A classification of the natural Many-one degrees.

Antonio Montalbán

U.C. Berkeley

June, 2017 Nagoya, Japan

Joint work with Takayuki Kihara.

Antonio Montalbán (U.C. Berkeley)

Natural m-degrees

June 2017 1 / 20

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

Empirical fact: *Natural* theories are well-ordered by consistency strength.

イロト 不得 とうせい かほとう ほ

Empirical fact: *Natural* theories are well-ordered by consistency strength. A theory is a set of axioms,

< 日 > < 同 > < 三 > < 三 >

Empirical fact: *Natural* theories are well-ordered by consistency strength.

A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Empirical fact: *Natural* theories are well-ordered by consistency strength.

A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T', let $T \ll T'$ if T' can prove the consistency of T.

Empirical fact: *Natural* theories are well-ordered by consistency strength.

A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T', let $T \ll T'$ if T' can prove the consistency of T.

Recall Gödel's theorem that $T \ll T$.

イロト イポト イヨト ・ヨ

Empirical fact: *Natural* theories are well-ordered by consistency strength.

A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T', let $T \ll T'$ if T' can prove the consistency of T.

Recall Gödel's theorem that $T \ll T$.

One can build theories T and T' incomparable under \ll .

イロト イポト イヨト イヨト 三日

Empirical fact: *Natural* theories are well-ordered by consistency strength.

A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T', let $T \ll T'$ if T' can prove the consistency of T.

Recall Gödel's theorem that $T \ll T$.

One can build theories T and T' incomparable under \ll .

We don't really understand why the empirical fact holds.

Empirical fact: *Natural* theories are well-ordered by consistency strength.

A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T', let $T \ll T'$ if T' can prove the consistency of T.

Recall Gödel's theorem that $T \ll T$.

One can build theories T and T' incomparable under \ll .

We don't really understand why the empirical fact holds.

In this talk we will study a similar phenomenon in Computability Theory.

Table of contents

Objective: Classify the natural many-one degrees.

< ロ > < 同 > < 回 > < 回 >

Objective: Classify the natural many-one degrees.

Introduction to Computability Theory

2 Many-one degrees.

What are the natural many-one degrees?

Computability Theory

Definition: A function $f : \mathbb{N} \to \mathbb{N}$ is *computable*

if there is a computer program that, on input n, outputs f(n).

< □ > < 同 >

Definition: A function $f : \mathbb{N} \to \mathbb{N}$ is *computable*

if there is a computer program that, on input n, outputs f(n).

A more formal definition:

The class of *partial computable functions* $\mathbb{N}^n \to \mathbb{N}$ is the

- closure of the projection and successor functions,
- under composition, recursion, and minimalization.

<ロ> <同> <同> < 同> < 同>

The word problem:

<ロ> <同> <同> < 同> < 同>

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators.

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations) that generate the **trivial** group is **not** computable.

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations) that generate the **trivial** group is **not** computable.

Simply connected manifolds: The set of finite triangulations of **simply connected** manifolds is **not** computable.

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations) that generate the **trivial** group is **not** computable.

Simply connected manifolds: The set of finite triangulations of **simply connected** manifolds is **not** computable.

Hilbert's 10th problem: The set of polynomials in $\mathbb{Z}[x_1, x_2, ...]$ that have integer roots is **not** computable.

イロト イポト イヨト ・ヨ

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations) that generate the **trivial** group is **not** computable.

Simply connected manifolds: The set of finite triangulations of **simply connected** manifolds is **not** computable.

Hilbert's 10th problem: The set of polynomials in $\mathbb{Z}[x_1, x_2, ...]$ that have integer roots is **not** computable.

The Halting problem: The set of programs that **halt**, and don't run for ever, is **not** computable.

<ロ> <同> <同> < 同> < 同>

Enumerate the computer programs alphabetically as $\Phi_0, \Phi_1, \Phi_2,$

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: K is not computable:

< 日 > < 同 > < 三 > < 三 >

Enumerate the computer programs alphabetically as $\Phi_0, \Phi_1, \Phi_2,$

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: *K* is not computable: Proof: *Diagonalization*:

< 日 > < 同 > < 三 > < 三 >

Enumerate the computer programs alphabetically as $\Phi_0, \Phi_1, \Phi_2,$

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: *K* is not computable: Proof: *Diagonalization*: If *K* were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$.

イロト イポト イヨト イヨト

Enumerate the computer programs alphabetically as $\Phi_0, \Phi_1, \Phi_2,$

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: *K* is not computable: Proof: *Diagonalization*:

If K were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$. That program must be Φ_e for some e.

イロト イポト イヨト イヨト 二日

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: *K* is not computable: Proof: *Diagonalization*:

If K were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$. That program must be Φ_e for some e.

Then $\langle e, e \rangle \notin K \iff P(e)$ halts

イロト イポト イヨト イヨト 二日

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: K is not computable:

Proof: *Diagonalization*:

If K were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$. That program must be Φ_e for some e.

Then $\langle e, e \rangle \notin K \iff P(e)$ halts $\iff \Phi_e(e)$ halts

イロト イポト イヨト ・ヨ

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: K is not computable:

Proof: *Diagonalization*:

If K were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$. That program must be Φ_e for some e.

 $\mathsf{Then}\ \langle e,e\rangle \not\in \mathsf{K} \iff \mathsf{P}(e) \ \mathsf{halts} \iff \Phi_e(e) \ \mathsf{halts} \iff \langle e,e\rangle \in \mathsf{K}.$

イロト イポト イヨト イヨト 三日

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: K is not computable:

Proof: *Diagonalization*:

If K were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$. That program must be Φ_e for some e.

 $\mathsf{Then}\ \langle e,e\rangle \not\in \mathsf{K} \iff \mathsf{P}(e) \ \mathsf{halts} \iff \Phi_e(e) \ \mathsf{halts} \iff \langle e,e\rangle \in \mathsf{K}.$

Theorem: The word problem is not computable:

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: K is not computable:

Proof: *Diagonalization*:

If K were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$. That program must be Φ_e for some e.

 $\mathsf{Then}\ \langle e,e\rangle \not\in \mathsf{K} \iff \mathsf{P}(e) \ \mathsf{halts} \iff \Phi_e(e) \ \mathsf{halts} \iff \langle e,e\rangle \in \mathsf{K}.$

Theorem: The word problem is not computable: Proof: *Reduce the Halting problem to the word problem*:

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: *K* is not computable:

Proof: *Diagonalization*:

If K were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$. That program must be Φ_e for some e.

 $\mathsf{Then}\ \langle e,e\rangle \not\in \mathsf{K} \iff \mathsf{P}(e) \ \mathsf{halts} \iff \Phi_e(e) \ \mathsf{halts} \iff \langle e,e\rangle \in \mathsf{K}.$

Theorem: The word problem is not computable: Proof: Reduce the Halting problem to the word problem: Define a computable function $f: \mathbb{N}^2 \to \{ \text{ set of finite group presentations } \}$ such that $(e, n) \in K \iff$ the group with presentation f(e, n) is trivial.

Def: The halting problem is the set $K = \{ \langle e, n \rangle \in \mathbb{N}^2 : \Phi_e(n) \text{ halts } \}.$

Theorem: K is not computable:

Proof: *Diagonalization*:

If K were computable, write the program: P(n) halts \iff the $\langle n, n \rangle \notin K$. That program must be Φ_e for some e.

 $\mathsf{Then}\ \langle e,e\rangle \not\in \mathsf{K} \iff \mathsf{P}(e) \ \mathsf{halts} \iff \Phi_e(e) \ \mathsf{halts} \iff \langle e,e\rangle \in \mathsf{K}.$

Theorem: The word problem is not computable: Proof: Reduce the Halting problem to the word problem: Define a computable function $f: \mathbb{N}^2 \to \{ \text{ set of finite group presentations } \}$ such that $(e, n) \in K \iff$ the group with presentation f(e, n) is trivial. Then, if the word problem were computable, so would be K.

Many-one reducibility

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

< 日 > < 同 > < 三 > < 三 >

Many-one reducibility

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition:

A and B are many-one equivalent $(A \equiv_m B)$, if $A \leq_m B$ and $B \leq_m A$.

Many-one reducibility

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition:

A and B are many-one equivalent $(A \equiv_m B)$, if $A \leq_m B$ and $B \leq_m A$. An *m*-degree is a \equiv_m -equivalence class.
Many-one reducibility

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition:

A and B are many-one equivalent $(A \equiv_m B)$, if $A \leq_m B$ and $B \leq_m A$. An *m*-degree is a \equiv_m -equivalence class.

Lemma:

- **●** $\emptyset \leq_m B$ for every $B \subseteq \mathbb{N}$, unless $B = \mathbb{N}$.
- **2** $\mathbb{N} \leq_m B$ for every $B \subseteq \mathbb{N}$, unless $B = \emptyset$.
- **③** If A is computable, then $A \leq_m B$ for every $B \subseteq \mathbb{N}$ unless $B = \emptyset, \mathbb{N}$.
- **(**) If B is computable and $A \leq_m B$, then A is computable too.
- **5** Given *B*, the set $\{A \subseteq \mathbb{N} : A \leq_m B\}$ is countable.

・ロト ・同ト ・ヨト ・ヨト

The following are \equiv_m -equivalent:

K, the Halting problem.

- \equiv_m The Word problem.
- \equiv_m The simply-connected problem.
- \equiv_m Hilbert's 10th problem.

< 日 > < 同 > < 三 > < 三 >

The following are \equiv_m -equivalent:

K, the Halting problem.

- \equiv_m The Word problem.
- \equiv_m The simply-connected problem.
- \equiv_m Hilbert's 10th problem.

The following are in strictly increasing \leq_m -order:

K, the Halting problem

< 日 > < 同 > < 三 > < 三 >

The following are \equiv_m -equivalent:

K, the Halting problem.

- \equiv_m The Word problem.
- \equiv_m The simply-connected problem.
- \equiv_m Hilbert's 10th problem.

The following are in strictly increasing \leq_m -order:

K, the Halting problem

 $<_m \{ p(x, \bar{y}) \in \mathbb{Z}[x, y_1, y_2, ...] \text{ with integers solutions for exactly one } x \}$

イロト イポト イヨト ・ヨ

The following are \equiv_m -equivalent:

K, the Halting problem.

- \equiv_m The Word problem.
- \equiv_m The simply-connected problem.
- \equiv_m Hilbert's 10th problem.

The following are in strictly increasing \leq_m -order:

K, the Halting problem

 $<_m \{ p(x, \bar{y}) \in \mathbb{Z}[x, y_1, y_2, ...] \text{ with integers solutions for exactly one } x \}$

 $<_{m}$ { finite presentations of groups that are torsion-free }

イロト イポト イヨト ・ヨ

The following are \equiv_m -equivalent:

K, the Halting problem.

- \equiv_m The Word problem.
- \equiv_m The simply-connected problem.
- \equiv_m Hilbert's 10th problem.

The following are in strictly increasing \leq_m -order:

K, the Halting problem

- $<_m \{ p(x, \bar{y}) \in \mathbb{Z}[x, y_1, y_2, ...] \text{ with integers solutions for exactly one } x \}$
- $<_m \{ \text{ finite presentations of groups that are torsion-free } \}$
- <_m { true 1st-order sentences about arithmetic }*

・ロ・・ 「「」・ (三) ・ 三) ののの

The following are \equiv_m -equivalent:

K, the Halting problem.

- \equiv_m The Word problem.
- \equiv_m The simply-connected problem.
- \equiv_m Hilbert's 10th problem.

The following are in strictly increasing \leq_m -order:

K, the Halting problem

 $<_m \{ p(x, \bar{y}) \in \mathbb{Z}[x, y_1, y_2, ...] \text{ with integers solutions for exactly one } x \}$

- $<_{m}$ { finite presentations of groups that are torsion-free }
- <_m { true 1st-order sentences about arithmetic }*
- $<_m$ { programs computing linear orderings that contain a copy of \mathbb{Q} }

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

The following are \equiv_m -equivalent:

K, the Halting problem.

- \equiv_m The Word problem.
- \equiv_m The simply-connected problem.
- \equiv_m Hilbert's 10th problem.

The following are in strictly increasing \leq_m -order:

K, the Halting problem

 $<_m \{ p(x, \bar{y}) \in \mathbb{Z}[x, y_1, y_2, ...] \text{ with integers solutions for exactly one } x \}$

- $<_{m}$ { finite presentations of groups that are torsion-free }
- <_m { true 1st-order sentences about arithmetic }*
- $<_m$ { programs computing linear orderings that contain a copy of \mathbb{Q} }
- <_m { true 2nd-order sentences about arithmetic }*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

The following are \equiv_m -equivalent:

K, the Halting problem.

- \equiv_m The Word problem.
- \equiv_m The simply-connected problem.
- \equiv_m Hilbert's 10th problem.

The following are in strictly increasing \leq_m -order:

K, the Halting problem

 $<_m \{ p(x, \bar{y}) \in \mathbb{Z}[x, y_1, y_2, ...] \text{ with integers solutions for exactly one } x \}$

- $<_{m}$ { finite presentations of groups that are torsion-free }
- <_m { true 1st-order sentences about arithmetic }*
- $<_m$ { programs computing linear orderings that contain a copy of \mathbb{Q} }
- <_m { true 2nd-order sentences about arithmetic }*

All these sets are **not** \equiv_m -equivalent to their complements, except *.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Definition: A set A is computably enumerable (c.e.) if $A = \{f(0), f(1), f(2),\} \text{ for some function } f \colon \mathbb{N} \to \mathbb{N}.$

Definition: A set A is computably enumerable (c.e.) if $A = \{f(0), f(1), f(2),\} \text{ for some function } f : \mathbb{N} \to \mathbb{N}.$

Equivalently: A is c.e. \iff A is of the form $\{x : \exists y \langle x, y \rangle \in P\}$ where P is a computable.

Definition: A set A is computably enumerable (c.e.) if $A = \{f(0), f(1), f(2),\} \text{ for some function } f : \mathbb{N} \to \mathbb{N}.$

Equivalently: A is c.e. \iff A is of the form $\{x : \exists y \ \langle x, y \rangle \in P\}$ where P is a computable.

The following are c.e.:

- The Halting problem.
- The Word problem.
- The simply-connected problem.
- Hilbert's 10th problem.

Definition: A set A is computably enumerable (c.e.) if $A = \{f(0), f(1), f(2),\} \text{ for some function } f : \mathbb{N} \to \mathbb{N}.$

Equivalently: A is c.e. \iff A is of the form $\{x : \exists y \langle x, y \rangle \in P\}$ where P is a computable.

Definition: A set A is computably enumerable (c.e.) if $A = \{f(0), f(1), f(2),\} \text{ for some function } f : \mathbb{N} \to \mathbb{N}.$

Equivalently: A is c.e. \iff A is of the form $\{x : \exists y \langle x, y \rangle \in P\}$ where P is a computable.

Observation: If A is c.e. and $B \leq_m A$, then B is c.e. too.

Definition: A set A is computably enumerable (c.e.) if $A = \{f(0), f(1), f(2),\} \text{ for some function } f : \mathbb{N} \to \mathbb{N}.$

Equivalently: A is c.e. \iff A is of the form $\{x : \exists y \langle x, y \rangle \in P\}$ where P is a computable.

Observation: If A is c.e. and $B \leq_m A$, then B is c.e. too.

Definition: A set A is *c.e.-complete* if it is c.e. and for every c.e. set $B, B \leq_m A$.

・ロ・・ 「「」・ (三) ・ 三) ののの

Definition: A set A is *computably enumerable* (c.e.) if $A = \{f(0), f(1), f(2),\} \text{ for some function } f : \mathbb{N} \to \mathbb{N}.$

Equivalently: A is c.e. \iff A is of the form $\{x : \exists y \langle x, y \rangle \in P\}$ where P is a computable.

Observation: If A is c.e. and $B \leq_m A$, then B is c.e. too.

Definition: A set A is *c.e.-complete* if it is c.e. and for every c.e. set $B, B \leq_m A$.

The examples before were all c.e.-complete

Antonio Montalbán (U.C. Berkeley)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

< □ > < 同 >

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form $\{x \in 2^* : (\exists y \in 2^*) |y| < |x|^n \& \langle x, y \rangle \in R\}$ where $n \in \mathbb{N}$ and $R \subseteq 2^* \times 2^*$ is a computable in polynomial time.

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form $\{x \in 2^* : (\exists y \in 2^*) |y| < |x|^n \& \langle x, y \rangle \in R\}$ where $n \in \mathbb{N}$ and $R \subseteq 2^* \times 2^*$ is a computable in polynomial time.

Examples: The following are c.e.:

- Satisfiability for propositional formulas.
- Hamiltonian path problem.
- Traveler salesman problem.
- Graph coloring problem.

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form $\{x \in 2^* : (\exists y \in 2^*) |y| < |x|^n \& \langle x, y \rangle \in R\}$ where $n \in \mathbb{N}$ and $R \subseteq 2^* \times 2^*$ is a computable in polynomial time.

Definition

A set A is *polynomial-time reducible* to B $(A \leq_m^P B)$ if there is poly-time computable $f: 2^* \to 2^*$ such that $\sigma \in A \iff f(\sigma) \in B$ $(\forall \sigma \in 2^*)$

< 日 > < 同 > < 三 > < 三 >

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form $\{x \in 2^* : (\exists y \in 2^*) |y| < |x|^n \& \langle x, y \rangle \in R\}$ where $n \in \mathbb{N}$ and $R \subseteq 2^* \times 2^*$ is a computable in polynomial time.

Definition

A set A is *polynomial-time reducible* to B $(A \leq_m^P B)$ if there is poly-time computable $f: 2^* \to 2^*$ such that $\sigma \in A \iff f(\sigma) \in B$ $(\forall \sigma \in 2^*)$

Definition: A set A is *NP-complete* if it is NP and for every NP set B, $B \leq_m^P A$.

Antonio Montalbán (U.C. Berkeley)

イロト イポト イヨト イヨト 二日

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form $\{x \in 2^* : (\exists y \in 2^*) |y| < |x|^n \& \langle x, y \rangle \in R\}$ where $n \in \mathbb{N}$ and $R \subseteq 2^* \times 2^*$ is a computable in polynomial time.

Definition

A set A is *polynomial-time reducible* to B $(A \leq_m^P B)$ if there is poly-time computable $f: 2^* \to 2^*$ such that $\sigma \in A \iff f(\sigma) \in B$ $(\forall \sigma \in 2^*)$

Definition: A set A is *NP-complete* if it is NP and for every NP set B, $B \leq_m^P A$.

The examples above are NP-complete

Antonio Montalbán (U.C. Berkeley)

イロト 不得 トイヨト イヨト 二日

Definition: A set A is *d*-*c*.*e*. if $A = B \setminus C$ where B and C are c.e.

< 日 > < 同 > < 三 > < 三 >

Definition: A set A is *d*-*c*.*e*. if $A = B \setminus C$ where B and C are c.e.

Example: The following is d-c.e.:

• { $p(x, \bar{y}) \in \mathbb{Z}[x, y_1, y_2, ...]$ with integers solutions for exactly one x}.

Definition: A set A is *d*-*c*.*e*. if $A = B \setminus C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_m A$, then B is d-c.e. too.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition: A set A is *d*-*c*.*e*. if $A = B \setminus C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_m A$, then B is d-c.e. too.

Observation: There is a d-c.e. set that is not c.e.

イロト イポト イヨト ・ヨ

Definition: A set A is *d*-*c*.*e*. if $A = B \setminus C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_m A$, then B is d-c.e. too.

Observation: There is a d-c.e. set that is not c.e.

Definition: A set A is *d-c.e.-complete* if it is d-c.e. and for every d-c.e. set $B, B \leq_m A$.

Definition: A set A is *d*-*c*.*e*. if $A = B \setminus C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_m A$, then B is d-c.e. too.

Observation: There is a d-c.e. set that is not c.e.

Definition: A set A is *d-c.e.-complete* if it is d-c.e. and for every d-c.e. set $B, B \leq_m A$.

The example above is d-c.e.-complete

Antonio Montalbán (U.C. Berkeley)

Definition: A set A is *d*-*c*.*e*. if $A = B \setminus C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_m A$, then B is d-c.e. too.

Observation: There is a d-c.e. set that is not c.e.

Definition: A set A is *d-c.e.-complete* if it is d-c.e. and for every d-c.e. set $B, B \leq_m A$.

The example above is d-c.e.-complete

We can continue on and define *n*-c.e. for $n \in \mathbb{N}$.

Antonio Montalbán (U.C. Berkeley)

Definition: A set A is Π_2^0 if it is of the form $\{z \in \mathbb{N} : (\forall x)(\exists y) \ \langle x, y, z \rangle \in R\}$ where $R \subseteq \mathbb{N}^3$ is computable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Π_2^0

Definition: A set A is Π_2^0 if it is of the form $\{z \in \mathbb{N} : (\forall x)(\exists y) \ \langle x, y, z \rangle \in R\}$ where $R \subseteq \mathbb{N}^3$ is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups: For every word w, and number n, if $w^n \sim e$

there exists a sequence of applications to the relations, such that $w \sim e$.

Π_2^0

Definition: A set A is Π_2^0 if it is of the form $\{z \in \mathbb{N} : (\forall x)(\exists y) \ \langle x, y, z \rangle \in R\}$ where $R \subseteq \mathbb{N}^3$ is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups: For every word w, and number n, if $w^n \sim e$

there exists a sequence of applications to the relations, such that $w \sim e$.

Definition: A set A is Π_2^0 -complete if it is Π_2^0 and for every Π_2^0 set B, $B \leq_m A$. Definition: A set A is Π_2^0 if it is of the form $\{z \in \mathbb{N} : (\forall x)(\exists y) \ \langle x, y, z \rangle \in R\}$ where $R \subseteq \mathbb{N}^3$ is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups: For every word w, and number n, if $w^n \sim e$

there exists a sequence of applications to the relations, such that $w \sim e$.

Definition: A set A is Π_2^0 -complete if it is Π_2^0 and for every Π_2^0 set B, $B \leq_m A$.

The example above is Π_2^0 -complete

Antonio Montalbán (U.C. Berkeley)

Definition: A set A is Π_2^0 if it is of the form $\{z \in \mathbb{N} : (\forall x)(\exists y) \ \langle x, y, z \rangle \in R\}$ where $R \subseteq \mathbb{N}^3$ is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups: For every word w, and number n, if $w^n \sim e$

there exists a sequence of applications to the relations, such that $w \sim e$.

Definition: A set A is Π_2^0 -complete if it is Π_2^0 and for every Π_2^0 set B, $B \leq_m A$.

The example above is Π_2^0 -complete

We can continue on and define Π_n^0 for $n \in \mathbb{N}$.

Chaos

So far, the examples are linearly ordered,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chaos

So far, the examples are linearly ordered, except for complements. BB

< ロ > < 同 > < 回 > < 回 >
So far, the examples are linearly ordered, except for complements. We know **no** natural example strictly \leq_m -between {0} and K.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So far, the examples are linearly ordered, except for complements. We know **no** natural example strictly \leq_m -between {0} and K. HOWEVER

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So far, the examples are linearly ordered, except for complements. We know **no** natural example strictly \leq_m -between {0} and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_m -antichains of m-degrees.

So far, the examples are linearly ordered, except for complements. We know **no** natural example strictly \leq_m -between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_m -antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees.

So far, the examples are linearly ordered, except for complements. We know **no** natural example strictly \leq_m -between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_m -antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees. Furthermore, it can even be embedded below the degree of K,

So far, the examples are linearly ordered, except for complements. We know **no** natural example strictly \leq_m -between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_m -antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees. Furthermore, it can even be embedded below the degree of K, or between \leq_m -between $K \oplus \overline{K}$ and $K \times \overline{K}$,

So far, the examples are linearly ordered, except for complements. We know **no** natural example strictly \leq_m -between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_m -antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees. Furthermore, it can even be embedded below the degree of K, or between \leq_m -between $K \oplus \overline{K}$ and $K \times \overline{K}$, or as an initial segment.

So far, the examples are linearly ordered, except for complements. We know **no** natural example strictly \leq_m -between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_m -antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees. Furthermore, it can even be embedded below the degree of K, or between \leq_m -between $K \oplus \overline{K}$ and $K \times \overline{K}$, or as an initial segment.

Theorem: [Shore, Nerode] The 1st-order theory of the poset of the m-degrees is 1-1 equivalent to The 2nd-order theory of $(\mathbb{N}; 0, 1, +, \times)$.

Antonio Montalbán (U.C. Berkeley)

Natural m-degrees

Natural vs arbitrary m-degrees

On one side:

The natural examples of m-degrees are *frew* and *nicely ordered*.

< □ > < 同 >

< ∃ > < ∃

On one side:

The natural examples of m-degrees are *frew* and *nicely ordered*.

On the other side:

The structure of all the m-degrees is very *complex* and *badly behaved*.

Natural vs arbitrary m-degrees

On one side:

The natural examples of m-degrees are *frew* and *nicely ordered*.

On the other side:

The structure of all the m-degrees is very *complex* and *badly behaved*.

Can we explain this?

On one side:

The natural examples of m-degrees are *frew* and *nicely ordered*.

On the other side: The structure of all the m-degrees is very *complex* and *badly behaved*.

Can we explain this?

Can we characterize the many-one degrees that have names?

Consider the *Baire Space*: $\mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N}\}$ with the product topology.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Consider the *Baire Space*: $\mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N}\}$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^+ \setminus \mathbb{Q}$ via $f \mapsto f(0) + \frac{1}{1+f(1) + \frac{1}{1+f(2) + \cdots}}$

Consider the *Baire Space*: $\mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N}\}$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^+ \setminus \mathbb{Q}$ via $f \mapsto f(0) + \frac{1}{1+f(1) + \frac{1}{1+f(2) + \cdots}}$

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is *Wadge reducible to* $B, A \leq_{w} B$ if there is a continuous $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t. $(\forall X \in 2^{\mathbb{N}}), X \in A \iff f(X) \in B$.

Consider the *Baire Space*: $\mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N}\}$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^+ \setminus \mathbb{Q}$ via $f \mapsto f(0) + \frac{1}{1+f(1) + \frac{1}{1+f(2) + \cdots}}$

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is *Wadge reducible to* $B, A \leq_{w} B$ if there is a continuous $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t. $(\forall X \in 2^{\mathbb{N}}), X \in A \iff f(X) \in B$.

Theorem: [Wadge 83](AD) The Wadge degrees are almost linearly ordered:

- For every $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, either $A \leq_w B$ or $B \leq_w A^c$.
- For every $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, if $A <_{w} B$, then $A <_{w} B^{c}$.

Theorem: (AD) [Martin, Monk] The Wadge degrees are well founded.

Antonio Montalbán (U.C. Berkeley)

The answer — informally

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is Wadge reducible to B, $A \leq_{w} B$ if there is a continuous $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t. $(\forall X \in 2^{\mathbb{N}}), X \in A \iff f(X) \in B$.

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is *Wadge reducible to* $B, A \leq_{w} B$ if there is a continuous $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t. $(\forall X \in 2^{\mathbb{N}}), X \in A \iff f(X) \in B$.

All Wadge degrees have *names*.

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is Wadge reducible to B, $A \leq_{w} B$ if there is a continuous $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t. $(\forall X \in 2^{\mathbb{N}}), X \in A \iff f(X) \in B$.

All Wadge degrees have *names*.

[Kihra, Montalbán] There is a one-to-one correspondence between the natural m-degrees and the Wadge degrees.

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is Wadge reducible to B, $A \leq_{w} B$ if there is a continuous $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t. $(\forall X \in 2^{\mathbb{N}}), X \in A \iff f(X) \in B$.

All Wadge degrees have *names*.

[Kihra, Montalbán] There is a one-to-one correspondence between the natural m-degrees and the Wadge degrees.

Antonio Montalbán (U.C. Berkeley)

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Definition: Let $X \in 2^{\mathbb{N}}$. A function $f : \mathbb{N} \to \mathbb{N}$ is *X*-computable if there exists a computer program that calculates fusing the characteristic function of *X* as a primitive.

Definition: Let $X \in 2^{\mathbb{N}}$. A function $f : \mathbb{N} \to \mathbb{N}$ is *X*-computable if there exists a computer program that calculates fusing the characteristic function of X as a primitive. We write $f <_T X$.

Definition: Let $X \in 2^{\mathbb{N}}$. A function $f : \mathbb{N} \to \mathbb{N}$ is *X*-computable if there exists a computer program that calculates fusing the characteristic function of X as a primitive. We write $f <_T X$.

A more formal definition:

The class of *partial X-computable functions* $\mathbb{N}^n \rightarrow \mathbb{N}$ is the

- closure of the projection, successor functions, and χ_X ,
- under composition, recursion, and minimalization.

Definition: Let $X \in 2^{\mathbb{N}}$. A function $f : \mathbb{N} \to \mathbb{N}$ is *X*-computable if there exists a computer program that calculates fusing the characteristic function of X as a primitive. We write $f <_T X$.

A more formal definition:

The class of *partial X-computable functions* $\mathbb{N}^n \rightarrow \mathbb{N}$ is the

- closure of the projection, successor functions, and χ_X ,
- under composition, recursion, and minimalization.

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

< 日 > < 同 > < 三 > < 三 >

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

< □ > < 同 >

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

• $\Phi_0^X, \Phi_1^X, \dots$ are the X-computable programs.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_0^X, \Phi_1^X, \dots$ are the X-computable programs.
- $K^{X} = \{ \langle e, n \rangle : \Phi_{e}(n) \text{ halts } \}.$

イロト イポト イヨト イヨト 二日

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_0^X, \Phi_1^X, ...$ are the X-computable programs.
- $K^X = \{ \langle e, n \rangle : \Phi_e(n) \text{ halts } \}.$
- K^X is not X-computable.

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_0^X, \Phi_1^X, ...$ are the X-computable programs.
- $K^{X} = \{ \langle e, n \rangle : \Phi_{e}(n) \text{ halts } \}.$
- K^X is not X-computable.
- K^X is X-c.e.

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_0^X, \Phi_1^X, ...$ are the X-computable programs.
- $K^{X} = \{ \langle e, n \rangle : \Phi_{e}(n) \text{ halts } \}.$
- K^X is not X-computable.
- K^X is X-c.e.-complete.

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_0^X, \Phi_1^X, \dots$ are the X-computable programs.
- $K^{X} = \{ \langle e, n \rangle : \Phi_{e}(n) \text{ halts } \}.$
- K^X is not X-computable.
- K^X is X-c.e.-complete.
- $K^X \times \overline{K^X}$ is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then: $P \iff (\forall X) P^X$

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_0^X, \Phi_1^X, \dots$ are the X-computable programs.
- $K^{X} = \{ \langle e, n \rangle : \Phi_{e}(n) \text{ halts } \}.$
- K^X is not X-computable.
- K^X is X-c.e.-complete.
- $K^X \times \overline{K^X}$ is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then: $P \iff (\forall X) P^X$

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \ge_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

イロト 不得 とうせい かほとう ほ

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_0^X, \Phi_1^X, \dots$ are the X-computable programs.
- $K^{X} = \{ \langle e, n \rangle : \Phi_{e}(n) \text{ halts } \}.$
- K^X is not X-computable.
- K^X is X-c.e.-complete.
- $K^X \times \overline{K^X}$ is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then: $P \iff (\forall X) P^X$

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \ge_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$. By *P* on a cone we mean $\{X : P^X \text{ holds}\}$ contains a cone.

Def: Given a notion P, we use P^X to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_0^X, \Phi_1^X, \dots$ are the X-computable programs.
- $K^{X} = \{ \langle e, n \rangle : \Phi_{e}(n) \text{ halts } \}.$
- K^X is not X-computable.
- K^X is X-c.e.-complete.
- $K^X \times \overline{K^X}$ is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then: $P \iff (\forall X) P^X \iff P$ on a cone.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \ge_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$. By *P* on a cone we mean $\{X : P^X \text{ holds}\}$ contains a cone.

Back to degrees with names

Suppose **s** is a m-degree with a name.

Image: Image:

I ≥ < </p>

Back to degrees with names

Suppose **s** is a m-degree with a name.

If P is a natural property, one would expect that **s** satisfies $P \iff \mathbf{s}^X$ satisfies P^X ($\forall X \in 2^{\mathbb{N}}$).

< 日 > < 同 > < 三 > < 三 >
Back to degrees with names

Suppose **s** is a m-degree with a name.

If P is a natural property, one would expect that **s** satisfies $P \iff \mathbf{s}^X$ satisfies P^X ($\forall X \in 2^{\mathbb{N}}$).

Disclaimer: Not completely true though.

Ex: if S is the word problem, or Hilbert's 10'th problem, S^X doesn't make sense.

Back to degrees with names

Suppose **s** is a m-degree with a name.

If P is a natural property, one would expect that **s** satisfies $P \iff \mathbf{s}^X$ satisfies P^X ($\forall X \in 2^{\mathbb{N}}$).

Disclaimer: Not completely true though.

Ex: if S is the word problem, or Hilbert's 10'th problem, S^X doesn't make sense.

Natural, relativizable, m-degrees **s** usually give way to to a function $X \mapsto S^X : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ such that $X \equiv_{\mathcal{T}} Y \implies S^X \equiv_m S^Y$.

where $X \equiv_T Y$ iff X is Y-computable and Y is X-computable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

イロト 不得 とうせい かほとう ほ

Def: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is $(\equiv_{\mathcal{T}}, \equiv_m)$ -uniformly invariant (UI) if $X \equiv_{\mathcal{T}} Y \Longrightarrow f(X) \equiv_m f(Y)$ and

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Def: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is (\equiv_T, \equiv_m) -uniformly invariant (UI) if $X \equiv_T Y \Longrightarrow f(X) \equiv_m f(Y)$ and

there is $u: \mathbb{N}^2 \to \mathbb{N}^2$, s.t., if $X \equiv_T Y$ via Φ_i and Φ_j , then $f(X) \equiv_m f(Y)$ via $\Phi_{u_0(i,j)}$ and $\Phi_{u_1(i,j)}$.

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Def: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is $(\equiv_{\mathcal{T}}, \equiv_m)$ -uniformly invariant (UI) if $X \equiv_{\mathcal{T}} Y \Longrightarrow f(X) \equiv_m f(Y)$ and

there is $u \colon \mathbb{N}^2 \to \mathbb{N}^2$, s.t., if $X \equiv_T Y$ via Φ_i and Φ_j , then $f(X) \equiv_m f(Y)$ via $\Phi_{u_0(i,j)}$ and $\Phi_{u_1(i,j)}$.

Def: For $A, B \subseteq \mathbb{N}$, A is many-one reducible^Z to B, written $A \leq_m^Z B$, if there is a Z-computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \iff f(x) \in B$.

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Def: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is $(\equiv_{\mathcal{T}}, \equiv_m)$ -uniformly invariant (UI) if $X \equiv_{\mathcal{T}} Y \Longrightarrow f(X) \equiv_m f(Y)$ and

there is $u \colon \mathbb{N}^2 \to \mathbb{N}^2$, s.t., if $X \equiv_T Y$ via Φ_i and Φ_j , then $f(X) \equiv_m f(Y)$ via $\Phi_{u_0(i,j)}$ and $\Phi_{u_1(i,j)}$.

Def: For $A, B \subseteq \mathbb{N}$, A is many-one reducible^Z to B, written $A \leq_m^Z B$, if there is a Z-computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \iff f(x) \in B$.

Def: $f \leq_{\mathbf{m}}^{\nabla} g$ if $(\exists C \in 2^{\mathbb{N}})$ such that $f(X) \leq_{m}^{C} g(X)$ for every $X \geq_{T} C$.

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Def: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is $(\equiv_{\mathcal{T}}, \equiv_m)$ -uniformly invariant (UI) if $X \equiv_{\mathcal{T}} Y \Longrightarrow f(X) \equiv_m f(Y)$ and

there is $u \colon \mathbb{N}^2 \to \mathbb{N}^2$, s.t., if $X \equiv_T Y$ via Φ_i and Φ_j , then $f(X) \equiv_m f(Y)$ via $\Phi_{u_0(i,j)}$ and $\Phi_{u_1(i,j)}$.

Def: For $A, B \subseteq \mathbb{N}$, A is many-one reducible^Z to B, written $A \leq_m^Z B$, if there is a Z-computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \iff f(x) \in B$.

Def: $f \leq_{\mathbf{m}}^{\nabla} g$ if $(\exists C \in 2^{\mathbb{N}})$ such that $f(X) \leq_{m}^{C} g(X)$ for every $X \geq_{T} C$.

Theorem: [Kihara, M.] There is a one-to-one correspondence between (\equiv_T, \equiv_m) -UI functions ordered by $\leq_m^{\bigtriangledown}$ and $\mathcal{P}(2^{\mathbb{N}})$ ordered by Wadge reducibility.

The version for (\equiv_T, \equiv_T) -invariant is known as Martin's conjecture, and the uniform case was proved by Slaman and Steel in [Steel 82][Slaman, Steel 88]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●