A classification of the natural Many-one degrees.

Antonio Montalbán

U.C. Berkeley
June, 2017
Nagoya, Japan

Joint work with Takayuki Kihara.

Example - Natural objects in proof theory

Example - Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength.

Example - Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength. A theory is a set of axioms,

Example - Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength.
A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Example - Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength.
A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T^{\prime}, let $T \ll T^{\prime}$ if T^{\prime} can prove the consistency of T.

Example - Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength.
A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T^{\prime}, let $T \ll T^{\prime}$ if T^{\prime} can prove the consistency of T.

Recall Gödel's theorem that $T \nless T$.

Example - Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength.
A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T^{\prime}, let $T \ll T^{\prime}$ if T^{\prime} can prove the consistency of T.
Recall Gödel's theorem that $T \nless T$.
One can build theories T and T^{\prime} incomparable under \ll.

Example - Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength.
A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T^{\prime}, let $T \ll T^{\prime}$ if T^{\prime} can prove the consistency of T.
Recall Gödel's theorem that $T K T$.
One can build theories T and T^{\prime} incomparable under \ll.
We don't really understand why the empirical fact holds.

Example - Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength.
A theory is a set of axioms, like

- Peano Arithmetic.
- Second order Number theory.
- Zermelo Fraenkel set theory.
- Large cardinal assumptions.

Def: For theories T and T^{\prime}, let $T \ll T^{\prime}$ if T^{\prime} can prove the consistency of T.
Recall Gödel's theorem that $T \nless T$.
One can build theories T and T^{\prime} incomparable under \ll.
We don't really understand why the empirical fact holds.

In this talk we will study a similar phenomenon in Computability Theory.

Table of contents

Objective: Classify the natural many-one degrees.

Table of contents

Objective: Classify the natural many-one degrees.
(1) Introduction to Computability Theory
(2) Many-one degrees.
(3) What are the natural many-one degrees?

Computability Theory

Definition: A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable if there is a computer program that, on input n, outputs $f(n)$.

Computability Theory

> Definition: A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable if there is a computer program that, on input n, outputs $f(n)$.

A more formal definition:
The class of partial computable functions $\mathbb{N}^{n} \rightharpoonup \mathbb{N}$ is the

- closure of the projection and successor functions,
- under composition, recursion, and minimalization.

Examples of non-computable sets

Examples of non-computable sets

The word problem:

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations) that generate the trivial group is not computable.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations) that generate the trivial group is not computable.

Simply connected manifolds: The set of finite triangulations of simply connected manifolds is not computable.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations) that generate the trivial group is not computable.

Simply connected manifolds: The set of finite triangulations of simply connected manifolds is not computable.

Hilbert's 10th problem: The set of polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ that have integer roots is not computable.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations) that generate the trivial group is not computable.

Simply connected manifolds: The set of finite triangulations of simply connected manifolds is not computable.

Hilbert's 10th problem: The set of polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ that have integer roots is not computable.

The Halting problem: The set of programs that halt, and don't run for ever, is not computable.

Proving non-computability

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$.

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$. That program must be Φ_{e} for some e.

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$.
That program must be Φ_{e} for some e.
Then $\langle e, e\rangle \notin K \Longleftrightarrow P(e)$ halts

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$.
That program must be Φ_{e} for some e.
Then $\langle e, e\rangle \notin K \Longleftrightarrow P(e)$ halts $\Longleftrightarrow \Phi_{e}(e)$ halts

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$.
That program must be Φ_{e} for some e.
Then $\langle e, e\rangle \notin K \Longleftrightarrow P(e)$ halts $\Longleftrightarrow \Phi_{e}(e)$ halts $\Longleftrightarrow\langle e, e\rangle \in K$.

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$.
That program must be Φ_{e} for some e.
Then $\langle e, e\rangle \notin K \Longleftrightarrow P(e)$ halts $\Longleftrightarrow \Phi_{e}(e)$ halts $\Longleftrightarrow\langle e, e\rangle \in K$.
Theorem: The word problem is not computable:

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$.
That program must be Φ_{e} for some e.
Then $\langle e, e\rangle \notin K \Longleftrightarrow P(e)$ halts $\Longleftrightarrow \Phi_{e}(e)$ halts $\Longleftrightarrow\langle e, e\rangle \in K$.
Theorem: The word problem is not computable: Proof: Reduce the Halting problem to the word problem:

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$.
That program must be Φ_{e} for some e.
Then $\langle e, e\rangle \notin K \Longleftrightarrow P(e)$ halts $\Longleftrightarrow \Phi_{e}(e)$ halts $\Longleftrightarrow\langle e, e\rangle \in K$.
Theorem: The word problem is not computable:
Proof: Reduce the Halting problem to the word problem:
Define a computable function $f: \mathbb{N}^{2} \rightarrow\{$ set of finite group presentations $\}$ such that $(e, n) \in K \Longleftrightarrow$ the group with presentation $f(e, n)$ is trivial.

Proving non-computability

Enumerate the computer programs alphabetically as $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots \ldots$
Def: The halting problem is the set $K=\left\{\langle e, n\rangle \in \mathbb{N}^{2}: \Phi_{e}(n)\right.$ halts $\}$.
Theorem: K is not computable:
Proof: Diagonalization:
If K were computable, write the program: $P(n)$ halts \Longleftrightarrow the $\langle n, n\rangle \notin K$.
That program must be Φ_{e} for some e.
Then $\langle e, e\rangle \notin K \Longleftrightarrow P(e)$ halts $\Longleftrightarrow \Phi_{e}(e)$ halts $\Longleftrightarrow\langle e, e\rangle \in K$.
Theorem: The word problem is not computable:
Proof: Reduce the Halting problem to the word problem:
Define a computable function $f: \mathbb{N}^{2} \rightarrow\{$ set of finite group presentations $\}$ such that $(e, n) \in K \Longleftrightarrow$ the group with presentation $f(e, n)$ is trivial.
Then, if the word problem were computable, so would be K.

Many-one reducibility

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Many-one reducibility

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Definition:
A and B are many-one equivalent $\left(A \equiv_{m} B\right)$, if $\mathcal{A} \leq_{m} B$ and $B \leq_{m} A$.

Many-one reducibility

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Definition:
A and B are many-one equivalent $\left(A \equiv_{m} B\right)$, if $\mathcal{A} \leq_{m} B$ and $B \leq_{m} A$.
An m-degree is a \equiv_{m}-equivalence class.

Many-one reducibility

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Definition:
A and B are many-one equivalent $\left(A \equiv_{m} B\right)$, if $\mathcal{A} \leq_{m} B$ and $B \leq_{m} A$.
An m-degree is a \equiv_{m}-equivalence class.
Lemma:
(1) $\emptyset \leq_{m} B$ for every $B \subseteq \mathbb{N}$, unless $B=\mathbb{N}$.
(2) $\mathbb{N} \leq_{m} B$ for every $B \subseteq \mathbb{N}$, unless $B=\emptyset$.
(3) If A is computable, then $A \leq_{m} B$ for every $B \subseteq \mathbb{N}$ unless $B=\emptyset, \mathbb{N}$.
(9) If B is computable and $A \leq_{m} B$, then A is computable too.
(3) Given B, the set $\left\{A \subseteq \mathbb{N}: A \leq_{m} B\right\}$ is countable.

Many-one reducibility - Natural Examples

The following are \equiv_{m}-equivalent:
K, the Halting problem.
\equiv_{m} The Word problem.
\equiv_{m} The simply-connected problem.
\equiv_{m} Hilbert's 10th problem.

Many-one reducibility - Natural Examples

The following are \equiv_{m}-equivalent:
K, the Halting problem.
\equiv_{m} The Word problem.
\equiv_{m} The simply-connected problem.
\equiv_{m} Hilbert's 10th problem.
The following are in strictly increasing \leq_{m}-order:
K, the Halting problem

Many-one reducibility - Natural Examples

The following are \equiv_{m}-equivalent:
K, the Halting problem.
\equiv_{m} The Word problem.
\equiv_{m} The simply-connected problem.
\equiv_{m} Hilbert's 10th problem.
The following are in strictly increasing \leq_{m}-order:
K, the Halting problem
$<_{m}\left\{p(x, \bar{y}) \in \mathbb{Z}\left[x, y_{1}, y_{2}, \ldots\right]\right.$ with integers solutions for exactly one $\left.x\right\}$

Many-one reducibility - Natural Examples

The following are \equiv_{m}-equivalent:
K, the Halting problem.
\equiv_{m} The Word problem.
\equiv_{m} The simply-connected problem.
\equiv_{m} Hilbert's 10th problem.
The following are in strictly increasing \leq_{m}-order:
K, the Halting problem
$<_{m}\left\{p(x, \bar{y}) \in \mathbb{Z}\left[x, y_{1}, y_{2}, \ldots\right]\right.$ with integers solutions for exactly one $\left.x\right\}$
$<_{m}\{$ finite presentations of groups that are torsion-free \}

Many-one reducibility - Natural Examples

The following are \equiv_{m}-equivalent:
K, the Halting problem.
\equiv_{m} The Word problem.
\equiv_{m} The simply-connected problem.
\equiv_{m} Hilbert's 10th problem.
The following are in strictly increasing \leq_{m}-order:
K, the Halting problem
$<_{m}\left\{p(x, \bar{y}) \in \mathbb{Z}\left[x, y_{1}, y_{2}, \ldots\right]\right.$ with integers solutions for exactly one $\left.x\right\}$
$<_{m}\{$ finite presentations of groups that are torsion-free \}
$<_{m}\{\text { true 1st-order sentences about arithmetic }\}^{*}$

Many-one reducibility - Natural Examples

The following are \equiv_{m}-equivalent:
K, the Halting problem.
\equiv_{m} The Word problem.
\equiv_{m} The simply-connected problem.
\equiv_{m} Hilbert's 10th problem.
The following are in strictly increasing \leq_{m}-order:
K, the Halting problem
$<_{m}\left\{p(x, \bar{y}) \in \mathbb{Z}\left[x, y_{1}, y_{2}, \ldots\right]\right.$ with integers solutions for exactly one $\left.x\right\}$
$<_{m}\{$ finite presentations of groups that are torsion-free \}
$<_{m}\{\text { true 1st-order sentences about arithmetic }\}^{*}$
$<_{m}\{$ programs computing linear orderings that contain a copy of $\mathbb{Q}\}$

Many-one reducibility - Natural Examples

The following are \equiv_{m}-equivalent:
K, the Halting problem.
\equiv_{m} The Word problem.
\equiv_{m} The simply-connected problem.
\equiv_{m} Hilbert's 10th problem.
The following are in strictly increasing \leq_{m}-order:
K, the Halting problem
$<_{m}\left\{p(x, \bar{y}) \in \mathbb{Z}\left[x, y_{1}, y_{2}, \ldots\right]\right.$ with integers solutions for exactly one $\left.x\right\}$
$<_{m}\{$ finite presentations of groups that are torsion-free \}
$<_{m}\{\text { true 1st-order sentences about arithmetic }\}^{*}$
$<_{m}\{$ programs computing linear orderings that contain a copy of $\mathbb{Q}\}$
$<_{m}\{\text { true } 2 \text { nd-order sentences about arithmetic }\}^{*}$

Many-one reducibility - Natural Examples

The following are \equiv_{m}-equivalent:
K, the Halting problem.
\equiv_{m} The Word problem.
\equiv_{m} The simply-connected problem.
\equiv_{m} Hilbert's 10th problem.
The following are in strictly increasing \leq_{m}-order:
K, the Halting problem
$<_{m}\left\{p(x, \bar{y}) \in \mathbb{Z}\left[x, y_{1}, y_{2}, \ldots\right]\right.$ with integers solutions for exactly one $\left.x\right\}$
$<_{m}\{$ finite presentations of groups that are torsion-free \}
$<_{m}\{\text { true 1st-order sentences about arithmetic }\}^{*}$
$<_{m}\{$ programs computing linear orderings that contain a copy of $\mathbb{Q}\}$
$<_{m}\{\text { true } 2 \text { nd-order sentences about arithmetic }\}^{*}$
All these sets are not \equiv_{m}-equivalent to their complements, except .

Computably enumerable sets

```
Definition: A set \(A\) is computably enumerable (c.e.) if
\[
A=\{f(0), f(1), f(2), \ldots\} \text { for some function } f: \mathbb{N} \rightarrow \mathbb{N} .
\]
```


Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if

$$
A=\{f(0), f(1), f(2), \ldots .\} \text { for some function } f: \mathbb{N} \rightarrow \mathbb{N} .
$$

Equivalently: A is c.e. \Longleftrightarrow
A is of the form $\{x: \exists y\langle x, y\rangle \in P\}$ where P is a computable.

Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if

$$
A=\{f(0), f(1), f(2), \ldots .\} \text { for some function } f: \mathbb{N} \rightarrow \mathbb{N} .
$$

Equivalently: A is c.e.
A is of the form $\{x: \exists y\langle x, y\rangle \in P\}$ where P is a computable.
The following are c.e.:

- The Halting problem.
- The Word problem.
- The simply-connected problem.
- Hilbert's 10th problem.

Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if

$$
A=\{f(0), f(1), f(2), \ldots .\} \text { for some function } f: \mathbb{N} \rightarrow \mathbb{N} .
$$

Equivalently: A is c.e. \Longleftrightarrow
A is of the form $\{x: \exists y\langle x, y\rangle \in P\}$ where P is a computable.

Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if

$$
A=\{f(0), f(1), f(2), \ldots .\} \text { for some function } f: \mathbb{N} \rightarrow \mathbb{N} .
$$

Equivalently: A is c.e. \Longleftrightarrow
A is of the form $\{x: \exists y\langle x, y\rangle \in P\}$ where P is a computable.

Observation: If A is c.e. and $B \leq_{m} A$, then B is c.e. too.

Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if

$$
A=\{f(0), f(1), f(2), \ldots .\} \text { for some function } f: \mathbb{N} \rightarrow \mathbb{N}
$$

Equivalently: A is c.e. \Longleftrightarrow
A is of the form $\{x: \exists y\langle x, y\rangle \in P\}$ where P is a computable.

Observation: If A is c.e. and $B \leq_{m} A$, then B is c.e. too.

Definition: A set A is c.e.-complete if it is c.e. and for every c.e. set $B, B \leq_{m} A$.

Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if

$$
A=\{f(0), f(1), f(2), \ldots\} \text { for some function } f: \mathbb{N} \rightarrow \mathbb{N} .
$$

Equivalently: A is c.e. \Longleftrightarrow
A is of the form $\{x: \exists y\langle x, y\rangle \in P\}$ where P is a computable.

Observation: If A is c.e. and $B \leq_{m} A$, then B is c.e. too.

Definition: A set A is c.e.-complete if it is c.e. and for every c.e. set $B, B \leq_{m} A$.

The examples before were all c.e.-complete

A side note - NP complete sets

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

A side note - NP complete sets

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form

$$
\begin{aligned}
& \left.\qquad x \in 2^{*}:\left(\exists y \in 2^{*}\right)|y|<|x|^{n} \&\langle x, y\rangle \in R\right\} \\
& \text { where } n \in \mathbb{N} \text { and } R \subseteq 2^{*} \times 2^{*} \text { is a computable in polynomial time. }
\end{aligned}
$$

A side note - NP complete sets

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form

$$
\begin{aligned}
& \qquad\left\{x \in 2^{*}:\left(\exists y \in 2^{*}\right)|y|<|x|^{n} \&\langle x, y\rangle \in R\right\} \\
& \text { where } n \in \mathbb{N} \text { and } R \subseteq 2^{*} \times 2^{*} \text { is a computable in polynomial time. }
\end{aligned}
$$

Examples: The following are c.e.:

- Satisfiability for propositional formulas.
- Hamiltonian path problem.
- Traveler salesman problem.
- Graph coloring problem.

A side note - NP complete sets

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form

$$
\begin{aligned}
& \qquad\left\{x \in 2^{*}:\left(\exists y \in 2^{*}\right)|y|<|x|^{n} \&\langle x, y\rangle \in R\right\} \\
& \text { where } n \in \mathbb{N} \text { and } R \subseteq 2^{*} \times 2^{*} \text { is a computable in polynomial time. }
\end{aligned}
$$

Definition

A set A is polynomial-time reducible to $\mathrm{B}\left(A \leq_{m}^{P} B\right)$ if there is poly-time computable $f: 2^{*} \rightarrow 2^{*}$ such that $\sigma \in A \Longleftrightarrow f(\sigma) \in B\left(\forall \sigma \in 2^{*}\right)$

A side note - NP complete sets

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form

$$
\begin{aligned}
& \qquad\left\{x \in 2^{*}:\left(\exists y \in 2^{*}\right)|y|<|x|^{n} \&\langle x, y\rangle \in R\right\} \\
& \text { where } n \in \mathbb{N} \text { and } R \subseteq 2^{*} \times 2^{*} \text { is a computable in polynomial time. }
\end{aligned}
$$

Definition

A set A is polynomial-time reducible to $\mathrm{B}\left(A \leq_{m}^{P} B\right)$ if there is poly-time computable $f: 2^{*} \rightarrow 2^{*}$ such that $\sigma \in A \Longleftrightarrow f(\sigma) \in B\left(\forall \sigma \in 2^{*}\right)$

Definition: A set A is $N P$-complete if it is NP and for every NP set $B, B \leq_{m}^{P} A$.

A side note - NP complete sets

NP-complete sets are the analogous of c.e.-complete sets, but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form

$$
\begin{aligned}
& \qquad\left\{x \in 2^{*}:\left(\exists y \in 2^{*}\right)|y|<|x|^{n} \&\langle x, y\rangle \in R\right\} \\
& \text { where } n \in \mathbb{N} \text { and } R \subseteq 2^{*} \times 2^{*} \text { is a computable in polynomial time. }
\end{aligned}
$$

Definition

A set A is polynomial-time reducible to $\mathrm{B}\left(A \leq_{m}^{P} B\right)$ if there is poly-time computable $f: 2^{*} \rightarrow 2^{*}$ such that $\sigma \in A \Longleftrightarrow f(\sigma) \in B\left(\forall \sigma \in 2^{*}\right)$

Definition: A set A is $N P$-complete if it is NP and

$$
\text { for every NP set } B, B \leq_{m}^{P} A
$$

The examples above are NP-complete

Back to many-one degrees - d-c.e. sets

Definition: A set A is d-c.e. if $A=B \backslash C$ where B and C are c.e.

Back to many-one degrees - d-c.e. sets

Definition: A set A is d-c.e. if $A=B \backslash C$ where B and C are c.e.

Example: The following is d-c.e.:

- $\left\{p(x, \bar{y}) \in \mathbb{Z}\left[x, y_{1}, y_{2}, \ldots\right]\right.$ with integers solutions for exactly one $\left.x\right\}$.

Back to many-one degrees - d-c.e. sets

Definition: A set A is d-c.e. if $A=B \backslash C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_{m} A$, then B is d-c.e. too.

Back to many-one degrees - d-c.e. sets

Definition: A set A is d-c.e. if $A=B \backslash C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_{m} A$, then B is d-c.e. too.
Observation: There is a d-c.e. set that is not c.e.

Back to many-one degrees - d-c.e. sets

Definition: A set A is d-c.e. if $A=B \backslash C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_{m} A$, then B is d-c.e. too.
Observation: There is a d-c.e. set that is not c.e.

Definition: A set A is d-c.e.-complete if it is d -c.e. and for every d-c.e. set $B, B \leq_{m} A$.

Back to many-one degrees - d-c.e. sets

Definition: A set A is d-c.e. if $A=B \backslash C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_{m} A$, then B is d-c.e. too.
Observation: There is a d-c.e. set that is not c.e.

Definition: A set A is d-c.e.-complete if it is d-c.e. and for every d-c.e. set $B, B \leq_{m} A$.

The example above is d-c.e.-complete

Back to many-one degrees - d-c.e. sets

Definition: A set A is d-c.e. if $A=B \backslash C$ where B and C are c.e.

Observation: If A is d-c.e. and $B \leq_{m} A$, then B is d-c.e. too.
Observation: There is a d-c.e. set that is not c.e.

Definition: A set A is d-c.e.-complete if it is d-c.e. and for every d-c.e. set $B, B \leq_{m} A$.

The example above is d-c.e.-complete
We can continue on and define n-c.e. for $n \in \mathbb{N}$.
Π_{2}^{0}

Definition: A set A is Π_{2}^{0} if it is of the form $\{z \in \mathbb{N}:(\forall x)(\exists y)\langle x, y, z\rangle \in R\}$ where $R \subseteq \mathbb{N}^{3}$ is computable.

Definition: A set A is Π_{2}^{0} if it is of the form $\{z \in \mathbb{N}:(\forall x)(\exists y)\langle x, y, z\rangle \in R\}$ where $R \subseteq \mathbb{N}^{3}$ is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups:
For every word w, and number n, if $w^{n} \sim e$ there exists a sequence of applications to the relations, such that $w \sim e$.

Definition: A set A is Π_{2}^{0} if it is of the form $\{z \in \mathbb{N}:(\forall x)(\exists y) \quad\langle x, y, z\rangle \in R\}$ where $R \subseteq \mathbb{N}^{3}$ is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups:
For every word w, and number n, if $w^{n} \sim e$ there exists a sequence of applications to the relations, such that $w \sim e$.

Definition: A set A is Π_{2}^{0}-complete if it is Π_{2}^{0} and for every Π_{2}^{0} set $B, B \leq_{m} A$.

Definition: A set A is Π_{2}^{0} if it is of the form $\{z \in \mathbb{N}:(\forall x)(\exists y)\langle x, y, z\rangle \in R\}$ where $R \subseteq \mathbb{N}^{3}$ is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups:
For every word w, and number n, if $w^{n} \sim e$ there exists a sequence of applications to the relations, such that $w \sim e$.

Definition: A set A is Π_{2}^{0}-complete if it is Π_{2}^{0} and for every Π_{2}^{0} set $B, B \leq_{m} A$.

The example above is Π_{2}^{0}-complete

Definition: A set A is Π_{2}^{0} if it is of the form $\{z \in \mathbb{N}:(\forall x)(\exists y)\langle x, y, z\rangle \in R\}$ where $R \subseteq \mathbb{N}^{3}$ is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups:
For every word w, and number n, if $w^{n} \sim e$ there exists a sequence of applications to the relations, such that $w \sim e$.

Definition: A set A is Π_{2}^{0}-complete if it is Π_{2}^{0} and for every Π_{2}^{0} set $B, B \leq_{m} A$.

The example above is Π_{2}^{0}-complete
We can continue on and define Π_{n}^{0} for $n \in \mathbb{N}$.

Chaos

So far, the examples are linearly ordered,

Chaos

So far, the examples are linearly ordered, except for complements.

Chaos

So far, the examples are linearly ordered, except for complements.
We know no natural example strictly \leq_{m}-between $\{0\}$ and K.

Chaos

So far, the examples are linearly ordered, except for complements.
We know no natural example strictly \leq_{m}-between $\{0\}$ and K. HOWEVER

Chaos

So far, the examples are linearly ordered, except for complements.
We know no natural example strictly \leq_{m}-between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_{m}-antichains of m-degrees.

Chaos

So far, the examples are linearly ordered, except for complements.
We know no natural example strictly \leq_{m}-between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_{m}-antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees.

Chaos

So far, the examples are linearly ordered, except for complements.
We know no natural example strictly \leq_{m}-between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_{m}-antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees.
Furthermore, it can even be embedded below the degree of K,

Chaos

So far, the examples are linearly ordered, except for complements.
We know no natural example strictly \leq_{m}-between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_{m}-antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees.
Furthermore, it can even be embedded below the degree of K, or between \leq_{m}-between $K \oplus \bar{K}$ and $K \times \bar{K}$,

Chaos

So far, the examples are linearly ordered, except for complements.
We know no natural example strictly \leq_{m}-between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_{m}-antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees.
Furthermore, it can even be embedded below the degree of K, or between \leq_{m}-between $K \oplus \bar{K}$ and $K \times \bar{K}$, or as an initial segment.

Chaos

So far, the examples are linearly ordered, except for complements.
We know no natural example strictly \leq_{m}-between $\{0\}$ and K. HOWEVER

Theorem: [Kleene, Post] There are continuum size \leq_{m}-antichains of m-degrees.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering embeds into the many-one degrees.
Furthermore, it can even be embedded below the degree of K, or between \leq_{m}-between $K \oplus \bar{K}$ and $K \times \bar{K}$, or as an initial segment.

Theorem: [Shore, Nerode] The 1st-order theory of the poset of the m-degrees
is 1-1 equivalent to
The 2 nd-order theory of $(\mathbb{N} ; 0,1,+, \times)$.

Natural vs arbitrary m-degrees

On one side:

The natural examples of m-degrees are frew and nicely ordered.

Natural vs arbitrary m-degrees

On one side:

The natural examples of m-degrees are frew and nicely ordered.

On the other side:
The structure of all the m-degrees is very complex and badly behaved.

Natural vs arbitrary m-degrees

On one side:

The natural examples of m-degrees are frew and nicely ordered.

On the other side:
The structure of all the m-degrees is very complex and badly behaved.

Can we explain this?

Natural vs arbitrary m-degrees

On one side:

The natural examples of m-degrees are frew and nicely ordered.

On the other side:
The structure of all the m-degrees is very complex and badly behaved.

Can we explain this?

Can we characterize the many-one degrees that have names?

Wadge degrees

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{N}\}$ with the product topology.

Wadge degrees

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{N}\}$ with the product topology. Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^{+} \backslash \mathbb{Q}$ via $f \mapsto f(0)+\frac{1}{1+f(1)+\frac{1}{1+f(2)+\cdots}}$

Wadge degrees

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{N}\}$ with the product topology. Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^{+} \backslash \mathbb{Q}$ via $f \mapsto f(0)+\frac{1}{1+f(1)+\frac{1}{1+f(2)+\cdots}}$

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}, A$ is Wadge reducible to $B, A \leq{ }_{w} B$ if there is a continuous $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t. $\left(\forall X \in 2^{\mathbb{N}}\right), X \in A \Longleftrightarrow f(X) \in B$.

Wadge degrees

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{N}\}$ with the product topology. Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^{+} \backslash \mathbb{Q}$ via $f \mapsto f(0)+\frac{1}{1+f(1)+\frac{1}{1+f(2)+\cdots}}$

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}, A$ is Wadge reducible to $B, A \leq_{w} B$ if there is a continuous $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t. $\left(\forall X \in 2^{\mathbb{N}}\right), X \in A \Longleftrightarrow f(X) \in B$.

Theorem: [Wadge 83](AD) The Wadge degrees are almost linearly ordered:

- For every $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, either $A \leq{ }_{w} B$ or $B \leq_{w} A^{c}$.
- For every $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, if $A<_{w} B$, then $A<_{w} B^{c}$.

Theorem: (AD) [Martin, Monk] The Wadge degrees are well founded.

The answer - informally

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}, A$ is Wadge reducible to $B, A \leq{ }_{w} B$ if there is a continuous $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t. $\left(\forall X \in 2^{\mathbb{N}}\right), X \in A \Longleftrightarrow f(X) \in B$.

The answer - informally

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}, A$ is Wadge reducible to $B, A \leq_{w} B$ if there is a continuous $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t. $\left(\forall X \in 2^{\mathbb{N}}\right), X \in A \Longleftrightarrow f(X) \in B$.

All Wadge degrees have names.

The answer - informally

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}, A$ is Wadge reducible to $B, A \leq{ }_{w} B$ if there is a continuous $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t. $\left(\forall X \in 2^{\mathbb{N}}\right), X \in A \Longleftrightarrow f(X) \in B$.

All Wadge degrees have names.
[Kihra, Montalbán] There is a one-to-one correspondence between the natural m-degrees and the Wadge degrees.

The answer - informally

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}, A$ is Wadge reducible to $B, A \leq{ }_{w} B$ if there is a continuous $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t. $\left(\forall X \in 2^{\mathbb{N}}\right), X \in A \Longleftrightarrow f(X) \in B$.

All Wadge degrees have names.
[Kihra, Montalbán] There is a one-to-one correspondence between the natural m-degrees and the Wadge degrees.

Relativization

> Definition: Let $X \in 2^{\mathbb{N}}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is X-computable if there exists a computer program that calculates f using the characteristic function of X as a primitive.

Relativization

Definition: Let $X \in 2^{\mathbb{N}}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is X-computable if there exists a computer program that calculates f using the characteristic function of X as a primitive.
We write $f \leq_{T} X$.

Relativization

Definition: Let $X \in 2^{\mathbb{N}}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is X-computable if there exists a computer program that calculates f using the characteristic function of X as a primitive.
We write $f \leq_{T} X$.
A more formal definition:
The class of partial X-computable functions $\mathbb{N}^{n} \rightharpoonup \mathbb{N}$ is the

- closure of the projection, successor functions, and χx,
- under composition, recursion, and minimalization.

Relativization

Definition: Let $X \in 2^{\mathbb{N}}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is X-computable if there exists a computer program that calculates f using the characteristic function of X as a primitive.
We write $f \leq_{T} X$.
A more formal definition:
The class of partial X-computable functions $\mathbb{N}^{n} \rightharpoonup \mathbb{N}$ is the

- closure of the projection, successor functions, and χ_{X},
- under composition, recursion, and minimalization.

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.
- $K^{X}=\left\{\langle e, n\rangle: \Phi_{e}(n)\right.$ halts $\}$.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.
- $K^{X}=\left\{\langle e, n\rangle: \Phi_{e}(n)\right.$ halts $\}$.
- K^{X} is not X-computable.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.
- $K^{X}=\left\{\langle e, n\rangle: \Phi_{e}(n)\right.$ halts $\}$.
- K^{X} is not X-computable.
- K^{X} is X-c.e.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.
- $K^{X}=\left\{\langle e, n\rangle: \Phi_{e}(n)\right.$ halts $\}$.
- K^{X} is not X-computable.
- K^{X} is X-c.e.-complete.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.
- $K^{X}=\left\{\langle e, n\rangle: \Phi_{e}(n)\right.$ halts $\}$.
- K^{X} is not X-computable.
- K^{X} is X-c.e.-complete.
- $K^{X} \times \overline{K^{X}}$ is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then:

$$
P \Longleftrightarrow(\forall X) P^{X}
$$

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.
- $K^{X}=\left\{\langle e, n\rangle: \Phi_{e}(n)\right.$ halts $\}$.
- K^{X} is not X-computable.
- K^{X} is X-c.e.-complete.
- $K^{X} \times \overline{K^{X}}$ is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then:

$$
P \Longleftrightarrow(\forall X) P^{X}
$$

Def: A cone is a set of the form $\left\{X \in 2^{\mathbb{N}}: X \geq_{T} Y\right\}$ for some $Y \in 2^{\mathbb{N}}$.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.
- $K^{X}=\left\{\langle e, n\rangle: \Phi_{e}(n)\right.$ halts $\}$.
- K^{X} is not X-computable.
- K^{X} is X-c.e.-complete.
- $K^{X} \times \overline{K^{X}}$ is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then:

$$
P \Longleftrightarrow(\forall X) P^{X}
$$

Def: A cone is a set of the form $\left\{X \in 2^{\mathbb{N}}: X \geq_{T} Y\right\}$ for some $Y \in 2^{\mathbb{N}}$. By P on a cone we mean $\left\{X: P^{X}\right.$ holds $\}$ contains a cone.

Examples of relativization

Def: Given a notion P, we use P^{X} to denote P relative to X, obtained by replacing computable by X-computable within P.

- $\Phi_{0}^{X}, \Phi_{1}^{X}, \ldots$ are the X-computable programs.
- $K^{X}=\left\{\langle e, n\rangle: \Phi_{e}(n)\right.$ halts $\}$.
- K^{X} is not X-computable.
- K^{X} is X-c.e.-complete.
- $K^{X} \times \overline{K^{X}}$ is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then:

$$
P \Longleftrightarrow(\forall X) P^{X} \Longleftrightarrow P \text { on a cone. }
$$

Def: A cone is a set of the form $\left\{X \in 2^{\mathbb{N}}: X \geq_{T} Y\right\}$ for some $Y \in 2^{\mathbb{N}}$. By P on a cone we mean $\left\{X: P^{X}\right.$ holds $\}$ contains a cone.

Back to degrees with names

Suppose \mathbf{s} is a m-degree with a name.

Back to degrees with names

Suppose \mathbf{s} is a m-degree with a name.

If P is a natural property, one would expect that \mathbf{s} satisfies $P \Longleftrightarrow \mathbf{s}^{X}$ satisfies $P^{X}\left(\forall X \in 2^{\mathbb{N}}\right)$.

Back to degrees with names

Suppose s is a m-degree with a name.

If P is a natural property, one would expect that s satisfies $P \Longleftrightarrow \mathbf{s}^{X}$ satisfies $P^{X}\left(\forall X \in 2^{\mathbb{N}}\right)$.

Disclaimer: Not completely true though.
Ex: if S is the word problem, or Hilbert's 10^{\prime} th problem, S^{X} doesn't make sense.

Back to degrees with names

Suppose \mathbf{s} is a m-degree with a name.

If P is a natural property, one would expect that s satisfies $P \Longleftrightarrow \mathbf{s}^{X}$ satisfies $P^{X}\left(\forall X \in 2^{\mathbb{N}}\right)$.

Disclaimer: Not completely true though.
Ex: if S is the word problem, or Hilbert's 10^{\prime} th problem, S^{X} doesn't make sense.

Natural, relativizable, m-degrees s usually give way to
to a function $X \mapsto S^{X}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ such that $X \equiv{ }_{T} Y \Longrightarrow S^{X} \equiv_{m} S^{Y}$.
where $X \equiv{ }_{T} Y$ iff X is Y-computable and Y is X-computable.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Natural many-one degrees \Longleftrightarrow Wadge degrees

Def: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if $X \equiv{ }_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad$ and

Natural many-one degrees \Longleftrightarrow Wadge degrees

Def: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if $X \equiv{ }_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad$ and there is $u: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$, s.t., if $X \equiv_{T} Y$ via Φ_{i} and Φ_{j}, then $f(X) \equiv_{m} f(Y)$ via $\Phi_{u_{0}(i, j)}$ and $\Phi_{u_{1}(i, j)}$.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Def: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if $X \equiv{ }_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad$ and there is $u: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$, s.t., if $X \equiv_{T} Y$ via Φ_{i} and Φ_{j}, then $f(X) \equiv_{m} f(Y)$ via $\Phi_{u_{0}(i, j)}$ and $\Phi_{u_{1}(i, j)}$.

Def: For $A, B \subseteq \mathbb{N}, A$ is many-one reducible ${ }^{Z}$ to B, written $A \leq_{m}^{Z} B$, if there is a Z-computable $f: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \Longleftrightarrow f(x) \in B$.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Def: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if

$$
X \equiv{ }_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad \text { and }
$$

there is $u: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$, s.t., if $X \equiv_{T} Y$ via Φ_{i} and Φ_{j}, then $f(X) \equiv_{m} f(Y)$ via $\Phi_{u_{0}(i, j)}$ and $\Phi_{u_{1}(i, j)}$.
Def: For $A, B \subseteq \mathbb{N}, A$ is many-one reducible ${ }^{Z}$ to B, written $A \leq_{m}^{Z} B$, if there is a Z-computable $f: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \Longleftrightarrow f(x) \in B$. Def: $f \leq_{\mathbf{m}}^{\nabla} g$ if $\left(\exists C \in 2^{\mathbb{N}}\right)$ such that $f(X) \leq_{m}^{C} g(X)$ for every $X \geq_{T} C$.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Def: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if

$$
X \equiv{ }_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad \text { and }
$$

there is $u: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$, s.t., if $X \equiv_{T} Y$ via Φ_{i} and Φ_{j}, then $f(X) \equiv_{m} f(Y)$ via $\Phi_{u_{0}(i, j)}$ and $\Phi_{u_{1}(i, j)}$.
Def: For $A, B \subseteq \mathbb{N}, A$ is many-one reducible ${ }^{Z}$ to B, written $A \leq_{m}^{Z} B$, if there is a Z-computable $f: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \Longleftrightarrow f(x) \in B$.

Def: $f \leq_{\mathbf{m}}^{\nabla} g$ if $\left(\exists C \in 2^{\mathbb{N}}\right)$ such that $f(X) \leq_{m}^{C} g(X)$ for every $X \geq_{T} C$.

Theorem: [Kihara, M.] There is a one-to-one correspondence between $\left(\equiv_{T}, \equiv_{m}\right)$-Ul functions ordered by \leq_{m}^{∇} and $\mathcal{P}\left(2^{\mathbb{N}}\right)$ ordered by Wadge reducibility.

The version for (\equiv_{T}, \equiv_{T})-invariant is known as Martin's conjecture, and the uniform case was proved by Slaman and Steel in [Steel 82][Slaman, Steel 88]

