Uncountable free abelian groups via κ -computability

Linda Brown Westrick University of Connecticut Joint with Noam Greenberg and Dan Turetsky

> August 24th, 2017 Nagoya University

- Complexity of being free and computing a basis in countable groups
- \bigcirc κ -computability
- Omplexity of freeness in uncountable groups
- One avoiding and coding in bases for uncountable groups
- Singular cardinals

A group is *free* if it has a subset, called a *basis*, such that every element of the group can be uniquely specified as a linear combination of basis elements with integer coefficients.

Results of Downey and Melnikov on countable groups, coded as subsets of ω . Naively, determining whether a coded group G is free is Σ_1^1 . But they show:

- If a group G is free, it has an G'-computable basis.
- The set of free groups on ω is Π_3^0 -complete.

Definition. A set $A \subseteq G$ is *P*-independent if it is linearly independent, and for each $g \in G$ and nonzero $n \in \mathbb{Z}$, if ng is in the span of *A*, then *g* is in the span of *A*.

They build a basis by maintaining P-indepence as an invariant.

How to extend to uncountable groups?

Example.

Let $G = \mathbb{Z}^{\omega+1}$, the free group on generators e_0, e_1, \ldots and e_{ω} . Let $A = \{p_i e_i + e_{\omega} : i < \omega\}$, where p_i is the *i*th prime. Although A is P-independent, it cannot be extended to a basis for G.

When trying to build an uncountable basis by transfinite initial segments, this becomes a real obstacle!

Theorem (Greenberg-Turetsky-W). If κ is a successor cardinal, then $\{G: G \text{ is free}\}$ is $\Sigma_1^1(L_{\kappa})$ -complete.

Informally, there is no invariant (similar to P-independence or otherwise) that will allow construction of bases by transfinite initial segments.

- Complexity of being free and computing a basis in countable groups
- **2** κ -computability
- Omplexity of freeness in uncountable groups
- Cone avoiding and coding in bases for uncountable groups
- Singular cardinals

Use α -recursion theory restricted to *regular* cardinals κ .

The usual recursion theory:

- A computation is a process running for ω steps. At each step, one can perform arbitrary manipulations involving a bounded finite set of numbers.
- A computable set is any set whose membership relation can be decided by such a process.
- Equivalent definition: a computable subset of ω is is any set definable by a pair of complementary Σ_1^0 formulas.

 κ -recursion theory:

Definition: A computable subset of κ is defined by a pair of complementary $\Sigma_1^0(L_{\kappa})$ formulas.

Intuition:

- A κ -finite set is an element of L_{α} for some $\alpha < \kappa$. (Think of bounded sets of ordinals of cardinality strictly less than κ .)
- A computation is a process, running for κ many steps. At each step, one can perform arbitrary manipulations on κ -finite sets.

Definition. A subset of κ is $\Sigma_1^1(L_{\kappa})$ if

$$\alpha \in X \iff \exists Y \subseteq \kappa(L_{\kappa} \models \varphi(Y, \alpha))$$

where φ is a formula in the language of set theory. Such a set is $\Sigma_1^0(L_{\kappa^+})$.

Theorem (Fokina, Friedman, Knight & Miller). The set

 $\{A \subseteq \kappa : A \text{ contains a club (closed unbounded set)}\}$

is $\Sigma_1^1(L_{\kappa})$ -complete.

- Complexity of being free and computing a basis in countable groups
- **2** κ -computability
- **③** Complexity of freeness in uncountable groups
- Cone avoiding and coding in bases for uncountable groups
- Singular cardinals

- Filtration, freeness and clubs
- Twisting and bad starts for a basis
- $\bullet\,$ Computability of $\kappa\text{-finite free groups}$

Filtration, freeness and clubs

If $G \subseteq \kappa$, then G can be decomposed as

$$G = \cup_{\alpha < \kappa} G_{\alpha}$$

where $G_{\alpha} = G \cap \alpha$. This decomposition is called a *filtration*.

• If $H \subseteq G$ are groups, we say H divides G if

 $G=H\oplus K$

for another group $K \subseteq G$.

- Every subgroup of a free group is free.
- If G is free and $G = H \oplus K$, then to find a basis for G, it suffices to take a union of a basis for H and a basis for K.

Filtration, freeness and clubs

- If G is free, then let B be a basis. There is a club $C \subseteq \kappa$ such that for each $\alpha \in C$, G_{α} is the free group generated by some subset of B (of cardinality less than κ).
- Suppose there is a club $C \subseteq \kappa$ such that for each $\alpha, \beta \in C$ with $\alpha < \beta$, we have $G_{\alpha}|G_{\beta}$. Then we can build a basis for G as an increasing union of cohereing bases for G_{α} for $\alpha \in C$.

Definition. For any group $G \subseteq \kappa$, let

$$\operatorname{Div}(G) = \{ \alpha < \kappa : (\forall \beta > \alpha) [G_{\alpha} | G_{\beta}] \}.$$

A group G is free if and only if Div(G) contains a club. So determining freeness is difficult if sets of the form Div(G) are general enough that it is difficult to determing whether they contain clubs. Theorem. If κ is a successor cardinal, then $\{G: G \text{ is free}\}$ is $\Sigma_1^1(L_{\kappa})$ -complete.

Idea. Given a set A, which may or may not contain a club, build G by initial segments G_{α} .

If $\alpha \in A$, make $G_{\alpha+1}$ by just adding a new basis element to what you had.

If $\alpha \notin A$, make $G_{\alpha+1}$ by adding new elements around what you already had (in the style of the $\mathbb{Z}^{\omega+1}$ example) to make sure that $\alpha \notin \text{Div}(G)$. (We say G_{α} is "twisted".)

Proof: uses a variant of the principle \Box , which holds in L.

In fact, the above theorem holds as long as κ is not weakly compact.

On the other hand: Theorem. If κ is weakly compact, then $\{G : G \text{ is free}\}$ is $\Pi_2^0(L_{\kappa})$. Let us call κ difficult if κ is (regular and) not weakly compact.

We have seen: If κ is difficult, then $\{G \subseteq \kappa : G \text{ is free}\}$ is $\Sigma_1^1(L_{\kappa})$ -complete. Consider $C_{\kappa} = \{G \in L_{\kappa} : G \text{ is free}\}.$

Theorem.

- If κ is the successor of a cardinal that is not difficult, then C_{κ} is κ -computable.
- If κ is the successor of a difficult cardinal, then C_{κ} is $\Sigma_1^0(L_{\kappa})$ -complete.
- If κ is a limit, then C_{κ} computes $\emptyset'(L_{\kappa})$, but is not complete.

- Complexity of being free and computing a basis in countable groups
- **2** κ -computability
- Omplexity of freeness in uncountable groups
- **(**) Cone avoiding and coding in bases for uncountable groups
- Singular cardinals

- Bases are not easily computed.
- But not much can be coded into them (cone avoidance).
- Characterization of what can be coded.

Observe: Suppose κ is a successor. For every $X \in \Delta_1^1(L_{\kappa})$ (for any reasonable definition of $\Delta_1^1(L_{\kappa})$) there is a computable $G \subseteq \kappa$ such that X does not compute a basis for G.

If there were an X that computed every basis, $\{G \subseteq \kappa : G \text{ is free}\}$ would be Δ_1^1 , not Σ_1^1 -complete.

Recall:

$$\operatorname{Div}(G) = \{ \alpha < \kappa : (\forall \beta > \alpha) [G_{\alpha} | G_{\beta}] \}.$$

Theorem. Suppose that G is κ -computable and $X \leq_T \text{Div}(G)$. Then there is a basis of G that does not compute X.

Consequence. If $X \not\leq_T \emptyset''(L_{\kappa})$, then there is a basis B of G such that $X \not\leq_T B$.

Theorem. If κ is not the successor of a difficult cardinal, then for all κ -computable G, Div(G) is $\emptyset'(L_{\kappa})$ computable.

Consequence. If κ is not the successor of a difficult cardinal, and $X \not\leq_T \emptyset'(L_{\kappa})$, then there is a basis B of G such that $X \not\leq_T B$.

- Proposition. For every κ , there is a κ -computable G such that every basis of G computes \emptyset' .
- Start building a free group on generators $b_0, b_1, \ldots, b_{\alpha}$. If you see α enter $\emptyset'(L_{\kappa})$, add an element equal to $b_{\alpha}/2$.

Theorem. If κ is the successor of a difficult cardinal, then there is a κ -computable G, all bases for which compute $\emptyset''(L_{\kappa})$.

- Complexity of being free and computing a basis in countable groups
- **2** κ -computability
- Omplexity of freeness in uncountable groups
- One avoiding and coding in bases for uncountable groups
- **o** Singular cardinals

A cardinal is *singular* if it is not regular $(cof(\kappa) < \kappa)$.

 κ -computability for singular cardinals:

- Computation as a pair of $\Sigma_1^0(L_{\kappa})$ formulas is still well-defined.
- Computation length only $cof(\kappa)$ breaks many results.

Theorem. If $\operatorname{cof}(\kappa) = \aleph_0$,

- The index set of the κ -computable free groups is $\Pi_2^0(L_{\kappa})$ -complete.
- If X computes a cofinal ω -sequence in κ , then every κ -computable free group has an $X \oplus \emptyset'$ -computable basis.

Thank you!