Conclusion 000

How to compute with an infinite time Turing machine?

Sabrina Ouazzani

École Polytechnique

Nagoya Logic Seminar, March 19

Presentation of Infinite time Turing machines

Gaps

Conclusion

Motivations

- Ordinals as time for computation.
- Peculiar ordinal properties.
- Proof of mathematical properties from an algorithmic point of view.

Presentation of Infinite time Turing machines

Conclusion 000

Ordinals

Definition (Ordinal)

Transitive well-ordered set for the membership relation.

$$0 := \emptyset$$

$$1 := \{0\} = \{\emptyset\}$$

...

$$\omega := \{0, 1, 2, 3, \cdots\}$$

$$\omega + 1 := \{0, 1, 2, 3, \cdots, \omega\}$$

...

$$\omega.2 := \{0, 1, 2, \cdots, \omega, \omega + 1, \omega + 2 \dots\}$$

- If α is an ordinal, then α ∪ {α}, denoted α + 1 is called successor of α and is an ordinal;
- let A be a set of ordinal numbers, then $\alpha = \bigcup_{\beta \in A} \beta$ is a limit ordinal.

Encoding countable ordinals

 $\mathsf{Countable \ ordinal} = \mathsf{well \ order \ on \ } \mathbb{N}.$

Encoding (Encoding countable ordinals by reals)

Let < be an order on the natural numbers. The real r is a code for the order-type of < if, for $i = \langle x, y \rangle$, the *i*-th bit of r is **1** if and only if x < y.

Example: $\omega . 2 = \omega + \omega \rightsquigarrow$ even integers lower than odd integers.

 $0 = \langle 0, 0 \rangle \ 1 = \langle 0, 1 \rangle \ \cdots \ r = 0_0 1_1 0_2 0_3 0_4 1_5 0_6 1_7 1_8 1_9 1_{10} \cdots$

Presentation of Infinite time Turing machines

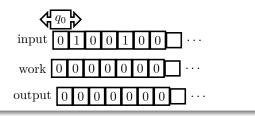
Conclusion

Structure of infinite time Turing machines (ITTM)

- 3 right-infinite tapes
- a single head
- binary alphabet $\{0,1\}$

Configuration

- additional special limit state lim
- computation steps are indexed by ordinals



Presentation of Infinite time Turing machines

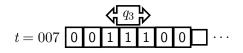
Conclusion 000

Operating an ITTM

Configuration at
$$\alpha + 1$$
. $t = 420$ 0 1 0 0 1 0 0 \cdots

 $\sim \rightarrow$

Configuration at α .

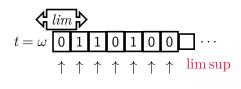


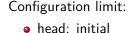
•••

Presentation of Infinite time Turing machines

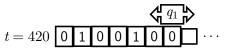
Conclusion 000

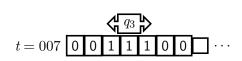
Operating an ITTM





- position;
- state: lim;
- each cell: *lim sup* of cell values before.





...

Conclusion 000

Computational power

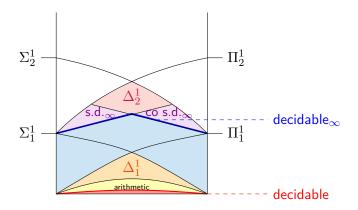


Figure: Projective hierarchy

Gaps

Conclusion 000

Halting

- Machines halt when they reach the halting state.
- We consider the strong stabilisation of cells at 0.

Theorem (Hamkins, Lewis [HL00])

Either an ITTM halts in a countable numer of steps, or it begins looping in a **countable number of steps**.

• We focus on the halting problem on 0.

Presentation of Infinite time Turing machines

Conclusion

Clockable and writable ordinals

Two natural notions:

Definition (Clockable ordinal)

 α clockable: there exists an ITTM that **halts** on input 000... in exactly α steps of computation.

Definition (Writable ordinal)

 α writable: there exists an ITTM that writes a code for α on input 000... and halts.

Presentation of Infinite time Turing machines

Gaps

Conclusion

Supremum

Theorem (Welch [Wel09])

The supremum of the clockable ordinals is equal to the supremum of the writable ordinals. It is called λ .

 λ is a rather large countable ordinal...

Conclusion

Let's count!

Count with a clockable ordinal \rightsquigarrow Clock.

Like an hourglass, execute operations while clocking the desired ordinal.

Speed-up lemma (Hamkins, Lewis [HL00])

If p halts on 0 in $\alpha + n$ steps, then there exists p' which halts on 0 in α steps (and computes the same). \rightsquigarrow **limit** ordinals

Count with a writable ordinal \rightsquigarrow Empty an order.

It is about counting through the encoding of an ordinal.

Introduction	Presentation of Infinite time Turing machines
0000	000000000

Gaps

Conclusion 000

...

What about the particularities of these ordinals?

Presentation of Infinite time Turing machines 0000000000

 Conclusion 000

There exist writable ordinals that are not clockable such that:

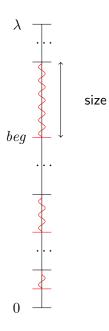
- they form intervals;
- these intervals have limit sizes.

Definition (Gap)

Intervals of not clockable ordinals.

Presentation of Infinite time Turing machines

Conclusion 000

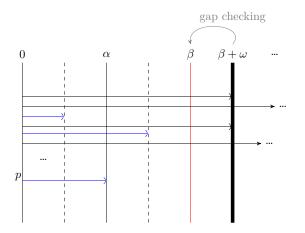


Presentation of Infinite time Turing machines

Gaps

Conclusion

Proof of gap existence



Simulation of all programs on input 0. In blue: halting programs. In red: limit step, begins a gap?

Presentation of Infinite time Turing machines

Gaps

Conclusion 000

Proof of gap existence

But ... does the algorithm halt?

Halting of the algorithm, proof by contradiction:

- Above λ , by definition, there are no clockable ordinals.
- If no gaps before λ , thus beginning of gap detected **at** λ .
- Contradiction.

Introduction	Presentation of Infinite time Turing machines
0000	000000000

 Conclusion 000

...

What does the literature say about gaps?

Presentation of Infinite time Turing machines

Gaps

Conclusion 000

Sizes of gaps

Theorem (Hamkins, Lewis [HL00])

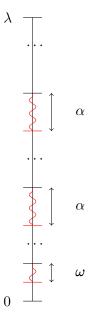
Above any clockable ordinal, the first gap has size ω .

Theorem (Hamkins, Seabold [HS01])

For all writable limit ordinals α , there exists a gap having size exactly α .

Presentation of Infinite time Turing machines

Conclusion



Presentation of Infinite time Turing machines 0000000000

 Conclusion

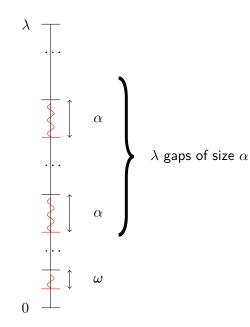
Gaps cofinal in λ

Theorem (Hamkins, Lewis [HL00])

If α is a writable ordinal, the order-type of gaps having size at least α is λ .

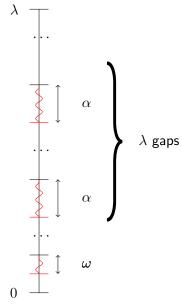
Presentation of Infinite time Turing machines

 Conclusion



Presentation of Infinite time Turing machines

 Conclusion 000



 λ gaps of size α

What about the ordinals in gaps ?

Presentation of Infinite time Turing machines

Gaps

Conclusion 000

Admissible ordinals

Property

A limit ordinal α is admissible if and only if there **doesn't exist** a function f from $\gamma < \alpha$ to α such that:

- f is unbounded (no greatest element in α) and
- f is Σ_1 -definable in L_{α} .

Presentation of Infinite time Turing machines

 Conclusion 000

Constructible hierarchy

Definition (Constructible hierarchy L)

• $L_0 = \emptyset;$

•
$$L_{\alpha+1} = def(L_{\alpha});$$

• if α is a limit ordinal, $L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta}$;

Application: reals of L_{λ} are the writable reals.

Presentation of Infinite time Turing machines

Gaps

Conclusion 000

Definability

Let M be a set and F be the set of the formulas of the language $\{\in\}$.

Definition (Definability)

X is definable on a model (M, \in) if:

- there exists a formula $\varphi \in F$,
- there exists $a_1, \ldots, a_n \in M$

such that $X = \{x \in M : \varphi(x, a_1, \dots, a_n) \text{ is true in } (M, \in)\}.$

 $def(M) = \{ X \subset M : X \text{ is definable on } (M, \in) \}.$

Presentation of Infinite time Turing machines

Gaps

Conclusion 000

Admissible ordinals

Property

A limit ordinal α is admissible if and only if there **doesn't exist** a function f from $\gamma < \alpha$ to α such that:

- f is unbounded (no greatest element in α) and
- f is Σ_1 -definable in L_{α} .

 Conclusion 000

Beginning of gaps and logic

Theorem (Welch [Wel09])

Gaps begin at admissible ordinals.

Introduction	Present
0000	00000

Presentation of Infinite time Turing machines

Gaps

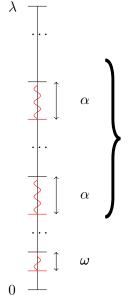
Conclusion 000

...

What do we say about gaps?

Presentation of Infinite time Turing machines

 Conclusion 000



 λ gaps of size α , beginning at admissibles

How is the size distributed?

Presentation of Infinite time Turing machines 0000000000

Gaps

Conclusion 000

Existence of a very big gap

Theorem (PhD)

There exists a gap g such that beginning(g) = size(g).

Presentation of Infinite time Turing machines 0000000000

Gaps

Conclusion 000

Structure of gaps before β_0

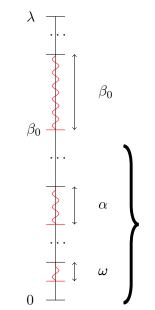
Let β_0 be the beginning and the size of the first gap g such that beginning(g) = size(g).

Theorem (PhD)

Before β_0 , the function that maps α to the beginning of the first gap of **size** α is **increasing**.

Presentation of Infinite time Turing machines

Conclusion



regular structure

Gaps

Conclusion 000

Beginning of gaps and logic

Theorem (PhD)

The ordinal β_0 begins the β_0 -th gap. This is also the β_0 -th admissible ordinal.

Presentation of Infinite time Turing machines

Gaps

Conclusion •00

infinite time Turing machines

model for algorithms proving logical properties

Presentation of Infinite time Turing machines

Gaps

Conclusion

Conclusion

Questions:

- Characterization of admissible ordinals by gaps?
- Gaps in other transfinite models of computation?
- ITTMs and other fields of Mathematics/CS?

Presentation of Infinite time Turing machines

Gaps

Conclusion

Another result

Theorem (ITTM are equivalent to)

Any Infinite Time Turing Machine can be simulated by some computable (hence continuous) ordinary differential equation and vice-versa.

Presentation of Infinite time Turing machines

Gaps

Conclusion 000

Consequences

infinite time Turing machines

model for algorithms proving logical properties

Continuous ordinary differential equations \equiv Infinite time Turing machines.

Presentation of Infinite time Turing machines

Conclusion 000

Consequences and questions

- Applying transfinite techniques to Analysis.
- Transposing Analysis questions to transfinite computations.
- 2 dual views for the same computability questions.
- discrete transfinite time = continuous time.

Presentation of Infinite time Turing machines

Conclusion 000

Other transdisciplinary aspects, an example

Other applications of ITTM using cheap non-standard analysis:

- asymptotic limit of a sequence for results about computability
- $\bullet\,$ extension to an index set different from $\mathbb N$
- expression of ITTM computations

Thank you for your attention.