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Outline

1 Complexity of being free and computing a basis in countable
groups

2 κ-computability

3 Complexity of freeness in uncountable groups

4 Cone avoiding and coding in bases for uncountable groups

5 Singular cardinals

In this talk, all groups are abelian, and V = L.
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Countable free abelian groups

A group is free if it has a subset, called a basis, such that every element of the
group can be uniquely specified as a linear combination of basis elements with
integer coefficients.

Results of Downey and Melnikov on countable groups, coded as subsets of ω.

Naively, determining whether a coded group G is free is Σ1
1. But they show:

If a group G is free, it has an G′-computable basis.

The set of free groups on ω is Π0
3-complete.

Definition. A set A ⊆ G is P -independent if it is linearly independent, and for
each g ∈ G and nonzero n ∈ Z, if ng is in the span of A, then g is in the span
of A.

They build a basis by maintaining P -indepence as an invariant.

How to extend to uncountable groups?
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Countable free abelian groups

Example.
Let G = Zω+1, the free group on generators e0, e1, . . . and eω.
Let A = {piei + eω : i < ω}, where pi is the ith prime.
Although A is P -independent, it cannot be extended to a basis for G.

When trying to build an uncountable basis by transfinite initial segments, this
becomes a real obstacle!

Theorem (Greenberg-Turetsky-W). If κ is a successor cardinal, then
{G : G is free} is Σ1

1(Lκ)-complete.

Informally, there is no invariant (similar to P -independence or otherwise) that
will allow construction of bases by transfinite initial segments.
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κ-computability

Use α-recursion theory restricted to regular cardinals κ.

The usual recursion theory:

A computation is a process running for ω steps. At each step, one can
perform arbitrary manipulations involving a bounded finite set of
numbers.

A computable set is any set whose membership relation can be decided by
such a process.

Equivalent definition: a computable subset of ω is is any set definable by
a pair of complementary Σ0

1 formulas.
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κ-computability

κ-recursion theory:

Definition: A computable subset of κ is defined by a pair of complementary
Σ0

1(Lκ) formulas.

Intuition:

A κ-finite set is an element of Lα for some α < κ. (Think of bounded sets
of ordinals of cardinality strictly less than κ.)

A computation is a process, running for κ many steps. At each step, one
can perform arbitrary manipulations on κ-finite sets.
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κ-computability

Definition. A subset of κ is Σ1
1(Lκ) if

α ∈ X ⇐⇒ ∃Y ⊆ κ(Lκ |= ϕ(Y, α)

where ϕ is a formula in the language of set theory. Such a set is Σ0
1(Lκ+).

Theorem (Fokina, Friedman, Knight & Miller). The set

{A ⊆ κ : A contains a club (closed unbounded set)}

is Σ1
1(Lκ)-complete.
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Complexity of being a free group

Filtration, freeness and clubs

Twisting and bad starts for a basis

Computability of κ-finite free groups
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Filtration, freeness and clubs

If G ⊆ κ, then G can be decomposed as

G = ∪α<κGα

where Gα = G ∩ α. This decomposition is called a filtration.

If H ⊆ G are groups, we say H divides G if

G = H ⊕K

for another group K ⊆ G.

Every subgroup of a free group is free.

If G is free and G = H ⊕K, then to find a basis for G, it suffices to take a
union of a basis for H and a basis for K.

Linda Brown Westrick University of Connecticut Joint with Noam Greenberg and Dan TuretskyUncountable free abelian groups via κ-computability
August 24th, 2017 Nagoya University 11

/ 21



Filtration, freeness and clubs

If G is free, then let B be a basis. There is a club C ⊆ κ such that for
each α ∈ C, Gα is the free group generated by some subset of B (of
cardinality less than κ).

Suppose there is a club C ⊆ κ such that for each α, β ∈ C with α < β, we
have Gα|Gβ . Then we can build a basis for G as an increasing union of
cohereing bases for Gα for α ∈ C.

Definition. For any group G ⊆ κ, let

Div(G) = {α < κ : (∀β > α)[Gα|Gβ ]}.

A group G is free if and only if Div(G) contains a club. So determining
freeness is difficult if sets of the form Div(G) are general enough that it is
difficult to determing whether they contain clubs.
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Twisting and bad starts for a basis

Theorem. If κ is a successor cardinal, then {G : G is free} is Σ1
1(Lκ)-complete.

Idea. Given a set A, which may or may not contain a club, build G by initial
segments Gα.

If α ∈ A, make Gα+1 by just adding a new basis element to what you had.

If α 6∈ A, make Gα+1 by adding new elements around what you already had
(in the style of the Zω+1 example) to make sure that α 6∈ Div(G). (We say Gα
is “twisted”.)

Proof: uses a variant of the principle �, which holds in L.

In fact, the above theorem holds as long as κ is not weakly compact.

On the other hand:
Theorem. If κ is weakly compact, then {G : G is free} is Π0

2(Lκ).
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Computability of κ-finite free groups

Let us call κ difficult if κ is (regular and) not weakly compact.

We have seen: If κ is difficult, then {G ⊆ κ : G is free} is Σ1
1(Lκ)-complete.

Consider Cκ = {G ∈ Lκ : G is free}.

Theorem.

If κ is the successor of a cardinal that is not difficult, then Cκ is
κ-computable.

If κ is the successor of a difficult cardinal, then Cκ is Σ0
1(Lκ)-complete.

If κ is a limit, then Cκ computes ∅′(Lκ), but is not complete.

Linda Brown Westrick University of Connecticut Joint with Noam Greenberg and Dan TuretskyUncountable free abelian groups via κ-computability
August 24th, 2017 Nagoya University 14

/ 21



Outline

1 Complexity of being free and computing a basis in countable groups

2 κ-computability

3 Complexity of freeness in uncountable groups

4 Cone avoiding and coding in bases for uncountable groups

5 Singular cardinals

In this talk, all groups are abelian, and V = L.

Linda Brown Westrick University of Connecticut Joint with Noam Greenberg and Dan TuretskyUncountable free abelian groups via κ-computability
August 24th, 2017 Nagoya University 15

/ 21



Computing, coding, and cone avoiding in bases

Bases are not easily computed.

But not much can be coded into them (cone avoidance).

Characterization of what can be coded.

Observe: Suppose κ is a successor. For every X ∈ ∆1
1(Lκ) (for any reasonable

definition of ∆1
1(Lκ)) there is a computable G ⊆ κ such that X does not

compute a basis for G.

If there were an X that computed every basis, {G ⊆ κ : G is free} would be
∆1

1, not Σ1
1-complete.
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Cone Avoidance

Recall:
Div(G) = {α < κ : (∀β > α)[Gα|Gβ ]}.

Theorem. Suppose that G is κ-computable and X 6≤T Div(G). Then there is a
basis of G that does not compute X.

Consequence. If X 6≤T ∅′′(Lκ), then there is a basis B of G such that X 6≤T B.

Theorem. If κ is not the successor of a difficult cardinal, then for all
κ-computable G, Div(G) is ∅′(Lκ) computable.

Consequence. If κ is not the successor of a difficult cardinal, and X 6≤T ∅′(Lκ),
then there is a basis B of G such that X 6≤T B.
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Coding in bases

Proposition. For every κ, there is a κ-computable G such that every basis of G
computes ∅′.

Start building a free group on generators b0, b1, . . . , bα. If you see α enter
∅′(Lκ), add an element equal to bα/2.

Theorem. If κ is the successor of a difficult cardinal, then there is a
κ-computable G, all bases for which compute ∅′′(Lκ).
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Singular cardinals - many questions

A cardinal is singular if it is not regular (cof(κ) < κ).

κ-computability for singular cardinals:

Computation as a pair of Σ0
1(Lκ) formulas is still well-defined.

Computation length only cof(κ) breaks many results.

Theorem. If cof(κ) = ℵ0,

The index set of the κ-computable free groups is Π0
2(Lκ)-complete.

If X computes a cofinal ω-sequence in κ, then every κ-computable free
group has an X ⊕ ∅′-computable basis.
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Thank you!
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