45]) Spec([0, 1]N) = Spec(C([0, 1], [0, 1])) = Dr,

• Spec(O(N)) = De, where O(N) is the space of all subsets of N where a basic open set is
the set of all supersets of a finite subset of N.

As any separable metric space embeds into the Hilbert cube [0, 1]N, we find in particular
that Spec(X) ⊆ Dr for any computable metric space X. As any second-countable T0 spaces
embeds into the Scott domain O(N), we also have that Spec(X) ⊆ De for any second-countable
T0 space X. In the latter case, the point degree of x ∈ X corresponds to the enumeration degree
of neighborhood basis as in Example 2.2. The Turing degrees will be characterized in Section
3.2 in the context of topological dimension theory.

In computable model theory, the degree spectrum of a countable structure S is defined as the
collection of Turing degrees of isomorphic copies of S coded in N (see [30, 64]). The notion of
degree spectrum on a cone (i.e., degree spectrum relative to an oracle) also plays an important
role in (computable) model theory (see [46, 47]). One can define the space of countable structures
as done in invariant descriptive set theory; however, from this perspective, a countable structure
is a point, and therefore, the degree spectrum of a structure is a kind of the degree spectrum of
a point rather than that of a space.

Given a point x ∈ X, we define Spec(xX) as the set of all oracles z ∈ {0, 1}N which can
compute a name of x, and Specp(xX) as its relativization by an oracle p ∈ {0, 1}N. Then, the
weak point degree spectrum Specw(X) is the collection of all degree spectra of points of x ∈ X,
and Specpw(X) is its relativization by an oracle p, that is,

Spec(xX) = {z ∈ {0, 1}N : x ≤M z}, Specp(xX) = {z ∈ {0, 1}N : x ≤M (z, p)},
Specw(X) = {Spec(xX) : x ∈ X}, Specpw(X) = {Specp(xX) : x ∈ X}.

Note that this notion can be described in terms of Muchnik redcibility, that is, we can think
of the degree spactrum of x ∈ X as:

Spec(xX) ≈ [δX(x)]≡w = “the Muchnik degree of the set of all δX -names of x.”

Observation 3.3. If X and Y are admissibly represented second-countable T0-spaces, then
there is an oracle p such that for all q ≥T p,

Specq(X) ⊆ Specq(Y) ⇐⇒ Specqw(X) ⊆ Specqw(Y)

Proof. The point degree spectrum of an admissibly represented second-countable space can be
thought of as a substructure of the enumeration degrees De as mentioned above. It is known
that enumeration reducibility coincides with its non-uniform version (see [71] or [45, Theorem
4.2]). This means that xX ≤M yY if and only if every δY -name of y computes a δX -name of x
(see also [45, Corollary 4.3]).

We now focus on degree spectra of separable metrizable spaces, that is, continuous degrees.
The following lemma shows – in Miller’s words – that the continuous degrees are almost Turing
degrees. To be more precise, any continuous degree is relativized into a Turing degree by all
Turing degrees except the smaller ones.
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Lemma 3.4 (Miller). For any non-total continuous degree q ∈ Dr \ DT we find that for all
p ∈ DT , (p, q) ∈ DT iff p �M q.

Proof. Let r = (r(n))n∈N ∈ [0, 1]N be a representative of a non-total continuous degree q ∈
Dr \DT . Let I be the set of all y ∈ {0, 1}N such that y ≤M r, which is a countable set. Choose a
real x whose Turing degree is incomparable with I. In particular, x is algebraically transcendent
with all reals in I. So, there is an x-computable homeomorphism sending r to a sequence of
irrationals. Hence, given any name of (x, r), we first obtain x, and by using x, transform r into
irrationals, and then we get the least Turing degree name of (x, r).

3.2 Degree Spectra and Dimension Theory

One of the main tools in our work is the following characterization of the point degree spectra
of represented spaces.

Theorem 3.5. The following are equivalent for admissibly represented spaces X and Y:

1. Specr(X) = Specr(Y) for some oracle r ∈ {0, 1}N.

2. N×X is σ-homeomorphic to N×Y, i.e., N×X ∼=T
σ N×Y.

Moreover, if X and Y are Polish, then the following assertions (3) and (4) are also equivalent
to the above assertions (1) and (2).

3. N×X is second-level Borel isomorphic to N×Y.

4. The Banach algebra B∗
2(N×X) is linearly isometric (ring isomorphic and so on) to B∗

2(N×
Y).

One can also see that the following assertions are equivalent:

2′. N×X is Gδ-piecewise homeomorphic to N×Y.

3′. N×X is n-th level Borel isomorphic to N×Y for some n ≥ 2.

4′. The Banach algebra B∗
n(N×X) is linearly isometric (ring isomorphic and so on) to B∗

n(N×
Y) for some n ≥ 2.

By our argument in Section 2.2.1, the assertions (2′) is equivalent to (2). Obviously the
assertions (3) and (4) imply (3′) and (4′), respectively. The equivalence between (3) and (4)
(and the equivalence between (3′) and (4′)) has already been shown by Jayne [33] for second-
countable (or more generally, realcompact) spaces X and Y. The implication from the assertion
(3′) to (2) is, as mentioned in Section 2.2.1, recently proved by [48, 58], and more recently, an
alternative computability-theoretic proof is given by [37] using our framework of point degree
spectra of Polish spaces. Consequently, all assertions from (2) to (4′) are equivalent.

To see the equivalence between (1) and (2), we characterize the point degree spectra of
represented spaces in the context of countably-continuous isomorphism.

Lemma 3.6. The following are equivalent for represented spaces X and Y:

1. Spec(X) ⊆ Spec(Y)

2. X ≤σ N×Y, i.e., X is a countable union of subspaces that are computably isomorphic to
subspaces of Y.
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Proof. We first show that the assertion (1) implies (2). By assumption, for any x ∈ X we find
δ−1
X (x) ≡M δ−1

Y (yx) for some yx ∈ Y. Let for Y any i, j ∈ N, let Xij be the set of all points
where the reductions are witnessed by Φi and Φj , and let Yij = {yx | x ∈ Xij} ⊆ Y, where
recall that Φe is the e-th partial computable function. Then Φi, Φj also witness Xij

∼= Yij , and
obviously X =

∪
⟨i,j⟩∈NXij .

Conversely, the point spectrum is preserved by computable isomorphism and Spec
(∪

n∈NXn

)
=∪

n∈N Spec(Xn), so the claim follows.

Proof of Theorem 3.5 (1) ⇔ (2). It follows from relativizations of Lemma 3.6 and Observation
2.3. Here, it is easy to see that the assertion (2) is equivalent to N×X ≤σ N×Y.

This simple argument completely solves a mystery about the occurrence of non-Turing de-
grees in proper infinite dimensional spaces. Concretely speaking, by Lemma 3.6, we can char-
acterize the Turing degrees in terms of topological dimension theory as follows1.

Corollary 3.7. The following are equivalent for a separable metrizable space X endowed with
an admissible representation:

1. Specp(X) ⊆ DT for some oracle p ∈ {0, 1}N

2. X is countable dimensional.

By a dimension-theoretic fact (see Section 2.2.2), if X is Polish, transfinite dimensionality is
also equivalent to the condition for X in which any point has a Turing degree relative to some
oracle.

Now, by Theorem 3.5, σ-homeomorphic classification can be viewed as a kind of degree theory
dealing with the order structure on degree structures (on a cone). Thus, from the viewpoint of
degree theory, it is natural to ask whether Post’s problem (there is an intermediate degree struc-
ture strictly between the bottom {0, 1}N and the top [0, 1]N), the Friedberg-Muchnik theorem
(there is an incomparable degree structures), the Sacks density theorem (given two comparable,
but different degree structures, there is an intermediate degree structure strictly between them),
and so on, is true for degrees of degrees of uncountable Polish spaces.

More details of the structure of degree spectra of Polish space will be investigated in Sections
4 and 5, and those of quasi-Polish space will be in Section 8.

4 Intermediate Point Degree Spectra

4.1 Intermediate Polish Spaces

Let P be the set of all uncountable Polish spaces. In this section, we investigate the structure
of P/ ∼=T

σ , i.e. either of the equivalence classes w.r.t. σ-homeomorphisms, or equivalently, the
structure of point degree spectra of uncountable Polish spaces up to relativization.

It is well-known that for every uncountable Polish space X:

{0, 1}N ≤T
c X ≤T

c [0, 1]N,

1The same observation was independently made by Hoyrup. Brattka and Miller had conjectured that
dimension would be the crucial demarkation line for spaces with only Turing degrees (all personal communication).
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where, recall that ≤T
c is the topological embeddability relation (i.e., the ordering of Fréchet

dimension types). In this section, we focus on Problem 1.3 asking whether there exists a Polish
space X satisfying the following:

{0, 1}N <T
σ X <T

σ [0, 1]N.

One can see that there is no difference between the structures of σ-homeomorphism types of
uncountable Polish spaces and uncountable compact metric spaces.

Fact 4.1. Every Polish space is σ-homeomorphic to a compact metrizable space.

Proof. All spaces of a given countable cardinality are clearly σ-homeomorphic, and there are
compact metrizable spaces of all countable cardinalities.

So let X be an uncountable Polish space. Lelek [40] showed that every Polish space X has
a compactification γX such that γX \ X is countable-dimensional. Clearly X ≤c γX. Then,
we have γX \ X ≤T

σ {0, 1}N ≤T
σ X, since X is uncountable Polish and γX \ X is countable-

dimensional. Consequently, X, γX \X ≤T
σ X, and this implies γX = X ∪ (γX \X) ≤T

σ X.

4.2 The Graph Space of a Universal ω-Left-CEA Operator

Now, we provide a concrete example having an intermediate degree spectrum. We say that a
point (rn)n∈N ∈ [0, 1]N is ω-left-CEA in or an ω-left-pseudojump of x ∈ {0, 1}N if rn+1 is left-
c.e. in ⟨x, r0, r1, . . . , rn⟩ uniformly in n ∈ N. In other words, there is a computable function
Ψ : {0, 1}N × [0, 1]<ω × N2 → Q≥0 such that

rn = sup
s→∞

Ψ(x, r0, . . . , rn−1, n, s)

for every x, n, s, where Q≥0 denotes the set of all nonnegative rationals. Whenever rn ∈ [0, 1]
for all n ∈ N, such a computable function Ψ generates an operator Jω

Ψ : {0, 1}N → [0, 1]N with
Jω
Ψ(x) = (r0, r1, . . . ), which is called an ω-left-CEA operator.

Proposition 4.2. There is an effective enumeration (Jω
e )e∈N of all ω-left-CEA operators.

Proof. It is not hard to see that y ∈ [0, 1] is left-c.e. in x ∈ {0, 1}N × [0, 1]k if and only if there
is a c.e. set W ⊆ N×Q such that

y = Jk
W (x) := sup{min{|p|, 1} : x ∈ Bk

i for some (i, p) ∈W},

where Bk
i is the i-th rational open ball in [0, 1]k. Thus, we have an effective enumeration of all

left-c.e. operators J : {0, 1}N × [0, 1]k → [0, 1] by putting Jk
e = Jk

We
, where We is the e-th c.e.

subset of N×Q. Then, we define

Jω
e (x) = (x, J0

⟨e,0⟩(x), J
1
⟨e,1⟩(x, J

0
⟨e,0⟩(x)), . . . ),

that is, Jω
e is the ω-left-CEA operator generated by the uniform sequence (Jk

⟨e,k⟩)k∈N of left-

c.e. operators. Clearly, (Jω
e )e∈N is an effective enumeration of all ω-left-CEA operators.

Hence, we may define a universal ω-left-CEA operator by Jω(e, x) = Jω
e (x).
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Definition 4.3. The ω-left-computably-enumerable-in-and-above space ωCEA is a subspace of
N× {0, 1}N × [0, 1]N defined by

ωCEA = {(e, x, r) ∈ N× {0, 1}N × [0, 1]N : r = Jω
e (x)}

= “the graph of a universal ω-left-CEA operator.”

Note that in classical recursion theory, an operator Ψ is called a CEA-operator (also known
as an REA-operator or a pseudojump) if there is a c.e. procedureW such that Ψ(A) = ⟨A,W (A)⟩
for any A ⊆ N (see Odifreddi [52, Chapters XII and XIII]). An ω-CEA operator is the ω-th
iteration of a uniform sequence of CEA-operators. In general, computability theorists have
studied α-CEA operators for computable ordinals α in the theory of Π0

2 singletons. We will also
use a generalization of the notion of a Π0

2 singleton in Section 5.

We say that a continuous degree is ω-left-CEA if it contains a point r ∈ [0, 1]N which is
ω-left-CEA in a point z ∈ {0, 1}N such that z ≤M r, i.e., Jω

e (z) = r for some e. The point degree
spectrum of the space ωCEA (as a subspace of [0, 1]N) can be described as follows.

Spec(ωCEA) = {a ∈ Dr : a is ω-left-CEA}.

Clearly,

Spec({0, 1}N) ⊆ Spec(ωCEA) ⊆ Spec([0, 1]N).

The following is an analog of the well-known fact from classical computability theory that
every ω-CEA set is a Π0

2-singleton (see Odifreddi [52, Proposition XIII.2.7])

Lemma 4.4. The ω-left-CEA space ωCEA is Polish.

Proof. It suffices to show that ωCEA is Π0
2. The stage s approximation to Jk

e is denoted by
Jk
e,s, that is, Jk

e,s(z) = max{min{|p|, 1} : (∃⟨i, p⟩ ∈ We,s) x ∈ Bk
i }, where We,s is the stage s

approximation to the e-th computably enumerable set We. Note that the function (e, s, k, z) 7→
Jk
e,s(z) is computable. We can easily see that (e, x, r) ∈ ωCEA if and only if

(∀n, k ∈ N)(∃s > n) d
(
πk(r), J

k
e,s(x, π0(r), π1(r), . . . , πk−1(r))

)
< 2−n,

where d is the Euclidean metric on [0, 1].

We devote the rest of this section to a proof of the following theorem.

Theorem 4.5. The space ωCEA has an intermediate σ-homeomorphism type, that is,

{0, 1}N <T
σ ωCEA <T

σ [0, 1]N.

Consequently, the space ωCEA is a concrete counterexample to Problem 1.3.

4.3 Proof of ωCEA <T
σ [0, 1]N

The key idea is to measure how similar the space X is to a zero-dimensional space by approxi-
mating each point in a space X by a zero-dimensional space. Recall from Observation 3.3 that
the point degree spectrum coincides with the Muchnik degree spectrum for any second-countable
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admissibly represented space, that is, the point-Turing degree deg(x) of a point x ∈ X can be
identified with its Turing upper cone, that is,

deg(x) ≈ Spec(x) = {z ∈ {0, 1}N : x ≤M z}.

We think of the spectrum Spec(x) as the upper approximation of x ∈ X by the zero-
dimensional space {0, 1}N. Now, we need the notion of the lower approximation of x ∈ X
by the zero-dimensional space {0, 1}N. We introduce the co-spectrum of a point x ∈ X as its
Turing lower cone

coSpec(x) = {z ∈ {0, 1}N : z ≤M x},

and moreover, we define the degree co-spectrum of a represented space X as follows:

coSpec(X) = {coSpec(x) : x ∈ X}.

Note that the degree spectrum of a represented space fully determines its co-spectrum, while the
converse is not true. For every oracle p ∈ {0, 1}N, we may also introduce relativized co-spectra
coSpecp(x) = {z ∈ {0, 1}N : z ≤M (x, p)}, and the relativized degree co-spectra coSpecp(X) in
the same manner.

Observation 4.6. Let X and Y be admissibly represented spaces. If Specp(X) = Specp(Y),
then we also have coSpecp(X) = coSpecp(Y). Therefore, by Theorem 3.5, the cospectrum of an
admissibly represented space up to an oracle is invariant under σ-homeomorphism.

We say that a collection I of subsets of N is realized as the co-spectrum of x if coSpec(x) = I.
A countable set I ⊆ P(N) is a Scott ideal if it is the standard system of a countable nonstandard
model of Peano arithmetic, or equivalently, a countable ω-model of the theory WKL0. We will
not go into the details of a Scott ideal (see Miller [45, Section 9] for more explicit definition);
we will only use the fact that every jump ideal is a Scott ideal. Here, a jump ideal I is a collection
of subsets of natural numbers which is closed under the join ⊕, downward Turing reducibility
≤T , and the Turing jump, that is, p, q ∈ I implies p ⊕ q ∈ I; p ≤T q ∈ I implies p ∈ I; and
p ∈ I implies p′ ∈ I. Miller [45, Theorem 9.3] showed that every countable Scott ideal (hence,
every countable jump ideal) is realized as a co-spectrum in [0, 1]N.

Example 4.7. The spectra and co-spectra of Cantor space {0, 1}N, the space ωCEA, and the
Hilbert cube [0, 1]N are illustrated as follows (see also Figure 1):

1. The co-spectrum coSpec(x) of any point x ∈ {0, 1}N is principal, and meets with Spec(x)
exactly at degT (x). The same is true up to some oracle for an arbitrary Polish spaces X
such that X ∼=T

σ {0, 1}N.
2. For any point z ∈ ωCEA, the “distance” between Spec(z) and coSpec(z) has to be at

most the ω-th Turing jump (see Lemma 4.8).

3. An arbitrary countable Scott ideal is realized as coSpec(y) of some point y ∈ [0, 1]N. Hence,
Spec(y) and coSpec(y) can be separated by an arbitrary distance.

This upper/lower approximation method clarifies the differences of σ-homeomorphism types
of spaces because both relativized point-degree spectra and co-spectra are invariant under σ-
homeomorphism by Theorem 3.5 and Observation 4.6.

Lemma 4.8. For any oracle p ∈ {0, 1}N, there is a countable Scott ideal which cannot be
realized as a p-co-spectrum of an ω-left-CEA continuous degree.
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Spe(x)
oSpe(x)x y

Spe(y)
oSpe(y)

Spe(z)
oSpe(z)z The !-th Turing jump

Figure 1: The upper and lower approximations of {0, 1}N, ωCEA and [0, 1]N

Proof. Let y = (e, x, r) ∈ ωCEA be an arbitrary point. Clearly, x ≤M (e, x, r), and this means
that x ∈ coSpec(y) since x ∈ {0, 1}N. However, x(ω) ∈ Spec(y) since r is ω-left-CEA in x. Hence,
coSpec(y) is not closed under the ω-th Turing jump for any y ∈ ωCEA. Thus, for any oracle p,
the jump ideal Ap = {x ∈ {0, 1}N : (∃n ∈ N) x ≤T p(ω·n)} cannot be realized as a co-spectrum
in ωCEA.

Consequently, the ω-left-CEA space is not σ-homeomorphic to the Hilbert cube. Note that
Day and Miller [15] showed that every countable Scott ideal I is realized by a neutral measure.
Hence, we can also conclude that there is a neutral measure whose continuous degree is not ω-
left-CEA.

4.4 Proof of {0, 1}N <T
σ ωCEA

Next, we have to show that the ω-left-CEA space is not countable-dimensional. For a compact
set P ⊆ [0, 1]N, we inductively define minP ∈ P as follows:

πn(minP ) = minπn[{z ∈ P : (∀i < n) πi(z) = πi(minP )}],

where πn : [0, 1]N → [0, 1] is the projection onto the n-th coordinate. We call the point minP
the leftmost point of P . Kreisel’s basis theorem (see [53, Proposition V.5.31]) in classical com-
putability theory says that the leftmost element of a Π0

1 subset of {0, 1}N or [0, 1] is always
left-c.e. The following lemma can be viewed as an infinite dimensional version of Kreisel’s basis
theorem.

Lemma 4.9. For any oracle p ∈ {0, 1}N, the leftmost point of a Π0
1(p) subset of [0, 1]N is

ω-left-CEA in p.

Proof. We first note that Hilbert cube [0, 1]N is computably compact in the sense that there is
a computable enumeration of all finite collections D of basic open sets which covers the whole
space, that is,

∪
D = [0, 1]N.

Fix a Π0
1(p) set P ⊆ [0, 1]N. It suffices to show that πn+1(minP ) is left-c.e. in ⟨πi(minP )⟩i≤n

uniformly in n relative to p. Given a sequence a = (a0, a1, . . . , an) of reals and an real q, we
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denote by C(a, q) the set of all points in P of the form (a0, a1, . . . , an, r, . . . ) for some r ≤ q,
that is,

C(a, q) = P ∩
∩
i≤n

π−1
i {ai} ∩ π−1

n+1[0, q].

By computable compactness of Hilbert cube, one can see that C∗(a) = {q ∈ [0, 1] : C(a, q) =
∅} is p-c.e. open uniformly relative to a since the complement of C(a, q) is p-c.e. open uniformly
relative to a and q. Therefore, supC∗(a) is p-left-c.e. uniformly relative to a. Finally, we can
easily see that πn+1(minX) is exactly supC∗(⟨πi(minX)⟩i≤n).

We use the following relativized versions of Miller’s lemmas.

Lemma 4.10 (Miller [45, Lemma 6.2]). For every p ∈ {0, 1}N, there is a multivalued function
Ψp : [0, 1]N → [0, 1]N with a Π0

1(p) graph and nonempty, convex images such that, for all e ∈ N,
α ∈ [0, 1]N and β ∈ Ψp(α), if for every name λ of α, φλ⊕p

e is a name of x ∈ [0, 1], then β(e) = x.

Note that Kakutani’s fixed point theorem ensures the existence of a fixed point of Ψ. If α
is a fixed point of Ψp, that is, α ∈ Ψp(α), then coSpecp(α) = {α(n) : n ∈ N}. Therefore, such
an α has no Turing degree relative to p (see [45, Proposition 5.3]).

Lemma 4.11 (Miller [45, Lemma 9.2]). For every p ∈ {0, 1}N, there is an index e ∈ N such
that for any x ∈ [0, 1], there is a fixed point α of Ψp such that α(e) = x.

Lemma 4.12. For any oracle p ∈ {0, 1}N, there is an ω-left-CEA continuous degree which is
not contained in Specp({0, 1}N).

Proof. Let Fix(Ψp) be the set of all fixed points of Ψp. Then, Fix(Ψp) is Π0
1(p) since it is the

intersection of the graph of a Π0
1(p) set and the diagonal set. Let e be an index in Lemma 4.11.

Clearly, A = {α ∈ Fix(Ψp) : α(e) = p} is again a Π0
1(p) subset of [0, 1]N. By Lemma 4.9, A

contains an element α which is ω-left-CEA in p. By the property of A discussed above, α has
no Turing degree relative to p.

Proof of Theorem 4.5. By Lemma 4.8, coSpecp(ωCEA) ( coSpecp([0, 1]N) for any oracle p.
Moreover, by Lemma 4.12, Specp({0, 1}N) ( Specp(ωCEA) for any oracle p. Therefore, by
Theorem 3.5 and Observation 4.6, we conclude {0, 1}N <T

σ ωCEA <T
σ [0, 1]N.

5 Structure of σ-Homeomorphism Types

In this section, we will show that there are continuum many σ-homeomorphism types of compact
metrizable spaces.

Theorem 5.1. There exists a collection (Xα)α<2ℵ0 of continuum many compact metric spaces
such that if α ̸= β, Xα cannot be σ-embedded into Xβ.

We devote the rest of this section to prove Theorem 5.1. Actually, we will show the following:

There is an embedding of the inclusion ordering ([ω1]
≤ω,⊆) of countable subsets of the

smallest uncountable ordinal ω1 into the σ-embeddability ordering of compact metric
spaces.

As a corollary, there are an uncountable chain and a continuum antichain of σ-homeomorphism
types of compact metric spaces.
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5.1 Almost Arithmetical Degrees

In Section 4, we used a co-spectrum as a σ-topological invariant. More explicitly, in our
proof, it was essential to examine closure properties of co-spectra to obtain an intermediate
σ-homeomorphism type of Polish spaces. In this section, we will develop a method for control-
ling closure properties of co-spectra. As a result, we will construct a compact metrizable space
whose co-spectra realize a given well-behaved family of “almost” arithmetical degrees.

First, we introduce a notion which estimates the strength of closure properties of functions
up to the arithmetical equivalence.

Definition 5.2. Let g and h be total Borel measurable functions from {0, 1}N into {0, 1}N.
1. We inductively define g0(x) = x and gn+1(x) = gn(x)⊕ g(gn(x)).

2. For every oracle r ∈ {0, 1}N, consider the following jump ideal defined as

Ja(g, r) = {z ∈ {0, 1}N : (∃n ∈ N) x ≤a g
n(r)},

where ≤a denotes the arithmetical reducibility, that is, p ≤a q is defined by p ≤T q
(m) for

some m ∈ N (see Odifreddi [52, Section XII.2 and Chapter XIII]).

3. A function g is almost arithmetical reducible to a function h (written as g ≤aa h) if for any
r ∈ {0, 1}N there is x ∈ {0, 1}N with x ≥T r such that

Ja(g, x) ⊆ Ja(h, x).

4. Let G and H be countable sets of total functions. We say that G is aa-included in H
(written as G ⊆aa H) if for all g ∈ G, there is h ∈ H such that g ≡aa h (i.e., g ≤aa h and
h ≤aa g).

A function g : {0, 1}N → {0, 1}N is said to be monotone if x ≤T y implies g(x) ≤T g(y).
An oracle Π0

2-singleton is a total function g : {0, 1}N → {0, 1}N whose graph is Gδ. Clearly,
every oracle Π0

2-singleton is Borel measurable, whereas there is no upper bound of Borel ranks
of oracle Π0

2-singletons. For instance, if α is a computable ordinal, then the α-th Turing jump
jα(x) = x(α) is a monotone oracle Π0

2-singleton for every computable ordinal α (see Odifreddi
[52, Proposition XII.2.19], Sacks [67, Corollary II.4.3], and Chong-Yu [13, Theorem 2.1.4]).
The following is the key lemma in our proof, which will be proved in Section 5.2.

Lemma 5.3 (Realization Lemma). There is a map Rea transforming each countable set of
monotone oracle Π0

2-singletons into a Polish space such that

Rea(G) ≤T
σ Rea(H) =⇒ G ⊆aa H.

5.2 Construction

We construct a Polish space whose co-spectrum codes almost arithmetical degrees contained
in a given countable set G of oracle Π0

2 singletons. For notational simplicity, given x ∈ [0, 1]N,
we write xn for the n-th coordinate of x, and moreover, x<n and x≤n for (xi)i<n and (xi)i≤n

respectively.
Our idea comes from the construction by Miller [45, Lemma 9.2]. Our purpose is construct-

ing a Polish space such that given g ∈ G and oracle r the space has a point x = (xi)i∈N whose
co-spectrum is not very different from Ja(g, r). Then, at least, such a point should compute
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gi(r) for all i ∈ N. We can achieve this by requiring xi = gi(r) for infinitely many i ∈ N; how-
ever, we need to control the co-spectrum simultaneously, and therefore, we have to choose such
coding locations i very carefully. The actual construction is that, from r and x<v, we will find
a finite set (ℓ(u))u≤v of candidates of safe coding locations, and then we define xℓ(u) = gℓ(u)(r)
at a genuine safe coding location ℓ(u). Then, for each i with v ≤ i < ℓ(u), we define xi from
(r, x<i, xℓ(u)) in a left-c.e. manner. This idea yields the following definition.

Definition 5.4. Let G = (gn)n∈N be a countable collection of oracle Π0
2-singletons. The space

ωCEA(G) consists of (n, d, e, r, x) ∈ N3 × {0, 1}N × [0, 1]N such that for every i,

1. either xi = gin(r), or

2. there are u ≤ v ≤ i such that xi ∈ [0, 1] is the e-th left-c.e. real relative to ⟨r, x<i, xℓ(u)⟩
and xℓ(u) = g

ℓ(u)
n (r), where ℓ(u) = Φd(u, r, x<v) ≥ i.

Moreover, for a set P ⊆ [0, 1]N, define ωCEA(G, P ) to be the set of all points (d, e, r, x) ∈
ωCEA(G) with (r, x) ∈ P .

Lemma 5.5. Suppose that G is an oracle Π0
2-singleton, and P is a Π0

2 subset of [0, 1]N. Then,
ωCEA(G, P ) is Polish.

Proof. It suffices to show that ωCEA(G) is Π0
2. The condition (1) in Definition 5.4 is clearly

Π0
2. Let ∀a∃b > a G(a, b, n, ℓ, r, x) be a Π0

2 condition representing x = gℓn(r), and ℓ(u)[s] be the
stage s approximation of Φd(u, r, x<v). The condition (2) is equivalent to the statement that
there are u ≤ v ≤ i such that

(∀t ∈ N)(∃s > t) ℓ(u)[s] ↓≥ i, d(xi, J
i+1
e,s (r, x<i, xℓ(u)[s])) < 2−t,

and G(t, s, n, ℓ(u)[s], r, xℓ(u)[s]).

Clearly, this condition is Π0
2.

Remark. The space ωCEA(G) is totally disconnected for any countable set G of oracle Π0
2

singletons, since for any fixed (n, d, e, r) ∈ N3 × {0, 1}N, its extensions form a finite-branching
infinite tree T ⊆ [0, 1]<ω.

Recall from Section 4.4 that Miller [45, Lemma 6.2] constructed a Π0
1 set Fix(Ψ) such that

coSpec(x) = {xi : i ∈ N} for every x = (xi)i∈N ∈ Fix(Ψ). By Lemma 4.11, without loss of
generality, we may assume that Fix(Ψ) ∩ π−1

0 {r} ̸= ∅ for every r ∈ [0, 1]. Now, consider the
space Rea(G) = ωCEA(G,Fix(Ψ)). To state properties of Rea(G), for an oracle Π0

2-singleton
g and an oracle r ∈ {0, 1}N, we use the following Turing ideal:

JT (g, r) = {z ∈ {0, 1}N : (∃n ∈ N) x ≤T g
n(r)}.

The following is the key lemma, which states that any collection of jump ideals generated
by countably many oracle Π0

2-singletons has to be the degree co-spectrum of a Polish space up
to the almost arithmetical equivalence!

Lemma 5.6. Suppose that G = (gn)n∈N is a countable set of oracle Π0
2-singletons.

1. For every x ∈ Rea(G), there are r ∈ {0, 1}N and n ∈ N such that

JT (gn, r) ⊆ coSpec(x) ⊆ Ja(gn, r).
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2. For every r ∈ {0, 1}N and n ∈ N, there is x ∈ Rea(G) such that

JT (gn, r) ⊆ coSpec(x).

Proof of Lemma 5.6 (1). We have (r, x) ∈ Fix(Ψ) for every y = (n, d, e, r, x) ∈ Rea(G). For
every i ∈ N, we inductively assume that for every j < i, xj is arithmetical in gkn(r) for some
k ∈ N. Now, either xi = gin(r) or xi is left-c.e. in (r, x<i, g

l
n(r)) for some l. In both cases, xi is

arithmetical in gkn(r) for some k. Since (r, x) ∈ Fix(Ψ), by Lemma 4.10, coSpec(y) = {r} ∪ {xi :
i ∈ N}. This shows that coSpec(y) ⊆ Ja(gn, r). Moreover, xi = gin(r) for infinitely many i ∈ N,
since either xi = gni (r) holds or there is l ≥ i such that xl = gln(r) by the condition (2) in
Definition 5.4. Therefore, gkn(r) ≤M x for all k ∈ N, that is, JT (gn, r) ⊆ coSpec(y).

To verify the assertion (2) in Lemma 5.6, indeed, for any n ∈ N, we will construct indices d
and e such that for every r ∈ {0, 1}N, there is x with (n, d, e, r, x) ∈ Rea(G), where xi = gin(r)
for infinitely many i ∈ N. The e-th left-c.e. procedure J i+1

e (r, x<i, xl(u)) is a simple procedure
extending r, x<i, xl(u) to a fixed point of Ψ. The function Φd searches for a safe coding location
c(n) from a given name of x≤c(n−1), where c(n− 1) is the previous coding location.

To make sure the search of the next coding location is bounded, as in Definition 5.4, we have
to restrict the set of names of a v-tuple x<v to at most v + 1 candidates. It is known that a
separable metrizable space is at most n-dimensional if and only if it is the union of n+ 1 many
zero-dimensional subspaces (see [17, Theorem 1.5.8] or [44, Corollary 3.1.7]). We say that an
admissibly represented Polish space is computably at most n-dimensional if it is the union of
n+ 1 many subspaces that are computably homeomorphic to subspaces of NN.

Lemma 5.7. Suppose that (X, ρX) is a computably at most n-dimensional admissibly repre-
sented space. Then, there is a partial computable injection νX :⊆ (n+ 1)×X → NN such that
for every x ∈ X, there is k ≤ n such that (k, x) ∈ dom(νX) and ρX ◦ νX(k, x) = x.

Proof. By definition, X is divided into n+1 many subspaces S0, . . . , Sn such that Sk is homeo-
morphic to Nk ⊆ NN via computable maps τk and τ−1

k . Then, the partial computable injection
τ−1
k :⊆ NN → X has a computable realizer τ∗k , i.e., τ

−1
k = ρX ◦ τ∗k . Define νX(k, x) = τ∗k ◦ τk(x)

for x ∈ Sk. Then, we have ρX ◦ νX(k, x) = τ−1
k ◦ τk(x) = x for x ∈ Sk.

The Euclidean n-space Rn is clearly computably n-dimensional, e.g., let Sk be the set of
all points x ∈ Rn such that exactly k many coordinates are irrationals. Furthermore, one can
effectively find an index of νn := νRn in Lemma 5.7 uniformly in n. Hereafter, let ρi be the
usual Euclidean admissible representation of Ri. Now, a coding location c(n) will be obtained
as a fixed point in the sense of Kleene’s recursion theorem (Fact 2.1). Hence, one can effectively
find such a location in the following sense.

Lemma 5.8 (Miller [45, Lemma 9.2]). Suppose that (r, x<i) can be extended to a fixed point
of Ψ, and fix a partial computable function ν which sends x<i to its name, i.e., ρi◦ν(x<i) = (x<i).
From an index t of ν and the sequence x<i, one can effectively find a location p = Γ(t, r, x<i)
such that for every real y, the sequence (r, x<i) can be extended to a fixed point (r, x) of Ψ such
that xp = y.

Let t(n, k) be an index of the partial computable function x 7→ νn(k, x). We define Φd(u, r, x<v)
to be Γ(t(v, u), r, x<v) for every u ≤ v. Note that indices d and e do not depend on gn.
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Proof of Lemma 5.6 (2). Now, we claim that for every r ∈ {0, 1}N and n ∈ N, there is x with
(n, d, e, r, x) ∈ Rea(G), where xi = gin(r) for infinitely many i ∈ N. We follow the argument by
Miller [45, Lemma 9.2]. Suppose that i is a coding location of gin(r), and (r, x≤i) is extendible
to a fixed point of Ψ. Then, there is k ≤ i+1 such that p = Φd(k, r, x≤i) is defined, and then we
set xp = gpn(r). By the property of Φd, (r, x≤i, xp) can be extended to a fixed point of Ψ. Then,
the e-th left-c.e. procedure automatically produces x≤p which is extendible to a fixed point of
Ψ. Note that the condition (2) in Definition 5.4 is ensured via u = k, v = i + 1, and l(u) = p.
Eventually, we obtain (r, x) ∈ Fix(Ψ) such that z = (n, d, e, r, x) ∈ Rea(G).

Clearly, gkn(r) ∈ coSpec(z) for every k ∈ N, since coSpec(z) is a Turing ideal, and gkn(r) ≤T

gk+1
n (r). Consequently, JT (gn, r) ⊆ coSpec(z).

Proof of Lemma 5.3. Suppose that Rea(G) ≤T
σ Rea(H). Then, N ×Rea(G) ≤T

σ N ×Rea(H),
and by Theorem 3.6 and Observation 4.6, the degree cospectrum of Rea(G) is a sub-cospectrum
of that of Rea(H) up to an oracle p. Fix enumerations G = (gn)n∈N and H = (hn)n∈N.

Claim. For any n and u, there are m and v such that Ja(gn, u) = Ja(hm, v).

By Lemma 5.6 (2), for any n and u ≥T p, there is x ∈ Rea(G) such that JT (gn, u) ⊆
coSpec(x) ⊆ Ja(gn, u). Then, there is y ∈ Rea(H) such that coSpecp(x) = coSpecp(y). We may
assume that p ≤M y, otherwise (y, p) has Turing degree by Lemma 3.4. By Lemma 5.6 (1), there
existm and v such that JT (hm, v) ⊆ coSpec(y) ⊆ Ja(hm, v). Now, coSpec(x) = coSpec(y) holds,
and note that JT (hm, v) ⊆ Ja(gn, u) implies Ja(hm, v) ⊆ Ja(gn, u). This verifies the claim.

For a fixed n, βn(u) chooses m fulfilling the above claim for some v. It is not hard to see
that there is m(n) such that βn(u) = m(n) for cofinally many u. Then, for cofinally many v,
there is u such that Ja(gn, u⊕ v) = Ja(hm(n), u⊕ v) by monotonicity. Therefore, gn ≡aa hm(n).
Consequently, G ⊆aa H.

Proof of Theorem 5.1. Let S be a countable subset of ω1. Note that supS is countable by
regularity of ω1. Then, there is an oracle p such that supS < ωCK,p

1 , where ωCK,p
1 is the smallest

noncomputable ordinal relative to p. Now, the α-th Turing jump operator jpα for α < ωCK,p
1

is defined via a p-computable coding of α. By Spector’s uniqueness theorem (see Sacks [67,
Corollary II.4.6] or Chong-Yu [13, Section 2.3]), the Turing degree of jpα(x) for x ≥T p is
independent of the choice of coding of α, and so is Ja(j

p
α, x). Therefore, we simply write jα for

jpα.

Define GS = {jω1+α : α ∈ S}. We show that S ⊆ T if and only if GS ⊆aa GT . Suppose
α ̸= β, say α < β. Clearly, jωα ≤aa jωβ . Suppose for the sake of contradiction that jωβ ≤aa jωα .

Then, in particular, for every x ≤a ∅(ωβ ·t) with t ∈ N, we must have ∅(ωβ ·(t+1)) ≤a x
(ωα·m) for

some m ∈ N. Thus, there is n such that ∅(ωβ ·t+ωβ) ≤T ∅(ωβ ·t+ωα·m+n) <T ∅(ωβ ·t+ωα+1). This is a
contradiction.

Now, given countable sets S, T ⊆ ω1, if S ⊆ T , then Rea(GS) clearly embeds into Rea(GT ).
If S ̸⊆ T , then the above argument shows that GS ̸⊆aa GT , and therefore, by Lemma 5.3, we
have Rea(GS) ̸≤T

σ Rea(GT ). Consequently, S 7→ γRea(GS) is an order-preserving embedding
of ([ω1]

≤ω,⊆) into the σ-embeddability order ≤T
σ on compact metrizable spaces, where γX is

Lelek’s compactification of X in Fact 4.1.

Corollary 5.9. There exists a collection (Xα)α<2ℵ0 of continuum many compact metrizable
spaces satisfying the following conditions:



22 Point degree spectra

1. If α ̸= β, then Xα does not finite level Borel embed into Xβ.

2. If α ̸= β, then the Banach algebra B∗
n(Xα) is not linearly isometric (not ring isomorphic

etc.) to B∗
n(Xβ) for all n ∈ N.

Proof. By Theorems 3.5 and 5.1. Here, we note that if X is n-th level Borel isomorphic to Y,
then N×X is again n-th level Borel isomorphic to N×Y.

6 Infinite Dimensional Topology

6.1 Pol’s Compactum

In this section, we will shed light on dimension-theoretic perspectives of the ω-left-CEA space.
Note that ωCEA is a totally disconnected infinite dimensional space. We first compare our
space ωCEA and a totally disconnected infinite dimensional space RSW which is constructed
by Rubin, Schori, and Walsh [66]. A continuum is a connected compact metric space, and a
continuum is nondegenerated if it contains at least two points.

It is known that the hyperspace CK(X) of continua in a compact metrizable spaceX equipped
with the Vietoris topology forms a Polish space. Hence, we may think of CK(X) as a repre-
sented space, which corresponds to a positive-and-negative representation of the hyperspace
in computable analysis. We consider a closed subspace S of CK([0, 1]N) consisting of all con-
tinua connecting opposite faces π−1

0 {0} and π−1
0 {1}. Then, fix a total Cantor representation

of S, i.e., a continuous surjection δCK from the Cantor set C ⊆ [0, 1] onto S. We define the
Rubin-Schori-Walsh space RSW [66] (see also [44, Theorem 3.9.3]) as follows:

RSW = {min(δCK(p)
[p]) : p ∈ C},

= {minA[p] : A is the p-th continuum of [0, 1]N with [0, 1] ⊆ π0[A]},

where A[p] = A ∩ π−1
0 {p} = {z ∈ A : π0(z) = p}, and recall that minP is the leftmost point of

P defined in Section 4.4. For notational convenience, without loss of generality, we may assume
that the e-th z-computable continuum is equal to the ⟨e, z⟩-th continuum, where recall that ⟨·, ·⟩
is a pairing function on natural numbers.

A compactification of RSW is well-known in the context of Alexandrov’s old problem in
dimension theory. Pol’s compactum RP is given as a compactification in the sense of Lelek
of the space RSW. Hence, we can see that RP and RSW have the same point degree spectra
(modulo an oracle) as in the proof of Fact 4.1. Surprisingly, these spaces have the same degree
spectra as the space ωCEA up to an oracle.

Theorem 6.1. The following spaces are all σ-homeomorphic to each other.

1. The ω-left-CEA space ωCEA.

2. Rubin-Schori-Walsh’s totally disconnected strongly infinite dimensional space RSW.

3. Roman Pol’s counterexample RP to Alexandrov’s problem.

As a corollary, Roman Pol’s compactum is second-level Borel isomorphic to the ω-left-CEA
space ωCEA. To prove Theorem 6.1, we show two lemmata.

Lemma 6.2. Every point of RSW is ω-left-CEA.
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Proof. By Lemma 4.9, minA[p] is ω-left-CEA in p, since A[p] is Π0
1(p). Moreover, clearly, p ≤M

minA[p]. Thus, minA[p] is ω-left-CEA.

For ωCEA ≤T
σ RSW, we need to show that every ω-left-CEA point is realized as a leftmost

point of a computable continuum in a uniform manner. Indeed, we will show the following.

Lemma 6.3. Suppose that x ∈ [0, 1]N is ω-left-CEA in a point z ∈ {0, 1}N. Then, there is a
nondegenerated z-computable continuum A ⊆ [0, 1]N such that [0, 1] ⊆ π0[A] and minA[p] =
(p, x) for a name p of A.

Proof. Given p, we will effectively construct a name Ψ(p) of a continuum A. By Kleene’s
recursion theorem (Fact 2.1), we may fix p such that the p-th continuum is equal to the Ψ(p)-th
continuum.

Fix an ω-left-CEA operator J generated by ⟨Wn⟩n∈N such that J(z) = x. Here, as in the
proof of Proposition 4.2, each Wn is a c.e. list of pairs (i, p), which indicates that “if a given n-
tuple (z0, . . . , zn−1) is in the i-th ball Bn

i ⊆ [0, 1]n, then Jn
Wn

(z0, . . . , zn−1) ≥ p.” Since p = ⟨e, z⟩
for some e ∈ N, we have a computable function π with π(p) = z, and then, redefine W0 to be
W0 ◦ π. In this way, we may assume that J(p) = x.

At stage 0, Ψ constructs A0 = [0, 1]× [0, 1]N. At stage s+1, if we find some rational open ball
Bn

i ⊆ [0, 1]n and a rational q ∈ Q such that Wn,s declares that “if a given n-tuple (z0, . . . , zn−1)
is in the i-th ball Bn

i , then Jn
Wn

(z0, . . . , zn−1) ≥ q,” by enumerating (i, q), then Ψ removes

π−1
0 [B(p; 2−s)]∩ (Bn

i × [0, q)× [0, 1]N) from the previous continuum As−1, where B(p; 2−s) is the
rational open ball with center p and radius 2−s.

Now, we show minA[p] = x := (x0, x1, . . . ). Assume that x0, . . . , xn−1 is an initial segment of
minA[p]. We will show that xn = πn(minA[p]) = minπn[{z ∈ A[p] : (∀i < n) πi(z) = xi}]. Since
Jn
Wn

(p, x0, . . . , xn−1) = xn, Wn declares this fact at some point, that is, for any rational q < xn,

there is i such that (i, q) ∈Wn and (p, x0, . . . , xn−1) ∈ Bn
i . Therefore, A∩(π−1

0 [B(p; 2−s)]∩(Bn
i ×

[0, q) × [0, 1]N)) = ∅. Hence, if y < xn, then no extension of (p, x0, . . . , xn−1, y) is contained in
A. Moreover, if (p, x0, . . . , xn−1) ∈ Bn

i and q < xn, then (i, q) ̸∈ Wn. Hence, xn = πn(minA[p])
as desired.

Now, clearly minA[p] = (p, x). Note that Ψ defines a z-computable continuum A in a uniform
manner. The computability is ensured because we only remove a subset of π−1

0 [B(p; 2−s)] after
stage s. For the connectivity, assume that A ⊆ U ∪ V for some open sets U, V ⊆ [0, 1]N. By
compactness, one can assume that U and V mention only finitely many coordinates, that is,
there is n0 such that if y = (yn)n∈N ∈ U (V , resp.) then (y0, . . . , yn0 , zn0+1, zn0+2, . . . ) ∈ U (V ,
resp.) for any (zn0+m)m∈N. Given y = (yn)n∈N, define y

∗ = (y0, . . . , yn0 , 1⃗). By our choice of n0,
and our definition of A, y ∈ A ∩ U implies y∗ ∈ A ∩ U . By our construction of A, if k ≤ n0,
then any (y0, . . . , yk, 1⃗) ∈ A ∩ U is connected to (y0, . . . , yk−1, 1, 1⃗) ∈ A ∩ U by a line segment
inside A∩U . Therefore, for any point y ∈ A∩U , y∗ is connected to 1⃗ by a polygonal line inside
A ∩ U . The same holds true for V . Hence, if A ∩ U and A ∩ V are nonempty, y ∈ A ∩ U and
z ∈ A ∩ V say, y∗ ∈ A ∩ U and z∗ ∈ A ∩ V , and they are connected to 1, and therefore, there
is a path from y∗ to z∗ in A ∩ (U ∪ V ). By connectivity of the path, A ∩ U and A ∩ V has an
intersection in the path. This shows that A cannot written as a union of disjoint open subsets.
Consequently, A is connected.

Proof of Theorem 6.1. By Theorem 3.5, and Lemmata 6.2 and 6.3.
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The properness of RSW <T
σ [0, 1]N can also be obtained by some relatively recent work

on infinite dimensional topology: the Hilbert cube (indeed, any strongly infinite dimensional
compactum) is not σ-hereditary-disconnected (see [63]). However, such an argument does not
go any farther for constructing second-level Borel isomorphism types, and indeed, to the best
of our knowledge, no known topological technique provides us four or more second-level Borel
isomorphism types.

On a side note, one can also define the graph nCEA ⊆ N × {0, 1}N × [0, 1]n of a universal
n-left-CEA operator (as an analogy of an n-REA operator) in a straightforward manner. The
space nCEA is an example of a finite-dimensional Polish spaces whose infinite product has again
the same dimension. The first such examples were constructed by Kulesza in [39].

Proposition 6.4. The space nCEA is a totally disconnected n-dimensional Polish space. More-
over, the countable product nCEAN is again n-dimensional.

Proof. Clearly, nCEA is totally disconnected and Polish. To check the n-dimensionality, we
think of nCEA as a subspace of [0, 1]n+1 by identifying (e, x) ∈ N×{0, 1}N with ι(0e1x) ∈ [0, 1],
where ι is a computable embedding of {0, 1}N into [0, 1]. We claim that nCEA intersects with
all continua A ⊆ [0, 1]n+1 such that [0, 1] ⊆ π0[A]. We have a computable function d such
that the d(e)-th n-left-CEA procedure Jn

d(e)(x) for a given input x ∈ {0, 1}N outputs the value

y ∈ [0, 1]n such that (ι(0e1x), y) = minA
[ι(0e1x)]
e,x , where Ae,x is the e-th x-computable continuum

in [0, 1]n+1 such that [0, 1] ⊆ π0[Ae,x]. By Kleene’s recursion theorem (Fact 2.1), there is r such
that Jn

d(r) = Jn
r . Hence, (ι(0r1x), Jn

r (x)) ∈ nCEA ∩ Ae,x, which verifies the claim. The claim

implies that nCEA is n-dimensional (see van Mill [44, Corollary 3.7.5]).
To verify the second assertion, consider the (computably) continuous map g from the square

nCEA2 into nCEA such that for two points x = (e, r, x0, . . . , xn−1) and y = (d, s, y0, . . . , yn−1)
in nCEA,

g(x,y) = (⟨e, d⟩, r ⊕ s, (x0 + y0)/2, . . . , (xn−1 + yn−1)/2).

It is not hard to verify that g−1 is also (computably) continuous. Hence, nCEA2 is computably
embedded into nCEA. In particular, it is n-dimensional. Then, we can conclude that nCEAN

is also n-dimensional (by the same argument as in van Mill [44, Theorem 3.9.5]).

6.2 Nondegenerated Continua and ωCEA Degrees

We may extract computability-theoretic contents from the construction of Rubin-Schori-Walsh’s
strongly infinite-dimensional totally disconnected space RSW. The standard proof of non-
countable-dimensionality of RSW (hence, the existence of a non-Turing degree in RSW) indeed
implies the following computability theoretic result.

Proposition 6.5. There exists a nondegenerated continuum A ⊆ [0, 1]N in which no point has
Turing degree.

Proof. Define H⟨i,j⟩ ⊆ [0, 1]N to be the set of all points which can be identified with an element

in {0, 1}N via the witnesses Φi and Φj (as in the proof of Lemma 3.6). Then,
∪

nHn is the set
of all points in [0, 1]N having Turing degrees. Note that each Hn is zero-dimensional since it is
homeomorphic to a subspace of {0, 1}N.

Consider the hyperplane P i
n = [0, 1]n × {i} × [0, 1]N for each n ∈ N and i ∈ {0, 1}. It is well

known that {(P 0
n , P

1
n)}n∈N is essential in [0, 1]N. Then, by using the dimension-theoretic fact
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(see van Mill [44, Corollary 3.1.6]), we can find a separator Ln of (P 0
n+1, P

1
n+1) in [0, 1]N such

that Ln ∩Hn = ∅ since Hn is zero-dimensional.
Put L =

∩
n Ln. Then, L contains no point having Turing degree, since L∩Hn = ∅ for every

n ∈ N. Moreover, L contains a continuum A from P 0
0 to P 1

0 (see van Mill [44, Proposition
3.7.4]).

Recall that our infinite dimensional version of Kreisel’s basis theorem (Lemma 4.9) says
that every Π0

1 subset P of the Hilbert cube has a point of an ω-left-CEA continuous degree.
Surprisingly, we do not need any effectivity assumption on P to prove this if P is a nontrivial
connected compact set.

Proposition 6.6. Every nondegenerated continuum A ⊆ [0, 1]N contains a point of an ω-left-
CEA continuous degree.

Proof. Note that there is n ∈ ω such that P
[0,p]
n and P

[q,1]
n with some rationals p < q ∈ Q

intersect with A, since A is nondegenerated, where P
[a,b]
n = [0, 1]n× [a, b]× [0, 1]N. Clearly, there

is no separator C of P
[0,p]
n and P

[q,1]
n with C ∩ A = ∅ (i.e., the pair (P

[0,p]
n , P

[q,1]
n ) is essential

in A), since A is not zero-dimensional. Therefore, the pair (P p
n , P

q
n) is essential in the compact

subspace A∩ P [p,q]
n . Hence, A∩ P [p,q]

n contains a continuum B intersecting with P p
n and P q

n (see

van Mill [44, Proposition 3.7.4]). Consider a computable homeomorphism h : P
[p,q]
n

∼= [0, 1]N

mapping P p
n and P q

n to P 0
0 = π−1

0 (0) and P 1
0 = π−1

1 (1), respectively. Then h[B] is a continuum
intersecting with π−1

0 (0) and π−1
0 (0), and therefore [0, 1] ⊆ π0[h[B]]. Let s be a name of h[B].

Then, by definition, minh[B][s] ∈ RSW, which has an ω-left-CEA continuous degree by Lemma
6.2. In particular, h[B] contains a point of an ω-left-CEA continuous degree, and so does A
since h is a computable homeomorphism and B ⊆ A.

As a corollary, we can see that every compactum A ⊆ [0, 1]N of positive dimension contains
a point of an ω-left-CEA continuous degree. Our proof of Theorem 6.5 is essentially based on
the fact that for any sequence of zero-dimensional spaces {Xi}i∈N, there exists a continuum
avoiding all Xi’s. Contrary to this fact, Theorem 6.6 says that {Xi}i∈N cannot be replaced
with a sequence of totally disconnected spaces. We say that a space is σ-totally-disconnected
if it is a countable union of totally disconnected subspaces. Note that the complement of a
σ-totally-disconnected subset of the Hilbert cube is infinite dimensional.

Corollary 6.7. There exists a σ-totally-disconnected set X ⊆ [0, 1]N such that any compact
subspace of the complement Y = [0, 1]N \X is zero-dimensional.

Proof. Define X⟨i,j⟩ to be the set of all points which can be identified with an element in ωCEA
via the witnesses Φi and Φj . Then, X⟨i,j⟩ is totally disconnected since it is homeomorphic to a

subspace of ωCEA. Clearly, no point Y = [0, 1]N \
∪

i,j∈NX⟨i,j⟩ has an ω-left-CEA continuous
degree. Assume that Z is a compact subspace of Y of positive dimension. Then Z has a
nondegenerated subcontinuum A. However, by Theorem 6.6, A contains a point of an ω-left-
CEA continuous degree.

6.3 Weakly Infinite Dimensional Cantor Manifolds

Recall that a Pol-type Cantor manifold is a compact metrizable C-space which cannot be discon-
nected by a hereditarily weakly infinite dimensional compact subspaces. By combining a known
construction in infinite dimensional topology, we can slightly extend Theorem 5.1 as follows.
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Proposition 6.8. There exists a collection (Xα)α<2ℵ0 of continuum many Pol-type Cantor
manifolds satisfying the following conditions:

1. if α ̸= β, Xα does not σ-embed into Xβ.

2. If α ̸= β, then Xα does not finite level Borel embed into Xβ.

3. If α ̸= β, then the Banach algebra B∗
n(Xα) is not linearly isometric (not ring isomorphic

etc.) to B∗
n(Xβ) for all n ∈ N.

Lemma 6.9. For any G, there exists a Pol-type Cantor manifold Z(G) such that ωCEA ⊕
Rea(G) ≡T

σ Z(G).

Proof. Recall from Theorem 6.1 that ωREA is σ-homeomorphic to a strongly infinite dimen-
sional space RSW. Let R0 and R1 be homeomorphic copies of RSW, and let X be a com-
pactification of R0 ⊕ R1 ⊕ Rea(G) in the sense of Lelek (recall from Fact 4.1). Then, X is
σ-homeomorphic to ωCEA⊕Rea(G).

We follow the construction of Elżbieta Pol [59, Example 4.1]. Now, R0 has a hereditarily
strongly infinite dimensional subspace Y [65]. Choose a point p ∈ Y and a closed set F ⊆ Y
containing p such that every separator between p and clXF is strongly infinite dimensional as
in [59, Example 4.1 (A)].

Define K = X/clXF as in [59, Example 4.1 (A)]. To see that K is σ-homeomorphic to X, we
note that clXF ∩ (R1 ∪Rea(G)) = ∅ since R0, R1 and Rea(G) are separated in X. Therefore,
clXF is covered by the union of R0 (which is homeomorphic to R1) and a countable dimensional
space. Define Z as a Pol-type Cantor manifold in [59, Example 4.1 (C)]. Then, Z(G) := Z is
the union of a finite dimensional space and countably many copies of K. Consequently, Z(G) is
σ-homeomorphic to Rea(G).

Proof of Proposition 6.8. Combine Theorem 5.1, Corollary 5.9, and Lemma 6.9.

6.4 An Ordinal Valued σ-Topological Invariant

In this section, we will try to extract a topological content from our construction in Section
5. However, although we have constructed continuum many mutually different spaces, it is
difficult to discern dimension-theoretic differences among these spaces. For instance, all of our
spaces have the same transfinite Steinke dimensions [4, 63], game dimensions [18], and so on
(see Chatyrko and Hattori [10] for the thorough treatment of the notion of various kinds of
transfinite dimensions).

We now focus on an ℵ1 chain of σ-homeomorphism types of Polish spaces:

Rn <T
σ Rea({j1}) <T

σ Rea({jω}) <T
σ Rea({jω2}) <T

σ Rea({jω3}) <T
σ . . .

Our key observation was that closure properties of Scott ideals reflect σ-homeomorphism
types of Polish spaces. The purpose here is to provide a topological understanding of our
method.
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6.4.1 Universal Dimension

We first generalize an idea of understanding the topological dimension in the context of a uni-
versal function. A continuous function f : X → Y is universal if for any continuous function
g : X → Y, there is x ∈ X such that f(x) = g(x). It is known that a separable metrizable space
X is n-dimensional if and only if there is a universal function f : X → [0, 1]n, and X is strongly
infinite dimensional if and only if there is a universal function f : X → [0, 1]N. Then, how do
we introduce an intermediate notion? Our answer is thinking about partial countably universal
functions and Baire functions of infinite rank.

Let X and Y be topological spaces, and assume that G is a collection of partial functions of
type N ×X → Y. A partial continuous function f :⊆ N ×X → Y is countably G-universal if
for any g ∈ G,

(∃x ∈ X)(∀n ∈ N)[(n, x) ∈ dom(g) =⇒ (∃m ∈ N) f(m,x) = g(n, x)].

Our definition of countable universality ensures that the notion behaves well w.r.t. σ-homeomorphisms.
To express this, we now allow the spaces X and Y in the type of G to vary, and demand that G
is closed under composition with continuous partial functions from both sides, as well as under
products with the identity. Then we find that:

Proposition 6.10. If X σ-embeds into X′, then

1. If there exists a countably G-universal partial function f :⊆ N×X → Y, then there exists
a countably G-universal partial function f ′ :⊆ N×X′ → Y.

2. If there exists a countably G-universal partial function f ′ :⊆ N×Z → X′, then there exists
a countably G-universal partial function f :⊆ N× Z → X.

Proof. 1. Let the σ-embedding of X into X′ be witnessed by partial continuous embeddings
(ιn)n∈N with disjoint domains. Now we define f ′ :⊆ N × X′ → Y via f ′(⟨n,m⟩, x) =
f(m, ι−1

n (x)), and obtain again a partial continuous function. Let g′ :⊆ N × X′ → Y be
in G. Then g :⊆ N×X → Y defined via g(⟨n,m⟩, x) = g′(m, ιn(x)) is the composition of
g and a partial continuous function, hence g ∈ G. Thus, by assumption there exists some
x0 ∈ X such that for all ⟨n,m⟩ ∈ N such that g(⟨n,m⟩, x0) is defined there exists some
l ∈ N with g(⟨n,m⟩, x0) = f(l, x0).

As the (ιn)n∈N witness a σ-embedding, there exists a unique n0 with x0 ∈ dom(ιn0). We
claim that the point ιn0(x0) witnesses that f ′ is countably G-universal given g′. For any
m ∈ N such that g′(m, ιn0(x0)) is defined, we find that g′(m, ιn0(x0)) = g(⟨n0,m⟩, x0). By
assumption there exists some l ∈ N with g(⟨n0,m⟩, x0) = f(l, x0). Moreover, f(l, x0) =
f ′(⟨n0, l⟩, x0). Hence, ⟨n0, l⟩ works as the witness for m ∈ N.

2. Very similar to (1.): Let the σ-embedding of X into X′ be witnessed by partial continuous
embeddings (ιn)n∈N with disjoint domains. We define f :⊆ N×Z → X via f(⟨n,m⟩, x) =
ι−1
n (f ′(m,x)), and obtain again a partial continuous function. Let g :⊆ N× Z → X be in
G. Then g′ :⊆ N × Z → X′ defined via g′(⟨n,m⟩, x) = ιn(g

′(m,x)) is the composition of
the product of the identity on N and g, and a partial continuous function, hence g′ ∈ G.
Thus, by assumption there exists some x0 ∈ Z such that for all ⟨n,m⟩ ∈ N such that
g′(⟨n,m⟩, x0) is defined there exists some l ∈ N with g′(⟨n,m⟩, x0) = f ′(l, x0).

By definition g′(⟨n,m⟩, x0) = ιn(g(m,x0)), so as the (ιn)n∈N witness a σ-embedding, when-
ever g(m,x0) is defined, there exists a unique nm such that g′(⟨nm,m⟩, x0) is defined. By
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construction, we have that ιnm(g(m,x0)) = f ′(l, x0). As ιnm is an embedding, it follows
that g(m,x0) = ι−1

nm
(f ′(l, x0)) = f(⟨nm, l⟩, x0) by definition of f .

Let jα : {0, 1}N → {0, 1}N be the α-th Turing jump, and let Bα(X) be the set of functions
f :⊆ N × X → {0, 1}N such that there are continuous functions H :⊆ N × X → {0, 1}N and
K :⊆ {0, 1}N → {0, 1}N such that f(n, x) = K(jα(H(n, x))).

Definition 6.11. The universal dimension udim(X) of X is the supremum of countable ordinals
α < ω1 such that there is a countably Bβ-universal function f :⊆ N×X → {0, 1}N for any β < ωα,
where, ω0 = 1. If such α does not exist, then udim(X) = −1.

It follows from Proposition 6.10 (1) that the universal dimension is invariant under σ-
homeomorphism:

Corollary 6.12. If X σ-embeds into Y, then udim(X) ≤ udim(Y).

Proposition 6.13. If X is a countable dimensional Polish space, then udim(X) ≤ 0. For every
countable ordinal α > 0, there is a Pol-type Cantor manifold X such that udim(X) = α.

To show Proposition 6.13, we need the following effective interpretation of universal dimen-
sion.

Lemma 6.14. For any admissibly represented space X, the product N×X admits a countably
Bα-universal function if and only if relative to some oracle r, for all z ∈ {0, 1}N there is a point
x ∈ X such that z ∈ coSpecr(x) and coSpecr(x) is closed under the α-th Turing jump.

Proof. We will let Φr
e denote the e-th partial r-computable function from X into {0, 1}N. We

point out that if the e-th Turing functional outputs distinct elements of Cantor space on oracle
r and distinct names of x as input, then x /∈ domΦr

e(x)
Suppose that f :⊆ N × X → {0, 1}N is countably Bα-universal. Since α is countable, and

f is continuous, some oracle r satisfies that α < ωCK,r
1 , and that f is computable relative to r.

Then, clearly {f(n, x) : n ∈ N, (n, x) ∈ dom(f)} ⊆ coSpecr(x) holds for all x ∈ X.
Fix z. Define g(e, x) = z ⊕ (jα ◦ Φr

e(x)). Then g ∈ Bα. Let x ∈ X be a point witnessing
universality of f for given g, that is, for any e ∈ N, there is n ∈ N such that f(n, x) = g(e, x).
Since z ≤T g(e, x) for any e and x where g(e, x) is defined, this implies that z ≤T f(n, x) ∈
coSpecr(x). Thus, z ∈ coSpecr(x) since the r-cospecturm is closed under Turing reducibility.

Now, for any p ∈ coSpecr(x), there is an index e such that p = Φr
e(x). By universality of

f , there is n such that f(n, x) = g(e, x) = z ⊕ p(α). This shows that p(α) ∈ coSpecr(x) since
p(α) ≤T z ⊕ p(α) = f(n, x) ∈ coSpecr(x). Consequently, coSpecr(x) is closed under the α-th
Turing jump.

Conversely, suppose that the condition in Lemma 6.14 holds for r. We define f(e, x) = Φr
e(x)

and claim that f is universal.
For any g ∈ Bα there exists some oracle z ≥T r such that the witnesses H, K for membership

of g in Bα can be chosen as computable relative to z. Clearly, H(n, x) ⊕ z ∈ coSpecz(x) and
K(jα(H(n, x)) ≤T (H(n, x)⊕ z)(α).

By our assumption, there is a point x ∈ X with z ∈ coSpecr(x) such that the r-cospectrum
of x is closed under the α-th Turing jump. Note that r ≤T z ∈ coSpecr(x) implies coSpecr(x) =
coSpecz(x), and therefore, the z-cospectrum of x is also closed under the α-th Turing jump.
This implies that (H(n, x)⊕ z)(α) ∈ coSpecz(x). Hence, we have g(n, x) ∈ coSpecr(x) since the
r-cospectrum is closed under Turing reducibility. This means that Φr

e(x) = g(n, x) for some e,
that is, f(e, x) = g(n, x).
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Proof of Proposition 6.13. If X is countable dimensional, by Theorem 3.5, there is r such that
any point x ∈ X has a Turing degree relative to r. Therefore, coSpecr(x) is not closed under
the Turing jump. By Lemma 6.14, N×X does not admit B1-universal function. Consequently,
udim(X) ≤ 0.

For the second assertion, we first see that the jump-dimension of Rea(jωα) is α + 1. We
have jdim(Rea(jωα)) ≥ α + 1 because for any z, there is x ∈ Rea(jωα) such that JT (jωα , z) ⊆
coSpec(x) ⊆ Ja(jωα , z) by Lemma 5.6. If y ∈ coSpec(x), then y ∈ Ja(jωα , z). Therefore,
y(ω

α+n) ∈ JT (jωα , z) ⊆ coSpec(x) for all n ∈ N. Hence, coSpecz(x) = coSpec(x) is closed
under the β-th Turing jump for all β < ωα+1. To see jdim(Rea(jωα)) < α + 2, we note for
any x ∈ Rea(jωα) that JT (jωα , z) ⊆ coSpec(x) ⊆ Ja(jωα , z) for some z by Lemma 5.6. Then,
z ∈ coSpec(x), but coSpec(x) is covered by the Turing ideal generated by z(ω

α+1). If α is a limit
ordinal, then consider X = Rea({jωβ}β<α).

6.4.2 Jump Dimension

We next consider a variant of countable universality to introduce another σ-topological invariant.
A partial continuous function f :⊆ N×X → Y is countably G-avoiding if for any g ∈ G,

(∃x ∈ X)(∀n ∈ N)(∃m ∈ N)[(∀k ∈ N) (n, k, x) ∈ dom(g) =⇒ f(m,x) ̸= g(n, k, x)].

Proposition 6.15. A Polish space X is countable dimensional if and only if N×X admits no
countably C-avoiding I-valued function, where C is the class of continuous functions.

Before proving Proposition 6.15, we consider other classes of functions. Let Bω
α(X) denote

the set of partial functions of the form g :⊆ N2 × X → {0, 1}N such that there are partial
continuous functions H :⊆ N × X → {0, 1}N and K :⊆ N × {0, 1}N → {0, 1}N such that
g(n, k, x) = K(k, jα(H(n, x))) for any (n, k, x) ∈ dom(g).

Definition 6.16. The jump dimension jdim(X) of X is the supremum of countable ordinals
α < ω1 such that there is a countably Bω

β -avoiding function f :⊆ N × X → {0, 1}N for any
β < ωα.

That the jump dimension is invariant under σ-homeomorphism can be easily verified analo-
gously to Proposition 6.10 (1):

Observation 6.17. If X σ-embeds into Y, then jdim(X) ≤ jdim(Y).

The jump dimension gives an alternative way of understanding our construction in previous
sections.

Proposition 6.18. For every countable ordinal α > 0, there is a Pol-type Cantor manifold X
such that jdim(X) = α.

To show Propositions 6.15 and 6.18, we need the following effective interpretation of jump-
dimension. We say that I ⊆ {0, 1}N is α-principal if there is p ∈ I such that q ≤T p(α) for all
q ∈ I.

Lemma 6.19. For an admissibly represented separable metrizable space X, the product N×X
admits a countably Bω

α-avoiding function if and only if relative to some oracle r, for all z ∈ {0, 1}N
there is a point x ∈ X such that z ∈ coSpecr(x) and coSpecr(x) is not α-principal.
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Proof. Assume that f :⊆ N ×X → {0, 1}N is countably Bω
α-avoiding. Since X and {0, 1}N are

separable metrizable, α is countable, and f is continuous, some oracle r satisfies that X and I
are r-computably embedded into Hilbert cube, α < ωCK,r

1 , and f is computable relative to r.

Then, clearly {f(n, x) : n ∈ N, (n, x) ∈ dom(f)} ⊆ coSpecr(x) holds for all x ∈ X. Fix z.
Define g(e, d, x) = Φd ◦ jα ◦Φr⊕z

e (x), and note that g ∈ Bω
α . Let x ∈ X be a point witnessing the

avoiding property of f for given g. Now, every p ∈ coSpecr(x) is of the form Φr⊕z
e (x) for some

e ∈ N. By the avoiding property of f , there is n ∈ N such that f(n, x) ̸= g(e, d, x) for any d ∈ N.
In other words, we have f(n, x) ̸= Φd(p

(α)) for all d ∈ N, i.e., f(n, x) ̸≤T p(α). This shows that
coSpecr(x) is not α-principal since f(n, x) ∈ coSpecr(x) for any n.

We claim that z ∈ coSpecr(x), i.e., z ≤M (x, r). Otherwise, by Lemma 3.4, (x, r, z) has a
Turing degree since (x, r) has a continuous degree. Let y ∈ {0, 1}N be such that (x, r, z) ≡M y,
and let e be such that Φr⊕z

e (x) = y. In particular, (x, r, z) ≤M Φr⊕z
e (x), and therefore, if

p ≤M (x, r), then p ≤T Φr⊕z
e (x). Since f(m,x) ≤M (x, r), this shows that for any m, f(m,x) =

g(e, d, x) for some d. This contradicts our assumption that f countably Bω
α-avoiding via x.

Consequently, z ∈ coSpecr(x).

Conversely, suppose that the condition in Lemma 6.19 holds for r. We define f(e, x) = Φr
e(x).

Then, we claim that f is Bω
α-avoiding. Given a g ∈ Bω

α , there is an oracle z ≥T r such that there
are z-computable H, K with g(n, k, x) = K(k, jα(H(n, x))). Then g(n, k, x) ≤T (h(n, x)⊕ z)(α)

for any x ∈ X and n, k ∈ N.
By our assumption, there is a point x ∈ X with z ∈ coSpecr(x) such that the r-cospectrum

of x is not α-principal. Note that r ≤T z ∈ coSpecr(x) implies coSpecr(x) = coSpecz(x),
and therefore, the z-cospectrum of x is not α-principal. This implies that for any n, there is
p ∈ coSpecz(x) such that p ̸≤T (h(n, x) ⊕ z)(α). In particular, p ̸≤T g(n, k, x) for any k. Let e
be an index such that p = Φr

e(x), that is, p = f(e, x). This concludes that f(e, x) ̸= g(n, k, x)
for any k ∈ N.

Proofs of Propositions 6.15 and 6.18. For Proposition 6.15, by Miller’s result [45, Proposition
5.3], we can deduce that a point x ∈ [0, 1]N has a Turing degree relative to r if and only if
coSpecr(x) is principal (i.e., 0-principal). Hence, if X is countable dimensional, all cospectra are
0-principal up to some oracle. Therefore, X is not 0-avoiding. Conversely, suppose that X is
not countable dimensional. We claim that for all z ∈ {0, 1}N, there is x ∈ X such that z ≤M x
and x has no Turing degree. Otherwise, (x, z) has a Turing degree by Lemma 3.4. In this case,
Specz(X) ⊆ DT . This implies that X is countable dimensional. Now, our claim clearly implies
the desired condition by Lemma 6.19.

For Proposition 6.18, combine Lemma 6.19 and the argument in the proof of Proposition
6.13.

Example 6.20. 1. The universal/jump-dimension of Hilbert cube [0, 1]N is ω1. This is be-
cause every countable Scott ideal is realized as a cospectrum in the Hilbert cube [45,
Theorem 9.3] and by Lemma 6.19.

2. The universal/jump-dimension of Rea(G) cannot be ω1 for every countable set of G of
oracle Π0

2 singletons. This is because every oracle Π0
2 singleton is Borel measurable.

Therefore, there is a countable ordinal α which bounds all Borel ranks of functions con-
tained in G since ℵ1 is regular. Thus, for any g ∈ G, we have g(r) ≤T (r ⊕ z)(α) for some
oracle z. One can see that the cospectrum of a point in Rea(G) is (α · ω)-principal.
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3. We have 0 ≤ jdim(ωCEA) ≤ 1. This is because the cospectrum of a point in ωCEA is
ω-principal by the proof of Lemma 4.8.

4. There is a strongly infinite dimensional Polish space such that udim(X) = jdim(X) =
1 (e.g., X = ωCEA({j})). We do not know whether there exists a strongly infinite
dimensional compact metric space with udim(X) < ω1 (or jdim(X) < ω1).

7 Internal Characterization of Degree Structures

7.1 Characterizing Continuous Degrees Through a Metrization Theorem

In this section, we will provide a rather strong metrization theorem, namely that any computably
admissible space with an effectively fiber-compact representation can be computably embedded
in a computable metric space. Our result is a slightly stronger version of a result by Schröder
that an admissible space with a proper representation is metrizable [70]. This also gives us a
characterization of the continuous degrees inside the Medvedev degrees that does not refer to
represented spaces at all.

For some closed set A ⊆ {0, 1}N, let T (A) ⊆ {0, 1}N be the set of trees for A, where each
infinite binary tree is identified with an element of Cantor space. Now let δ :⊆ {0, 1}N → X be an
effectively fiber-compact representation, i.e. let x 7→ δ−1({x}) : X → A({0, 1}N) be computable.
Then T (δ−1({x})) ≤M δ−1({x}). If δ is computably admissible, we also have δ−1({x}) ≤M

T (δ−1({x})). Note that being effectively fiber-compact is equivalent to being effectively proper,
as the union of compactly many compact sets is compact. It is known that any computable
metric space has a computably admissible effectively fiber-compact representation (e.g. [79]).
We shall prove that the converse holds, too.

Theorem 7.1. A represented space X admits a computably admissible effectively fiber-compact
representation iff X embeds computably into a computable metric space.

Corollary 7.2. A ⊆ {0, 1}N has continuous degree iff there is B ∈ A({0, 1}N) such that A ≡M

B ≡M T (B).

To prove Theorem 7.1, we need the following two lemmata and a result by Weihrauch.

Lemma 7.3. Let X admit an effectively fiber-compact representation. Then there is a space
Y such that:

1. X ↪→ Y (as a closed subspace),

2. Y has an effectively fiber-compact representation,

3. Y has a computable dense sequence,

4. if X is computably admissible, so is Y.

Proof. Construction of Y: We start with some preliminary technical notation. Let Wrap :
{0, 1}N → {0, 1}N be defined by Wrap(p)(2i) = p(i) and Wrap(p)(2i + 1) = 0. Let Prefix :⊆
{0, 1}N → {0, 1}∗ be defined by Prefix(p) = w iff p = 0w(1)0w(2)0 . . . 011q for some q ∈ {0, 1}N.
Note that dom(Prefix) ∩ dom(Wrap−1) = ∅ and dom(Prefix) ∪ dom(Wrap−1) = {0, 1}N.

Let the presumed representation of X be δX :⊆ {0, 1}N → X. Our construction of Y
will utilize a notation νY : {0, 1}∗ → Y ′ as auxiliary part, this notation (or alternatively,
equivalence relation on {0, 1}∗) will be dealt with later. We set Y = X ∪ Y ′ (in particular, we
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add only countably many elements to X) and then define δY via δY(p) := δX(Wrap−1(p)) if
p ∈ dom(δX ◦Wrap−1) and δY(p) = νY(Prefix(p)) if p ∈ dom(Prefix).

In order to define νY, we do need to refer to the effective fiber-compactness of δX. From
the function realizing x 7→ δ−1

X ({x}) : X → A({0, 1}N) we can obtain an indexed family of finite
trees (Tw)w∈{0,1}∗ with the following properties:

1. Each Tw has height |w|.
2. If w ≺ u, then Tu ∩ {0, 1}≤|w| = Tw.

3. w ∈ Tw.

4. For any p ∈ dom(δX), some q ∈ {0, 1}N is an infinite path through
∪

n∈N Tp≤n
iff δX(q) =

δX(p).

Now we set νY(w) = νY(u) iff Tw = Tu. Note in particular that Tw = Tu is a decidable property.
Proof of the properties: To see that X ↪→ Y it suffices to note that both Wrap and

Wrap−1 are computable. That X embeds as a closed subspace follows from dom(Wrap−1) being
closed in {0, 1}N.

Next we shall see that δY is effectively fiber-compact by reversing the step from the function
x 7→ δ−1

X ({x}) : X → A({0, 1}N) to the family (Tw)w∈{0,1}∗ . First, we define a version of Wrap
for finite trees via T-Wrap(T ) = {0w(1)0w(2) . . . w(|w|) | w ∈ T}∪{0w(1)0w(2) . . . w(|w|)0 | w ∈
T}. Given some setW ⊆ {0, 1}∗, let the induced tree of height be defined via T (W,n) = {u∃w ∈
W u ≺ w} ∪ {u ∈ {0, 1}n | ∃w ∈ W ∧ w ≺ u}. Then we define a derived family (T ′

w)w∈{0,1}∗
by T ′

0w(1)0w(2)...0w(|w|) = T ′
0w(1)0w(2)...0w(|w|)0 = T-Wrap(Tw) and T ′

0w(1)...w(|w|)1v = T ({u | Tu =

Tw}, |w|+ |v|). This construction too satisfies that if w ≺ u, then T ′
u ∩ {0, 1}≤height(T ′(w)) = T ′

w.
Thus, the function that maps p to the set of all infinite pathes through

∪
n∈N T

′
p≤n

does define

some function t : {0, 1}N → A({0, 1}N), and one can verify readily that t(p) = δ−1
Y (δY(p))

whenever p ∈ dom(δY(p)).
It is clear that Y has a computable dense sequence: Fix some standard enumeration ν : N →

{0, 1}∗, and consider (yn)n∈N with yn = δY(0ν(n)(1) . . . 0ν(n)(|ν(n)|)1ω).
It remains to show that if δX is admissible, so is δY. It is this step which requires the

identification of some points via νY, and through this, also depends on δX being effectively-
fiber-compact. Given some tree encoding some δ−1

Y ({x}), we need to be able to compute a
path through it. As long as the tree seems to have a path without repeating 1’s, we lift the
corresponding map for δX. If x = νY(w) for some w ∈ {0, 1}∗, we notice eventually, and can
extend the current path in a computable way by virtue of the identifications.

The preceding lemma produces spaces with a somewhat peculiar property: The designated
dense sequence is an open subset of the space, unlike the usual examples. In [21], Gregoriades
has explored a general construction yielding Polish spaces with such properties (cf. [21, Theorem
2.5]), which in particular serves to prevent effective Borel isomorphisms between spaces.

Lemma 7.4. Let X admit a computably admissible effectively fiber-compact representation.
Then X is computably regular.

Proof. The properties of the representations mean that we can consider X as a subspace of
A({0, 1}N) containing only pair-wise disjoint sets. Let A ∈ A(A({0, 1}N)) be a closed subset in
X. Note that we can compute

∪
A ∈ A({0, 1}N), as every infinite path computes the relevant

tree. Furthermore, given x ∈ X ⊆ A({0, 1}N) and A, we can compute x∩
∪
A ∈ A({0, 1}N). As
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X only contains pair-wise disjoint points, this set is empty if and only if x and A are disjoint.
As {0, 1}N is compact, the corresponding tree will have to die out at some finite level, which
means that the trees for x and A are disjoint below this level. Let I be the vertices at this level
belonging to x. We may now define two open sets UI , UIC ∈ O(A({0, 1}N)) by letting UX for
X ∈ {I, IC} accept its input sets A as soon as A∩X{0, 1}N = ∅ is verified. Then UI∩UIC = {∅},
thus X∩UI and X∩UIC are disjoint open sets. Moreover, we find A ⊆ UI and x ∈ UIC , so the
two open sets are those we needed to construct for computable regularity.

Proof of Theorem 7.1. The ⇐-direction is present e.g. in [79]. We can use Lemma 7.3 to make
sure w.l.o.g. that X has a computable dense sequence. By Lemma 7.4, the space is computably
regular. As shown in [24, 78], a computably regular space with a computable dense sequence
admits a compatible metric.

Miller showed that the Turing degrees below any non-total continuous degree form a Scott
ideal [45], heavily drawing on topological arguments. However, based on Corollary 7.2 we see
that the statement itself can be phrased entirely in the language of trees, points and Medvedev
reducibility. So far, we do not know of a direct proof involving only these concepts:

Proposition 7.5. Let A ⊆ {0, 1}N be such that A ≡M T (A) and that there is no r ∈ {0, 1}N
with A ≡M {r}. Then T (B) ≤M {p} <M A for p ∈ {0, 1}N, B ⊆ {0, 1}N implies B ≤M A.

7.2 Enumeration Degrees and Overtness

The often overlooked dual notion to compactness is overtness (see [75, 76]). Intuitively, overt-
ness makes existential quantification well-behaved: a space X is overt if EX : O(X) → S is
continuous, where EX(U) = ⊤ iff U is nonempty. Therefore, if X is overt and P ⊆ X × Y
is open, then {y ∈ Y | ∃x ∈ X (x, y) ∈ P} is open, too. Classically, this is a trivial notion,
however, the situation is different from an effective point of view.

One may identify an overt subspace A of X with EA, or equivalently, its overtness witness
{U ∈ O(X) : A ∩ U ̸= ∅} as a point in the represented space O(O(X)). Via this identification,
we obtain the hyperspace V(X) of representatives A of all overt subspaces A of X (see also [55]).
Note that this corresponds to the lower Vietoris topology on the hyperspace of closed sets. A
computable point in V(X) is also called a c.e. closed set in computable analysis.

Now we call a representation δ :⊆ NN → X effectively fiber-overt, iff δ−1 : X → V(NN) is
computable. A straightforward argument shows that this is equivalent to δ being effectively
open, i.e. U 7→ δ[U ] : O(NN) → O(X) being computable. Now we see that every space with an
effectively fiber-overt representation inherits an effective countable basis from NN, while on the
other hand, the standard representations of countably based spaces introduced in Example 2.2
are all effectively fiber-overt. Thus we see that while effectively fiber-compact representations
characterize metrizability, effectively fiber-overt representations characterize second-countability.

8 Point Degree Spectra of Quasi-Polish Spaces

8.1 Lower Reals and Semirecursive Enumeration Degrees

Let us move on to the σ-homeomorphic classification of quasi-Polish spaces [8]. We now focus
on the following chain of quasi-Polish spaces:

DT ( Dr ( De, and {0, 1}N <T
σ [0, 1]N <T

σ O(N).
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Here, the proper inclusion [0, 1]N <T
σ O(N) follows from relativizing Miller’s observation in

[45] that no quasi-minimal degree has continuous degree.

In quasi-Polish case, the notion of the specialization order is quite useful. Indeed, Motto
Ros has already used the specialization order to give an alternative way to show the properness
of [0, 1]N <T

σ O(N). Recall that the specialization order≺X on a topological spaceX is defined via
x ≺X y :⇔ x ∈ {y}. (Then [0, 1]N <T

σ O(N) follows from the observation that the specialization
order on O(N) coincides with subset-inclusion, while the T1 separation property asserts that no
two elements are comparable w.r.t. ≺X, i.e. that the specialization order is a single antichain.)

We will show that, inside a single specialization order type, there are continuum many
incomparable σ-homeomorphism types of quasi-Polish spaces which do not σ-embed into the
Hilbert cube.

Theorem 8.1. There is a map Q transforming each countable set S ⊆ ω1 into a nonmetrizable
quasi-Polish space Q(S) such that for any countable sets S, T ⊆ ω1,

Q(S) ̸≤T
σ [0, 1]N, (Q(S),≼Q(S)) ≃ (Q(T ),≼Q(T )),

S ̸⊆ T =⇒ Q(S) ̸≤T
σ Q(T ).

Let R< be the real line endowed with the lower topology, that is, its topology is generated
by open intervals of the form (p,∞). One can easily see that R |Tσ R< by comparing their
specialization orders. From the computability theoretic viewpoint, the property R ̸≤T

σ R< can
be strengthened as follows.

Lemma 8.2 (Co-spectrum Preservation). Let X be an admissibly represented Polish space.
Then,

coSpec(X× R<) ⊆ coSpec(X) ∪ coSpec({0, 1}N).

In particular, if such an X is uncountable, then there is an oracle r ∈ {0, 1}N such that

coSpecr(X× R<) = coSpecr(X).

Lemma 8.3. Let X admit an effectively fiber-overt representation δX (cf. Subsection 7.2),
x ∈ X, y ∈ R<, and z ∈ {0, 1}N. If z ≤M (x, y), then either z ≤M x or −y ≤M x holds.

Proof. Let computable f :⊆ X×R< → {0, 1}N witness the reduction z ≤M (x, y). By extending
the domain of f if necessary, it can be identified with a c.e. open set U ⊆ {0, 1}N×Q×N×{0, 1}
satisfying that f(x, y)(n) = i if and only if the following two condition holds:

1. For any p ∈ δ−1
X (x) there is some rational s < y such that (p, s, n, i) ∈ U .

2. For any p ∈ δ−1
X (x) and any rational s < y, (p, s, n, 1− i) ̸∈ U .

As δX is effectively fiber-overt, the set U ′ := {(x′, t, n, i) | ∃p ∈ δ−1
X (x′) (p, t, n, i) ∈ U} is also

computable as an open subset of X×Q× N× {0, 1}. Now we can distinguish two cases:

1. For any ε > 0, there exist rationals t < s < y+ ε such that (x, t, n, i) ∈ U ′ and (x, s, n, 1−
i) ∈ U ′ for some n ∈ N and i ∈ {0, 1}.

2. Otherwise, there exists ε > 0 such that for all t < y + ε, if (x, t, n, i) ∈ U ′ for some n ∈ N
and i ∈ {0, 1}, then we must have i = f(x, y)(n).
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Note that if (x, t, n, i) ∈ U ′ and (x, s, n, 1 − i) ∈ U ′ for t < s, then we automatically have
y ≤ s. Therefore, in the first case we can compute −y ∈ R< as the supremum of −s over all
witnesses s, thus find −y ≤M x. In the second case, there will be some rational number y0 with
y ≤ y0 < y + ε. Using y0 in place of y leaves the value f is producing unchanged, thus we have
that z ≤M x.

Proof of Lemma 8.2. Suppose that y ∈ R< and x ∈ X. If −y ̸≤M x, then coSpec(x, y) =
coSpec(x) by Lemma 8.3. Otherwise, (x, y,−y) ≡M (x, y). If y ≤M x, then clearly, coSpec(x, y) =
coSpec(x). Otherwise, (y,−y) ̸≤M x. Obviously, (y,−y) has Turing degree. By Lemma 3.4, we
have (x, y,−y) ∈ DT . Hence, coSpec(x, y) ∈ coSpec({0, 1}N). For the latter half of Lemma 8.2,
if X is uncountable, then there is an r-computable embedding of {0, 1}N into X for some oracle
r.

Proof of Theorem 8.1. Let GS be the countable set of monotone oracleΠ0
2 singletons constructed

in the proof of Theorem 5.1. Define Q(S) := Rea(GS)×R<, where R< := R< ∪{∞} is a quasi-
completion of R<. First note that R< does not σ-embed into the Hilbert cube, since by Lemma
8.3, for any y ∈ R< and oracle x, if z ∈ coSpecx(y) then either z ≤T x or −y ≤M x, that
is, −y is left-c.e. relative to x. Given an oracle x, there are only countably many y such that
−y ≤M x, and therefore, this means that given x, the x-co-spectrum of y consists only of x-
computable points for all but countably many y. If y is not x-computable, such a y is called
quasi-minimal relative to x. However, the Hilbert cube does not contain such a point as shown
in [45, Corollary 7.3]. Since quasi-minimality is a degree-theoretic property, this concludes
R< ̸≤T

σ [0, 1]N by Theorem 3.5.

Concerning specialization orders, Rea(GS) is metrizable (hence T1), its specialization order
is a single antichain of cardinality continuum. It is easy to see that the specialization order
on a product space A × B is the product of the specialization orders on A and B. Thus, the
specialization order on Q(S) is order-isomorphic to that on Q(T ).

Finally, by Lemma 8.2, the quasi-Polish space Q(S) = Rea(GS)× R< has the same cospec-
trum as Rea(GS). By the proofs of Theorem 5.1 and Lemma 5.3, if S ̸⊆ T , then the cospectrum
ofRea(GS) is not a sub-cospectrum ofRea(GT ) relative to all oracles. Therefore, by Observation
4.6, we have Q(S) ̸≤T

σ Q(T ).

As a consequence of Lemma 8.2, any lower real can compute only a ∆0
2 real:

coSpec(R<) = {{x ∈ {0, 1}N : x ≤T y} : y is right-c.e.}

Indeed, Lemma 8.3 provides a very simple and natural construction of a quasi-minimal
enumeration degree.

Corollary 8.4 (see also Arslanov, Kalimullin & Cooper [5, Theorem 4]). Suppose that
z ∈ R is neither left-c.e nor right-c.e. Then, the enumeration degree of the cut {q ∈ Q : q < z}
is quasi-minimal.

On the one hand, we deduced the property [0, 1]N <T
σ O(N) from the topological argument

concerning the specialization order on the lower real R<. On the other hand, Miller’s orig-
inal proof used the existence of a quasi-minimal enumeration degree to show Spec([0, 1]N) (
Spec(O(N)). Surprisingly, however, the previous argument clarifies that these two seemingly
unrelated approaches are essentially equivalent.
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Note that the point degree spectrum of the lower real R< is indeed strongly connected with
the notion of a semirecursive set in the context of the enumeration degrees. Recall from [36]
that a set A ⊆ N is called semirecursive, if there is a computable function f : N× N → N such
that for all n,m ∈ N we find f(n,m) ∈ {n,m}, and if n ∈ A or m ∈ A, then f(n,m) ∈ A. We
call an enumeration degree q ∈ De semirecursive, if it is the degree of a semirecursive point in
O(N).

Jockusch [36] pointed out that every left-cut (i.e., every lower real x ∈ R<) is semirecur-
sive, and conversely, Ganchev and Soskova [20] showed that every semirecursive enumeration
degree contains a left-cut. Consequently, the point degree spectra of the lower real R< can be
characterized as follows:

Spec(R<) = {d ∈ De : d is a semirecursive enumeration degree}.

8.2 Higher Dimensional Lower Cubes

We can also consider the higher dimensional lower real cubes Rn
<. Surprisingly, the spectra of

Rn
< form a proper hierarchy as follows.

Theorem 8.5. If X is a second-countable T1 space, then Rn+1
< |Tσ X× Rn

< for every n.

To show the above theorem, we use the following order theoretic lemma. Let Λn = ({0, 1}n,≤
) be a partial order on {0, 1}n obtained as the n-th product of the ordering 0 < 1.

Lemma 8.6. For every countable partition (Pi)i∈ω of the n-dimensional hypercube [0, 1]n (en-
dowed with the standard product order), there is i ∈ ω such that Pi has a subset which is order
isomorphic to the product order Λn.

Proof. We use Vaught’s “non-meager” quantifier ∃∗xφ(x), which states that the set {x : φ(x)}
is not meager in [0, 1] (with respect to the standard Euclidean topology). We claim that for
every countable partition (Pi)i∈ω of [0, 1]n, there is i ∈ ω such that

∃∗x1∃∗x2 . . . ∃∗xn (x1, x2, . . . , xn) ∈ Pi

Inductively assume that the above claim is true for n− 1. If the above claim does not hold
for n, then by the Baire category theorem, there are comeager many x1 such that

¬∃∗x2 . . . ∃∗xn (x1, x2, . . . , xn) ∈
∪
i

Pi.

However, for any such x1, by the induction hypothesis, the x1-sections of Pi’s do not cover
the x1-section of [0, 1]n. In particular,

∪
i Pi cannot cover the n-hypercube [0, 1]n, which verifies

the claim.

Now, let S be a nonmeager set consisting of all x1’s in the above claim. Note that since there
are non-meager many x1 ∈ S, there is a nonempty open set U such that for any nonempty open
set V ⊆ U , one can find uncountably many such x1 ∈ V ∩ S. Otherwise, S is covered by the
closure of the union of the collection B of all rational open balls B such that B ∩S is countable.
Therefore, S is divided into the union of the nowhere dense set ∂

∪
B and the countable set∪

B∈B B ∩ S, which contradicts the fact that S is nonmeager. We fix such a nonempty open set
U .
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Now, for any x1 ∈ S, we may inductively assume that the x1-th section of Pi has a subset
L(x1) which is order isomorphic to Λn−1. Let L̂(x1) be the region bounded by L(x1), which is
homeomorphic to [0, 1]n−1. We may also inductively assume that Pi is dense in L̂(x1). Therefore,
since L̂(x1) for any x1 ∈ S has positive (n−1)-dimensional Lebesgue measure, for any nonempty
open set V ⊆ U one can find x01 < x11 in V ∩S such that the intersection π◦ L̂(x01)∩π◦ L̂(x11) also
has positive (n−1)-dimensional Lebesgue measure, where π : [0, 1]n → [0, 1]n−1 is the projection
defined by π(x1, x2, . . . , xn) = (x2, . . . , xn). By density of Pi, one can find a smaller (n−1)-cubes
L∗(x01), L

∗(x11) ⊆ π ◦ L̂(x01)∩ π ◦ L̂(x11) such that ({x01}×L∗(x01))∪ ({x11}×L∗(x11)) ⊆ Pi is order
isomorphic to Λn.

Proof of Theorem 8.5. Note that the specialization order on the space Rn+1
< is exactly the same

as the standard product order on Rn+1. By Lemma 8.5, for every countable partition (Pi)i∈ω
of Rn+1

< , there is i ∈ ω such that the specialization order on Pi has a subset which is order
isomorphic to the product order Λn+1 whose order dimension is n + 1. If Pi is embedded into
the specialization order on X×Rn

<, then the embedded image of an isomorphic copy of Λn+1 has
to be contained in a connected component of the order of X× Rn

<. However, the specialization
order on X × Rn

< is now card(X) many copies of that on Rn
< since X is T1. Therefore, every

connected component of the specialization order on X×Rn
< is isomorphic to the product order

on Rn whose order dimension is n. Hence, Rn+1
< cannot be σ-embedded into X× Rn

<.
Conversely, suppose that X × Rn

< is σ-embedded into Rn+1
< . By Lemma 8.5, for every

countable partition (Pi)i∈ω of X×Rn
<, there must exist i ∈ ω such that Pi contains a uncountable

family (Λn
α)α∈ℵ1 of pairwise incomparable suborders of Pi which are order isomorphic to Λn.

Let Lα be the embedded image of Λn
α in Rn+1

< , and L̂α be the region bounded by Lα, which is
homeomorphic to [0, 1]n. As in the proof of Lemma 8.5, we may also assume that the embedded
image P ∗

i ⊆ Rn+1
< of Pi is dense in L̂α for any α < ℵ1. For any α < ℵ1, the projection

πk[L̂α] = {(x0, . . . , xk−1, xk+1, . . . , xn) : (x0, . . . , xn) ∈ L̂α} of L̂α for some k ≤ n has positive
n-dimensional Lebesgue measure. Fix k < n + 1 such that πk[L̂α] has positive n-dimensional
Lebesgue measure for uncountably many α. Then, there are α ̸= β such that πk[L̂α] ∩ πk[L̂β]
also has positive (n+1)-dimensional Lebesgue measure. It is not hard to see that it contradicts
our assumption that Lα and Lβ are incomparable.

Note that Theorem 8.5 has immediate computability-theoretic corollaries:

Corollary 8.7. For every n ∈ N there are enumeration degrees pn, qn such that

• pn is the product of n+ 1 semirecursive degrees, but not of n semirecursive degrees and a
Turing degree.

• qn is the product of n semirecursive degrees and a Turing degree, but not of n− 1 semire-
cursive degrees and a Turing degree, or of n+ 1 semirecursive degrees.

8.3 The co-spectrum of a Universal Quasi-Polish Space

Recall that the co-spectrum of the universal Polish space [0, 1]N consists of all principal countable
Turing ideals and all countable Scott ideals. However, there are many non-principal countable
Turing ideals that are not Scott ideals, e.g., countable ω-models of WWKL+¬WKL, RT2

2+¬WKL
and so on. We now see that every countable Turing ideal is realized as a co-spectrum of the
universal quasi-Polish space O(N) by modifying the standard forcing construction of quasi-
minimal enumeration degrees.
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Theorem 8.8. Every countable Turing ideal is realized as a co-spectrum in the universal quasi-
Polish space O(N). In particular, coSpecr([0, 1]N) ( coSpecr(O(N)) for every r ∈ N.

Proof. It suffices to show that, for any sequence (xi)i∈N of reals and oracle r, there is A ∈ O(N)
whose r-co-spectrum coSpecr(A) is equal to all y ∈ {0, 1}N such that y ≤T r ⊕

⊕
m≤n xm for

some n ∈ N. Without loss of generality, we may assume that x0 = r. Suppose ⊥ ̸∈ N, and
let N⊥ = N ∪ {⊥}. We say that a sequence σ ∈ N⊥ strongly extends τ ∈ N⊥ if τ is an initial
segment of σ as a N⊥-valued sequence. A sequence σ ∈ N⊥ extends τ ∈ N⊥ if σ extends τ as
a partial function on N, where the equality σ(n) = ⊥ is interpreted as meaning that σ(n) is
undefined, that is, n ̸∈ dom(σ).

Every partial function φ :⊆ N → N generates a tree Tφ ⊆ N<ω
⊥ by

Tφ = {σ ∈ N<ω
⊥ : (∀n < |σ|) φ(n) ↓ → σ(n) = φ(n)}.

Let P be the collection of pairs (σ, φ) of a string σ ∈ N<ω
⊥ and a partial function φ such that

σ ∈ Tφ and dom(φ) is of the form D(A) = {(m,n) : n ∈ N & m ∈ A} for some finite set A ⊆ N.
We write (τ, ψ) ≤ (σ, φ) if τ strongly extends σ, ψ extends φ, and ψ � |σ| = φ � |σ|.

By induction, we assume that (σ0, φ0) is the pair of an empty string and an empty function,
and (σs, φs) ∈ P has already been defined. Moreover, we inductively assume that the tree Tφs

is computable in
⊕

2t<s xt. We now have dom(φs) = D(As) for some s ∈ N by the definition of
P. If s = 2e for some e ∈ N, then choose sufficiently large ms+1 ̸∈ As with ms+1 > |σs|. Then,
put σs+1 = σs, and define φs+1(ms+1, n) = xe(n) for every n ∈ N. Clearly, the tree Tφs+1 is
computable in

⊕
2t≤s xt.

If s = 2e + 1 for some e ∈ N, we look for a string τ ∈ Tφs strongly extending σs which
forces the e-th computation Ψe to be inconsistent, that is, two different values Ψe(τ)(n) = i and
Ψe(τ)(n) = j for some n and i ̸= j are enumerated. If there is such a τ , define σs+1 = τ and
φs+1 = φs.

If there is no such a τ , we look for strings η, θ ∈ Tφs strongly extending σs such that the
e-th computations Ψe on η and θ split and are consistent, that is, the consistent computations
Ψe(η)(n) = i and Ψe(θ)(n) = j for some n and i ̸= j are enumerated. In this case, for a
sufficiently large k > max |η|, |θ|, define σs+1 to be the rightmost node of Tφs strongly extending
σs, where we declare that ⊥ is the rightmost element in N⊥ in the sense that n < ⊥ for every
n ∈ N. Note that η (resp. θ) (non-strongly) extends σs+1 � |η| (resp. σs+1 � |θ|) since σs+1

chooses as many ⊥’s as possible. Then, define φs+1 = φs.

Otherwise, define σs+1 = σs and φs+1 = φs. Finally, we obtain a partial function Φ on N by
combining {φs}s∈N.

As in the usual argument, we will show that Φ is quasi-minimal above the collection {
⊕

m≤n xm :
n ∈ N}. Clearly,

⊕
m≤e xm is computable in Φ by our strategy at stage 2e.

To show quasi-minimality of Φ, consider the e-th computation Ψe. If we find an inconsistent
computation on some τ at stage s = 2e + 1, then clearly, Ψe(Φ) does not define an element
of {0, 1}N. If we find a consistent e-splitting η and θ on an input n at stage s = 2e + 1,
Ψe(Φ)(n) is undefined, since otherwise Ψe(Φ)(n) = k implies Ψe(η) = Ψe(θ) = k. Otherwise,
for every n ∈ N, if Ψe(Φ)(n) is defined, then it is consistent, and uniquely determined inside
Tφs . Therefore, Ψe(Φ)(n) = k if and only if there is τ ∈ Tφs strongly extending σs such
that Ψe(τ)(n) = k. Consequently, Ψe(Φ) is computable in

⊕
m≤e xm, since Tφs is a pruned⊕

m≤e xm-computable tree by induction.
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Corollary 8.9. For any separable metrizable space X, we have X× R< <T
σ O(N).

Proof. By Observation 4.6, Lemma 8.3 and Theorem 8.8.
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[69] Matthias Schröder (2002): Extended admissibility. Theoret. Comput. Sci. 284(2), pp. 519–538.
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