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Example — Natural objects in proof theory

Empirical fact: Natural theories are well-ordered by consistency strength.

A theory is a set of axioms, like
e Peano Arithmetic.

e Second order Number theory.
e Zermelo Fraenkel set theory.
e Large cardinal assumptions.

Def: For theories T and T’, let T < T’ if T’ can prove the consistency of T.
Recall Godel's theorem that T & T.
One can build theories T and T’ incomparable under <.

We don't really understand why the empirical fact holds.

In this talk we will study a similar phenomenon in Computability Theory.
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Definition: A function f: N — N is computable
if there is a computer program that, on input n, outputs f(n).J
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Computability Theory

Definition: A function f: N — N is computable
if there is a computer program that, on input n, outputs f(n).J

A more formal definition:

The class of partial computable functions N — N is the
@ closure of the projection and successor functions,

@ under composition, recursion, and minimalization.
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Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a
finite set of generators and a finite set of relations between the generators.
The set of pairs (set-of-generators, relations) that generate the trivial
group is not computable.

Simply connected manifolds: The set of finite triangulations of simply
connected manifolds is not computable.

Hilbert's 10th problem: The set of polynomials in Z[x1, x2, ...] that have
integer roots is not computable.

The Halting problem: The set of programs that halt, and don’t run for
ever, is not computable.
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Proving non-computability

Enumerate the computer programs alphabetically as ®g, ®1, $,,

Def: The halting problem is the set K = {(e, n) € N? : ®(n) halts }.

Theorem: K is not computable:
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Enumerate the computer programs alphabetically as ®q, ®1, ®», ......

Def: The halting problem is the set K = {(e, n) € N? : ®(n) halts }.

Theorem: K is not computable:

Proof: Diagonalization:

If K were computable, write the program: P(n) halts <= the (n,n) ¢ K.
That program must be ®. for some e.

Then (e,e) ¢ K <= P(e) halts < ®,(e) halts < (e, e) € K.
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Proving non-computability

Enumerate the computer programs alphabetically as ®q, 1, $o, ......

Def: The halting problem is the set K = {(e, n) € N? : ®(n) halts }.

Theorem: K is not computable:

Proof: Diagonalization:

If K were computable, write the program: P(n) halts <= the (n,n) ¢ K.
That program must be ®. for some e.

Then (e,e) ¢ K <= P(e) halts < ®,(e) halts < (e, e) € K.

Theorem: The word problem is not computable:
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Proving non-computability

Enumerate the computer programs alphabetically as ®q, ®1, ®», ......

Def: The halting problem is the set K = {(e, n) € N? : ®(n) halts }.

Theorem: K is not computable:

Proof: Diagonalization:

If K were computable, write the program: P(n) halts <= the (n,n) ¢ K.
That program must be ®. for some e.

Then (e,e) ¢ K <= P(e) halts < ®,(e) halts < (e, e) € K.

Theorem: The word problem is not computable:

Proof: Reduce the Halting problem to the word problem:
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Proving non-computability

Enumerate the computer programs alphabetically as ®q, ®1, ®», ......

Def: The halting problem is the set K = {(e, n) € N? : ®(n) halts }.

Theorem: K is not computable:

Proof: Diagonalization:

If K were computable, write the program: P(n) halts <= the (n,n) ¢ K.
That program must be ®. for some e.

Then (e,e) ¢ K <= P(e) halts < ®,(e) halts < (e, e) € K.

Theorem: The word problem is not computable:

Proof: Reduce the Halting problem to the word problem:

Define a computable function f: N? — { set of finite group presentations }
such that (e, n) € K <= the group with presentation f(e, n) is trivial.
Then, if the word problem were computable, so would be K.
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Many-one reducibility

Definition: A set A C N is many-one reducible to B C N (A <, B),
if there is a computable f: N — N such that n€ A <= f(n) € B (Vn)}
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Many-one reducibility

Definition: A set A C N is many-one reducible to B C N (A <, B),
if there is a computable f: N — N such that n€ A <= f(n) € B (Vn)

v

Definition:
A and B are many-one equivalent (A=, B), if A <, B and B <, A.
An m-degree is a =p,-equivalence class.

Lemma:
Q 0 <,, B for every BCN, unless B = N.
Q@ N <, B for every BCN, unless B = ().
© If Ais computable, then A <., B for every B C N unless B = (), N.
Q If B is computable and A <., B, then A is computable too.
© Given B, the set {A CN: A <, B} is countable.
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Many-one reducibility — Natural Examples

The following are =,,-equivalent:
K, the Halting problem.
=, The Word problem.

=,, The simply-connected problem.
=,, Hilbert's 10th problem.

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 8 /20



Many-one reducibility — Natural Examples

The following are =,,-equivalent:

K, the Halting problem.
=, The Word problem.
=,, The simply-connected problem.
=,, Hilbert's 10th problem.

The following are in strictly increasing <,,-order:

K, the Halting problem

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 8 /20



Many-one reducibility — Natural Examples

The following are =,,-equivalent:

K, the Halting problem.
=, The Word problem.
=,, The simply-connected problem.
=,, Hilbert's 10th problem.

The following are in strictly increasing <,,-order:
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<m { p(x,¥) € Z|x, y1, y2, ...] with integers solutions for exactly one x}
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The following are =,,-equivalent:
K, the Halting problem.

=, The Word problem.

=,, The simply-connected problem.

=, Hilbert's 10th problem.

The following are in strictly increasing <,,-order:
K, the Halting problem

<m { p(x,¥) € Z|x, y1, y2, ...] with integers solutions for exactly one x}
<m { finite presentations of groups that are torsion-free }

<m { true 1lst-order sentences about arithmetic }*

<m { programs computing linear orderings that contain a copy of Q}
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Many-one reducibility — Natural Examples

The following are =,,-equivalent:

K, the Halting problem.
=, The Word problem.
=,, The simply-connected problem.
=,, Hilbert's 10th problem.

The following are in strictly increasing <,,-order:

K, the Halting problem
<m { p(x,¥) € Z|x, y1, y2, ...] with integers solutions for exactly one x}
<m { finite presentations of groups that are torsion-free }
<m { true 1lst-order sentences about arithmetic }*
<m { programs computing linear orderings that contain a copy of Q}
<m { true 2nd-order sentences about arithmetic }*

All these sets are not =,,-equivalent to their complements, except *.
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Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if
A= {f(0),f(1),f(2),....} for some function f: N — N.J
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Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if
A= {f(0),f(1),f(2),....} for some function f: N — N.J

Equivalently: Ais c.e. <—
Ais of the form {x : Jy (x,y) € P} where P is a computable.J

The following are c.e.:

e The Halting problem.

e The Word problem.

e The simply-connected problem.
e Hilbert's 10th problem.
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A= {f(0),f(1),f(2),....} for some function f: N — N.J

Equivalently: Ais c.e. <—
Ais of the form {x : Jy (x,y) € P} where P is a computable.J

Observation: If Ais c.e. and B <, A, then B is c.e. too.
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Computably enumerable sets

Definition: A set A is computably enumerable (c.e.) if
A= {f(0),f(1),f(2),....} for some function f: N — N.J

Equivalently: Ais c.e. <—
Ais of the form {x : Jy (x,y) € P} where P is a computable.J

Observation: If Ais c.e. and B <, A, then B is c.e. too.

Definition: A set A is c.e.-complete if it is c.e.
and for every c.e. set B, B <, A.J

The examples before were all c.e.-complete
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A side note — NP complete sets

NP-complete sets are the analogous of c.e.-complete sets,
but for computable functions that run in polynomial time.
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where n € N and R C 2* x 2* is a computable in polynomial time.
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A side note — NP complete sets

NP-complete sets are the analogous of c.e.-complete sets,
but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form
{xe2":(Fy €2) |yl < |x|" & (x,y) € R}
where n € N and R C 2* x 2* is a computable in polynomial time.

Examples: The following are c.e.:

e Satisfiability for propositional formulas.
e Hamiltonian path problem.

e Traveler salesman problem.

e Graph coloring problem.
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A side note — NP complete sets

NP-complete sets are the analogous of c.e.-complete sets,
but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form
{xe2r:(Aye2) |yl <Ix|"& (x,y) € R}
where n € N and R C 2* x 2* is a computable in polynomial time.

v

Definition
A set A is polynomial-time reducible to B (A <P B) if there is poly-time
computable f: 2 — 2* such that 0 € A <= f(0) € B (Vo € 2¥)
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Definition
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A side note — NP complete sets

NP-complete sets are the analogous of c.e.-complete sets,
but for computable functions that run in polynomial time.

Definition: A set is A is NP if it is of the form
{xe2r:(Aye2) |yl <Ix|"& (x,y) € R}
where n € N and R C 2* x 2* is a computable in polynomial time.

Definition
A set A is polynomial-time reducible to B (A <P B) if there is poly-time
computable f: 2 — 2* such that 0 € A <= f(0) € B (Vo € 2¥)

Definition: A set A is NP-complete if it is NP and
for every NP set B, B S,’f, A.

The examples above are NP-complete
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Back to many-one degrees — d-c.e. sets

Definition: A set Ais d-c.e. if A= B\ C where B and C are c.e. )
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Back to many-one degrees — d-c.e. sets

Definition: A set Ais d-c.e. if A= B\ C where B and C are c.e.

Example: The following is d-c.e.:

o { p(x,¥) € Z[x, y1, y2, ...] with integers solutions for exactly one x}.
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Back to many-one degrees — d-c.e. sets

Definition: A set Ais d-c.e. if A= B\ C where B and C are c.e. )

Observation: If Ais d-c.e. and B <,,, A, then B is d-c.e. too.
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Back to many-one degrees — d-c.e. sets

Definition: A set Ais d-c.e. if A= B\ C where B and C are c.e. )

Observation: If Ais d-c.e. and B <,,, A, then B is d-c.e. too.

Observation: There is a d-c.e. set that is not c.e.
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Back to many-one degrees — d-c.e. sets

Definition: A set Ais d-c.e. if A= B\ C where B and C are c.e. )

Observation: If Ais d-c.e. and B <,,, A, then B is d-c.e. too.

Observation: There is a d-c.e. set that is not c.e.

Definition: A set A is d-c.e.-complete if it is d-c.e.
and for every d-c.e. set B, B <, A.J

The example above is d-c.e.-complete

We can continue on and define n-c.e. for n € N.
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Definition: A set A is M3 if it is of the form
{zeN: (Vx)(3y) (x,y,z) € R} where R C N3 is computable.
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Definition: A set A is M3 if it is of the form
{zeN: (Vx)(3y) (x,y,z) € R} where R C N3 is computable.
Example:

The set of finite presentations (generators, relations) for torsion groups:
For every word w, and number n, if w" ~ e

there exists a sequence of applications to the relations, such that w ~ e.

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 12 /20



Definition: A set A is M3 if it is of the form
{zeN: (Vx)(3y) (x,y,z) € R} where R C N3 is computable.

Example:

The set of finite presentations (generators, relations) for torsion groups:
For every word w, and number n, if w" ~ e

there exists a sequence of applications to the relations, such that w ~ e.

Definition: A set A is N3-complete if it is M9
and for every N3 set B, B <, A.
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Definition: A set A is M3 if it is of the form
{zeN: (Vx)(3y) (x,y,z) € R} where R C N3 is computable.

Example:
The set of finite presentations (generators, relations) for torsion groups:
For every word w, and number n, if w" ~ e

there exists a sequence of applications to the relations, such that w ~ e.

Definition: A set A is N3-complete if it is M9
and for every N3 set B, B <, A.

The example above is M3-complete
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Definition: A set A is M3 if it is of the form
{zeN: (Vx)(3y) (x,y,z) € R} where R C N3 is computable.

Example:
The set of finite presentations (generators, relations) for torsion groups:
For every word w, and number n, if w" ~ e

there exists a sequence of applications to the relations, such that w ~ e.

Definition: A set A is N3-complete if it is M9
and for every N3 set B, B <, A.

The example above is M3-complete

We can continue on and define M9 for n € N.
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Chaos

So far, the examples are linearly ordered,

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 13 /20



Chaos

So far, the examples are linearly ordered, except for complements. BB

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 13 /20



Chaos

So far, the examples are linearly ordered, except for complements. BB
We know no natural example strictly <p,-between {0} and K.

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 13 /20



Chaos

So far, the examples are linearly ordered, except for complements. BB
We know no natural example strictly <p,-between {0} and K.
HOWEVER

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 13 /20



Chaos

So far, the examples are linearly ordered, except for complements. BB
We know no natural example strictly <p,-between {0} and K.
HOWEVER

Theorem: (kieene, Post) There are continuum size <,,-antichains of m-degrees. J
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Chaos

So far, the examples are linearly ordered, except for complements. BB
We know no natural example strictly <p,-between {0} and K.
HOWEVER

Theorem: (kieene, Post) There are continuum size <,,-antichains of m-degrees. J

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] EVery countable partia| Ordering embeds
into the many-one degrees.
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Theorem: [Kleene, Post][Lachlan-Shore, Nerode] EVery countable partia| Ordering embeds
into the many-one degrees.

Furthermore, it can even be embedded below the degree of K,

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 13 /20



Chaos

So far, the examples are linearly ordered, except for complements. BB
We know no natural example strictly <p,-between {0} and K.
HOWEVER

Theorem: (kieene, Post) There are continuum size <,,-antichains of m-degrees. J

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] EVery countable partia| Ordering embeds
into the many-one degrees.

Furthermore, it can even be embedded below the degree of K,
or between <,-between K @ K and K x K,
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Chaos

So far, the examples are linearly ordered, except for complements. BB
We know no natural example strictly <p,-between {0} and K.
HOWEVER

Theorem: (kieene, Post) There are continuum size <,,-antichains of m-degrees. J

Theorem: [Kieene, Post][Lachlan-Shore, Nerode] EVery countable partial ordering embeds
into the many-one degrees.

Furthermore, it can even be embedded below the degree of K,

or between <,,-between K @ K and K x K, or as an initial segment.

Antonio Montalban (U.C. Berkeley) Natural m-degrees June 2017 13 /20



Chaos

So far, the examples are linearly ordered, except for complements. BB
We know no natural example strictly <p,-between {0} and K.
HOWEVER

Theorem: (kieene, Post) There are continuum size <,,-antichains of m-degrees. J

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] EVery countable partia| Ordering embeds
into the many-one degrees.
Furthermore, it can even be embedded below the degree of K,

or between <,,-between K @ K and K x K, or as an initial segment.

Theorem: (shore, Nerode] The 1st-order theory of the poset of the m-degrees
is 1-1 equivalent to
The 2nd-order theory of (N; 0,1, +, x).

v
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Natural vs arbitrary m-degrees

On one side:

The natural examples of m-degrees are frew and nicely ordered.
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On the other side:
The structure of all the m-degrees is very complex and badly behaved.

Can we explain this?
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Natural vs arbitrary m-degrees

On one side:

The natural examples of m-degrees are frew and nicely ordered.

On the other side:
The structure of all the m-degrees is very complex and badly behaved.

Can we explain this?

Can we characterize the many-one degrees that have names?
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Wadge degrees

Consider the Baire Space: NN = {f: N — N} with the product topology.
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Consider the Baire Space: NN = {f: N — N} with the product topology.

Obs: NY is homeomorphic to R \ Q via f + £(0) + W
1+F(2)+---
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Wadge degrees

Consider the Baire Space: NN = {f: N — N} with the product topology.

Obs: NY is homeomorphic to R \ Q via f + £(0) + W
1+F(2)+---

Definition: For A, B C NN Alis Wadge reducible to B, A <,, B if there is
a continuous f: NN — NN st. (VX €2M), X € A «— f(X) € B.
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Wadge degrees

Consider the Baire Space: NN = {f: N — N} with the product topology.

NN : + : 1

Obs: N" is homeomorphic to R™ \ Q via f — f(0) + Y
Definition: For A, B C NN Alis Wadge reducible to B, A <,, B if there is
a continuous f: NN — NN st. (VX €2M), X € A «— f(X) € B.

Theorem: [Wadge 83](AD) The Wadge degrees are almost linearly ordered:
e Forevery A,B C NN, either A <,, B or B <,, AC.
e Forevery A,B C NN if A<, B, then A <,, BC.

Theorem: (AD) [Martin, Monk] The Wadge degrees are well founded. ]
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The answer — informally

Definition: For A, B C NN, Ais Wadge reducible to B, A <,, B if there is a
continuous f: NN — NN st. (VX €2V), X € A <= f(X) € B.
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Definition: For A,B C NN, Ais Wadge reducible to B, A <,, B if there is a
continuous f: NN — NN st. (VX €2V), X € A <= f(X) € B.

All Wadge degrees have names. BB
[Kihra, Montalban] There is a one-to-one correspondence between
the natural m-degrees and the Wadge degrees.
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Definition: For A,B C NN, Ais Wadge reducible to B, A <,, B if there is a
continuous f: NN — NN st. (VX €2V), X € A <= f(X) € B.

All Wadge degrees have names. BB
[Kihra, Montalban] There is a one-to-one correspondence between
the natural m-degrees and the Wadge degrees.
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Relativization

Definition: Let X € 2N. A function f: N — N is X-computable
if there exists a computer program that calculates f
using the characteristic function of X as a primitive.
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if there exists a computer program that calculates f

using the characteristic function of X as a primitive.
We write f <7 X.
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Relativization

Definition: Let X € 2N. A function f: N — N is X-computable
if there exists a computer program that calculates f

using the characteristic function of X as a primitive.
We write f <7 X.

A more formal definition:

The class of partial X-computable functions N — N is the
@ closure of the projection, successor functions, and xx,

@ under composition, recursion, and minimalization.
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Relativization

Definition: Let X € 2N. A function f: N — N is X-computable
if there exists a computer program that calculates f

using the characteristic function of X as a primitive.
We write f <7 X.

A more formal definition:

The class of partial X-computable functions N — N is the

@ closure of the projection, successor functions, and xx,

@ under composition, recursion, and minimalization.

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.
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Examples of relativization

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.
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o dX ®F, ... are the X-computable programs.
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Examples of relativization

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.

o dX ®F, ... are the X-computable programs.
o KX ={(e,n): ®c(n) halts }.
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Examples of relativization

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.

o dX ®F, ... are the X-computable programs.
o KX ={(e,n): ®c(n) halts }.

e KX is not X-computable.
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Examples of relativization

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.

X, ¢{<, ... are the X-computable programs.
KX = {(e,n) : ®.(n) halts }.

KX is not X-computable.

KX is X-c.e.
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X, ¢{<, ... are the X-computable programs.
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Examples of relativization

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.

o, ¢{<, ... are the X-computable programs.
KX = {(e,n) : ®.(n) halts }.

KX is not X-computable.

KX is X-c.e.-complete.

KX x KX is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then:
P «— (¥X) PX
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Examples of relativization

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.

o, ¢{<, ... are the X-computable programs.
KX = {(e,n) : ®.(n) halts }.

KX is not X-computable.

KX is X-c.e.-complete.

KX x KX is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then:
P «— (¥X) PX

Def: A cone is a set of the form {X € 2N : X > Y} for some Y € 2V
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Examples of relativization

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.

o, ¢{<, ... are the X-computable programs.
KX = {(e,n) : ®.(n) halts }.

KX is not X-computable.

KX is X-c.e.-complete.

KX x KX is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then:
P «— (¥X) PX

Def: A cone is a set of the form {X € 2N : X > Y} for some Y € 2V
By P on a cone we mean {X : PX holds} contains a cone.
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Examples of relativization

Def: Given a notion P, we use PX to denote P relative to X,
obtained by replacing computable by X-computable within P.

o, ¢{<, ... are the X-computable programs.
KX = {(e,n) : ®.(n) halts }.

KX is not X-computable.

KX is X-c.e.-complete.

KX x KX is X-d.c.e.-complete.

Empirical Fact: If P is a natural property, then:
P < (VX) PX < P on a cone.

Def: A cone is a set of the form {X € 2N : X > Y} for some Y € 2V
By P on a cone we mean {X : PX holds} contains a cone.
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Back to degrees with names

Suppose s is a m-degree with a name.
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Back to degrees with names

Suppose s is a m-degree with a name.

If P is a natural property, one would expect that
s satisfies P <= s satisfies PX (VX € 2V).
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Back to degrees with names

Suppose s is a m-degree with a name.

If P is a natural property, one would expect that
s satisfies P <= s satisfies PX (VX € 2V).

Disclaimer: Not completely true though.
Ex: if S is the word problem, or Hilbert's 10'th problem, SX doesn't make sense.
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Back to degrees with names

Suppose s is a m-degree with a name.

If P is a natural property, one would expect that
s satisfies P <= s satisfies PX (VX € 2V).

Disclaimer: Not completely true though.
Ex: if S is the word problem, or Hilbert's 10'th problem, SX doesn't make sense.

Natural, relativizable, m-degrees s
usually give way to
to a function X — SX: 2N 5 2N suchthat X =7 Y = $X=,5Y.

where X =1 Y iff X is Y-computable and Y is X-computable.
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Natural many-one degrees <= Wadge degrees
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Natural many-one degrees <= Wadge degrees

Def: A function f: 2N — 2N is (=1, =,,)-uniformly invariant (Ul) if
X=rY = f(X)=nf(Y) and
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Natural many-one degrees <= Wadge degrees

Def: A function f: 2N — 2N is (=1, =,,)-uniformly invariant (Ul) if
X=rY = f(X)=nf(Y) and

thereis u: N> — N2, s.t., if X =7 Y via ®; and &, then £(X) =y, £(Y) via ®,(; ;y and D, (; ).
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Natural many-one degrees <= Wadge degrees

Def: A function f: 2N — 2N is (=1, =,,)-uniformly invariant (Ul) if
X=rY = f(X)=nf(Y) and
there is u: N2 — N2, s.t., if X =7 Y via ®; and ®;, then f(X) =, f(Y) via ¢

up(irj) and Puy (i jy-

Def: For A, B C N, A is many-one reducible? to B, written A Sﬁ B, if
there is a Z-computable f: N - Nst. (VxeN), x€ A < f(x) € B.
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Natural many-one degrees <= Wadge degrees

Def: A function f: 2N — 2N is (=1, =,,)-uniformly invariant (Ul) if
X=rY = f(X)=nf(Y) and
thereis u: N2 — N2, s.t., if X =7 Y via ®; and &}, then f(X) =, f(Y) via ®,(; ;) and ®

uo(i,j up(isj)-

Def: For A, B C N, A is many-one reducible? to B, written A Sﬁ B, if
there is a Z-computable f: N - Nst. (VxeN), x€ A < f(x) € B.

Def: f <), g if (3C € 2V) such that f(X) <& g(X) for every X >7 C.
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Natural many-one degrees <= Wadge degrees

Def: A function f: 2N — 2N is (=1, =,,)-uniformly invariant (Ul) if
X=rY = f(X)=nf(Y) and

thereis u: N2 — N2 s.t., if X =7 Y via ®; and ®;, then f(X) =, f(Y) via ®, ;. and &, (; .
j () 1(i4)

Def: For A, B C N, A is many-one reducible? to B, written A Sﬁ B, if
there is a Z-computable f: N - Nst. (VxeN), x€ A < f(x) € B.

Def: f <), g if (3C € 2V) such that f(X) <& g(X) for every X >7 C.

Theorem: [Kihara, M.] There is a one-to-one correspondence between
(=7, =m)-Ul functions ordered by <Y and P(2") ordered by Wadge reducibility.J

The version for (=7, =7)-invariant is known as Martin's conjecture, and the uniform case was
proved by Slaman and Steel in [Steel 82][Slaman, Steel 88]
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