Review on the strong measure zero σ -ideal and Yorioka's σ -ideals

Miguel A. Cardona

miguel.montoya@tuwien.ac.at

Technische Universität Wien

Young Logicians Gathering in Japan December 7th, 2019 The real numbers:

The real numbers:

(1) \mathbb{R} : the classical real line (connected, but not compact).

The real numbers:

(1) \mathbb{R} : the classical real line (connected, but not compact).

(2) [0,1]: the compact unit interval (connected, compact).

The real numbers:

- (1) \mathbb{R} : the classical real line (connected, but not compact).
- (2) [0,1]: the compact unit interval (connected, compact).

(3)
$$2^{\omega} = \prod_{n < \omega} 2 = \{f \mid f : \omega \to 2\}$$
 where $2 := \{0, 1\}$: the Cantor space (totally disconnected, compact)

The real numbers:

- (1) \mathbb{R} : the classical real line (connected, but not compact).
- (2) [0,1]: the compact unit interval (connected, compact).

(3)
$$2^{\omega} = \prod_{n < \omega} 2 = \{f \mid f : \omega \to 2\}$$
 where $2 := \{0, 1\}$: the Cantor space (totally disconnected, compact)

(4) $\omega^{\omega} = \prod_{n < \omega} \omega = \{f \mid f : \omega \to \omega\}$: the Baire space (totally disconnected, not compact).

The real numbers:

- (1) \mathbb{R} : the classical real line (connected, but not compact).
- (2) [0,1]: the compact unit interval (connected, compact).

(3)
$$2^{\omega} = \prod_{n < \omega} 2 = \{f \mid f : \omega \to 2\}$$
 where $2 := \{0, 1\}$: the Cantor space (totally disconnected, compact)

(4) $\omega^{\omega} = \prod_{n < \omega} \omega = \{f \mid f : \omega \to \omega\}$: the Baire space (totally disconnected, not compact).

Structure of the reals:

(1) Topolgy:

The real numbers:

- (1) \mathbb{R} : the classical real line (connected, but not compact).
- (2) [0,1]: the compact unit interval (connected, compact).

(3)
$$2^{\omega} = \prod_{n < \omega} 2 = \{f \mid f : \omega \to 2\}$$
 where $2 := \{0, 1\}$: the Cantor space (totally disconnected, compact)

(4) $\omega^{\omega} = \prod_{n < \omega} \omega = \{f \mid f : \omega \to \omega\}$: the Baire space (totally disconnected, not compact).

Structure of the reals:

(1) Topolgy: For
$$s \in 2^{<\omega}$$
 let
 $[s] := \{x \in 2^{\omega} \mid s \subseteq x(x \text{ extends } s)\}$. The usual product
topology on 2^{ω} is given by taking $\{[s] \mid s \in 2^{<\omega}\}$ as a basis.

The real numbers:

- (1) \mathbb{R} : the classical real line (connected, but not compact).
- (2) [0,1]: the compact unit interval (connected, compact).

(3)
$$2^{\omega} = \prod_{n < \omega} 2 = \{f \mid f : \omega \to 2\}$$
 where $2 := \{0, 1\}$: the Cantor space (totally disconnected, compact)

(4)
$$\omega^{\omega} = \prod_{n < \omega} \omega = \{f \mid f : \omega \to \omega\}$$
: the Baire space (totally disconnected, not compact).

Structure of the reals:

(1) Topolgy: For
$$s \in 2^{<\omega}$$
 let
 $[s] := \{x \in 2^{\omega} \mid s \subseteq x(x \text{ extends } s)\}$. The usual product
topology on 2^{ω} is given by taking $\{[s] \mid s \in 2^{<\omega}\}$ as a basis.

(2) Standard (Lebesgue) measure:

The real numbers:

- (1) \mathbb{R} : the classical real line (connected, but not compact).
- (2) [0,1]: the compact unit interval (connected, compact).

(3)
$$2^{\omega} = \prod_{n < \omega} 2 = \{f \mid f : \omega \to 2\}$$
 where $2 := \{0, 1\}$: the Cantor space (totally disconnected, compact)

(4)
$$\omega^{\omega} = \prod_{n < \omega} \omega = \{f \mid f : \omega \to \omega\}$$
: the Baire space (totally disconnected, not compact).

Structure of the reals:

- (1) Topolgy: For $s \in 2^{<\omega}$ let $[s] := \{x \in 2^{\omega} | s \subseteq x(x \text{ extends } s)\}$. The usual product topology on 2^{ω} is given by taking $\{[s] | s \in 2^{<\omega}\}$ as a basis.
- (2) Standard (Lebesgue) measure: the usual product measure μ is given by $\mu([s]) = 2^{-|s|}$ for any $s \in 2^{<\omega}$, where |s| is the length of s.

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is an *ideal* if,

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is an *ideal* if, (1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is an *ideal* if, (1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$, (2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and

$$\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$$
 is an *ideal* if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,
(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and
(3) $[2^{\omega}]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$.

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is an *ideal* if,

(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,

(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and

(3) $[2^{\omega}]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$.

If an ideal is closed under countable unions, it is called a σ -ideal.

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is an *ideal* if, (1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$, (2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and (3) $[2^{\omega}]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$. If an ideal is closed under countable unions, it is called a σ -ideal.

add(\mathcal{I}) = min{ $|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}$ and $\bigcup \mathcal{J} \notin \mathcal{I}$ }. Additivity of \mathcal{I}

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is an *ideal* if, (1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$, (2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and (3) $[2^{\omega}]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$. If an ideal is closed under countable unions, it is called a σ -ideal.

add
$$(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{J} \notin \mathcal{I}\}.$$
 Additivity of \mathcal{I}
cov $(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{J} = 2^{\omega}\}.$ Covering of \mathcal{I}

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega}) \text{ is an } ideal \text{ if,}$ (1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$, (2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and (3) $[2^{\omega}]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$. If an ideal is closed under countable unions, it is called a σ -ideal.

add
$$(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{J} \notin \mathcal{I}\}$$
. Additivity of \mathcal{I}
 $\operatorname{cov}(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{J} = 2^{\omega}\}$. Covering of \mathcal{I}
 $\operatorname{non}(\mathcal{I}) = \min\{|A| : A \subseteq 2^{\omega} \text{ and } A \notin \mathcal{I}\}$. Uniformity of \mathcal{I}

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is an *ideal* if, (1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$, (2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and (3) $[2^{\omega}]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$. If an ideal is closed under countable unions, it is called a σ -ideal.

add
$$(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{J} \notin \mathcal{I}\}$$
. Additivity of \mathcal{I}
 $\operatorname{cov}(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{J} = 2^{\omega}\}$. Covering of \mathcal{I}
 $\operatorname{non}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq 2^{\omega} \text{ and } \mathcal{A} \notin \mathcal{I}\}$. Uniformity of \mathcal{I}
 $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I} \text{ is cofinal in } \langle \mathcal{I}, \subseteq \rangle\}$. Cofinality of \mathcal{I}

Provable inequalities

A set A ⊆ 2^ω is *nowhere dense* if its closure has empty interior.

- A set A ⊆ 2^ω is *nowhere dense* if its closure has empty interior.
- (2) A set $A \subseteq 2^{\omega}$ is *meager* iff there is a sequence $\{F_n \mid n < \omega\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n < \omega} F_n$.

- A set A ⊆ 2^ω is *nowhere dense* if its closure has empty interior.
- (2) A set $A \subseteq 2^{\omega}$ is *meager* iff there is a sequence $\{F_n \mid n < \omega\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n < \omega} F_n$.

In a complete metrizable space, every nonempty open set is non-meager.

- A set A ⊆ 2^ω is *nowhere dense* if its closure has empty interior.
- (2) A set $A \subseteq 2^{\omega}$ is *meager* iff there is a sequence $\{F_n \mid n < \omega\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n < \omega} F_n$.

In a complete metrizable space, every nonempty open set is non-meager.

Define

- A set A ⊆ 2^ω is *nowhere dense* if its closure has empty interior.
- (2) A set $A \subseteq 2^{\omega}$ is *meager* iff there is a sequence $\{F_n \mid n < \omega\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n < \omega} F_n$.

In a complete metrizable space, every nonempty open set is non-meager.

Define

(1) $\mathcal{M} := \{A \subseteq 2^{\omega} \mid A \text{ is meager}\}$ and

- A set A ⊆ 2^ω is *nowhere dense* if its closure has empty interior.
- (2) A set $A \subseteq 2^{\omega}$ is *meager* iff there is a sequence $\{F_n \mid n < \omega\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n < \omega} F_n$.

In a complete metrizable space, every nonempty open set is non-meager.

Define

(1)
$$\mathcal{M} := \{A \subseteq 2^{\omega} \mid A \text{ is meager}\}$$
 and
(2) $\mathcal{N} := \{A \subseteq 2^{\omega} \mid \mu(A) = 0\}.$

- A set A ⊆ 2^ω is *nowhere dense* if its closure has empty interior.
- (2) A set $A \subseteq 2^{\omega}$ is *meager* iff there is a sequence $\{F_n \mid n < \omega\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n < \omega} F_n$.

In a complete metrizable space, every nonempty open set is non-meager.

Define

(1) $\mathcal{M} := \{A \subseteq 2^{\omega} \mid A \text{ is meager}\}$ and (2) $\mathcal{N} := \{A \subseteq 2^{\omega} \mid \mu(A) = 0\}.$

Both are σ -ideals.

 $f \leq^* g \text{ iff } \exists m < \omega \forall n \geq m(f(n) \leq g(n))$

$f \leq^* g \text{ iff } \exists m < \omega \forall n \ge m(f(n) \le g(n))$ (1) $F \subseteq \omega^{\omega} \text{ is } \le^*\text{-bounded if } (\exists y \in \omega^{\omega})(\forall x \in F)(x \le^* y)$

 $f \leq^* g \text{ iff } \exists m < \omega \forall n \geq m(f(n) \leq g(n))$

(1) $F \subseteq \omega^{\omega}$ is \leq^* -bounded if $(\exists y \in \omega^{\omega})(\forall x \in F)(x \leq^* y)$ (2) $E \subseteq \omega^{\omega}$ is \leq^* -dominating if $(\forall x \in \omega^{\omega})(\exists y \in E)(x \leq^* y)$

 $f \leq^* g \text{ iff } \exists m < \omega \forall n \geq m(f(n) \leq g(n))$

(1) $F \subseteq \omega^{\omega}$ is \leq^* -bounded if $(\exists y \in \omega^{\omega})(\forall x \in F)(x \leq^* y)$ (2) $E \subseteq \omega^{\omega}$ is \leq^* -dominating if $(\forall x \in \omega^{\omega})(\exists y \in E)(x \leq^* y)$

 $\mathfrak{b} := \min\{|F| : F \subseteq \omega^{\omega} \text{ unbounded family}\}.$

 $f \leq^* g \text{ iff } \exists m < \omega \forall n \geq m(f(n) \leq g(n))$

(1) $F \subseteq \omega^{\omega}$ is \leq^* -bounded if $(\exists y \in \omega^{\omega})(\forall x \in F)(x \leq^* y)$ (2) $E \subseteq \omega^{\omega}$ is \leq^* -dominating if $(\forall x \in \omega^{\omega})(\exists y \in E)(x \leq^* y)$

 $\mathfrak{b} := \min\{|F| : F \subseteq \omega^{\omega} \text{ unbounded family}\}.$ $\mathfrak{d} := \min\{|E| : E \subseteq \omega^{\omega} \text{ dominating family}\}.$

 $f \leq^* g \text{ iff } \exists m < \omega \forall n \geq m(f(n) \leq g(n))$

(1) $F \subseteq \omega^{\omega}$ is \leq^* -bounded if $(\exists y \in \omega^{\omega})(\forall x \in F)(x \leq^* y)$ (2) $E \subseteq \omega^{\omega}$ is \leq^* -dominating if $(\forall x \in \omega^{\omega})(\exists y \in E)(x \leq^* y)$

$$\begin{split} \mathfrak{b} &:= \min\{|F| : F \subseteq \omega^{\omega} \text{ unbounded family}\},\\ \mathfrak{d} &:= \min\{|E| : E \subseteq \omega^{\omega} \text{ dominating family}\},\\ \mathfrak{c} &:= 2^{\aleph_0}. \end{split}$$

Also $\operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}\ \operatorname{and}\ \operatorname{cof}(\mathcal{M}) = \max\{\mathfrak{d}, \operatorname{non}(\mathcal{M})\}\$

Strong measure zero sets

For each $\sigma \in (2^{<\omega})^{\omega}$

Strong measure zero sets

For each $\sigma \in (2^{<\omega})^{\omega}$ define $\operatorname{ht}_{\sigma} \in \omega^{\omega}$ by $\operatorname{ht}_{\sigma}(i) := |\sigma(i)|$ for each $i < \omega$.

For each $\sigma \in (2^{<\omega})^{\omega}$ define $\operatorname{ht}_{\sigma} \in \omega^{\omega}$ by $\operatorname{ht}_{\sigma}(i) := |\sigma(i)|$ for each $i < \omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff

For each $\sigma \in (2^{<\omega})^{\omega}$ define $\operatorname{ht}_{\sigma} \in \omega^{\omega}$ by $\operatorname{ht}_{\sigma}(i) := |\sigma(i)|$ for each $i < \omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff for each $f \in \omega^{\omega}$ there is some $\sigma \in (2^{<\omega})^{\omega}$ with $ht_{\sigma} = f$ such that $A \subseteq \bigcup_{n < \omega} [\sigma(n)]$.

For each $\sigma \in (2^{<\omega})^{\omega}$ define $\operatorname{ht}_{\sigma} \in \omega^{\omega}$ by $\operatorname{ht}_{\sigma}(i) := |\sigma(i)|$ for each $i < \omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff for each $f \in \omega^{\omega}$ there is some $\sigma \in (2^{<\omega})^{\omega}$ with $ht_{\sigma} = f$ such that $A \subseteq \bigcup_{n < \omega} [\sigma(n)]$.

Denote $SN := \{A \subseteq 2^{\omega} \mid A \text{ has strong measure zero}\}$

For each $\sigma \in (2^{<\omega})^{\omega}$ define $\operatorname{ht}_{\sigma} \in \omega^{\omega}$ by $\operatorname{ht}_{\sigma}(i) := |\sigma(i)|$ for each $i < \omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff for each $f \in \omega^{\omega}$ there is some $\sigma \in (2^{<\omega})^{\omega}$ with $ht_{\sigma} = f$ such that $A \subseteq \bigcup_{n < \omega} [\sigma(n)]$.

Denote $SN := \{A \subseteq 2^{\omega} \mid A \text{ has strong measure zero}\}$ (1) SN is a σ -ideal and

For each $\sigma \in (2^{<\omega})^{\omega}$ define $\operatorname{ht}_{\sigma} \in \omega^{\omega}$ by $\operatorname{ht}_{\sigma}(i) := |\sigma(i)|$ for each $i < \omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff for each $f \in \omega^{\omega}$ there is some $\sigma \in (2^{<\omega})^{\omega}$ with $ht_{\sigma} = f$ such that $A \subseteq \bigcup_{n < \omega} [\sigma(n)]$.

Denote $SN := \{A \subseteq 2^{\omega} | A \text{ has strong measure zero}\}$ (1) SN is a σ -ideal and (2) $SN \subseteq N$. Denote $pw_k : \omega \to \omega$ the function $pw_k(i) := i^k$,

 $f \ll g \text{ iff } \forall k < \omega(f \circ pw_k \leq^* g).$

$$f \ll g \text{ iff } \forall k < \omega(f \circ pw_k \leq^* g).$$

For $\sigma \in (2^{<\omega})^{\omega}$ set

$$f \ll g \text{ iff } \forall k < \omega(f \circ pw_k \leq^* g).$$

For $\sigma \in (2^{<\omega})^{\omega}$ set $[\sigma]_{\infty} := \{ x \in 2^{\omega} : \forall n < \omega \exists m \ge n (\sigma(m) \subseteq x) \}$ $= \bigcap_{n < \omega} \bigcup_{m \ge n} [\sigma(m)]$

$$\mathcal{I}_f := \{ X \subseteq 2^{\omega} : \exists \sigma \in (2^{<\omega})^{\omega} (X \subseteq [\sigma]_{\infty} \text{ and } h_{\sigma} \gg f) \}.$$

 $\mathcal{I}_f := \{ X \subseteq 2^{\omega} : \exists \sigma \in (2^{<\omega})^{\omega} (X \subseteq [\sigma]_{\infty} \text{ and } h_{\sigma} \gg f) \}.$

Any family of this form is called a Yorioka ideal.

 $\mathcal{I}_f := \{ X \subseteq 2^{\omega} : \exists \sigma \in (2^{<\omega})^{\omega} (X \subseteq [\sigma]_{\infty} \text{ and } h_{\sigma} \gg f) \}.$

Any family of this form is called a **Yorioka ideal**.

Theorem(Yorioka 2002)

(1) \mathcal{I}_f is a σ -ideal when f is increasing and

 $\mathcal{I}_f := \{ X \subseteq 2^{\omega} : \exists \sigma \in (2^{<\omega})^{\omega} (X \subseteq [\sigma]_{\infty} \text{ and } h_{\sigma} \gg f) \}.$

Any family of this form is called a **Yorioka ideal**.

Theorem(Yorioka 2002) (1) \mathcal{I}_f is a σ -ideal when f is increasing and (2) $\mathcal{SN} = \bigcap \{ \mathcal{I}_f : f \text{ increasing} \}.$

Extended Cichoń's diagram

Also $\operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{non}(\mathcal{SN})\}\ \text{and}\ \operatorname{cof}(\mathcal{SN}) \leq 2^{\mathfrak{d}}$

The fact that \mathcal{M} , \mathcal{N} , \mathcal{SN} , and \mathcal{I}_f are σ -ideals is rephrased as

The fact that $\mathcal{M}, \mathcal{N}, \mathcal{SN}$, and \mathcal{I}_f are σ -ideals is rephrased as $\aleph_1 \leq \operatorname{add}(\mathcal{N})$, $\operatorname{add}(\mathcal{M})$, $\operatorname{add}(\mathcal{SN})$, $\operatorname{add}(\mathcal{I}_f)$.

The fact that $\mathcal{M}, \mathcal{N}, \mathcal{SN}$, and \mathcal{I}_f are σ -ideals is rephrased as $\aleph_1 \leq \operatorname{add}(\mathcal{N}), \operatorname{add}(\mathcal{M}), \operatorname{add}(\mathcal{SN}), \operatorname{add}(\mathcal{I}_f).$

Remember that $\aleph_1 \leq \operatorname{add}(\mathcal{N})$ means that the union of \aleph_0 -many null sets is null, i.e., $\bigcup_{n \leq \omega} N_n \in \mathcal{N}$ where $N_n \in \mathcal{N}$ for each $n < \omega$.

The fact that $\mathcal{M}, \mathcal{N}, \mathcal{SN}$, and \mathcal{I}_f are σ -ideals is rephrased as $\aleph_1 \leq \operatorname{add}(\mathcal{N}), \operatorname{add}(\mathcal{M}), \operatorname{add}(\mathcal{SN}), \operatorname{add}(\mathcal{I}_f).$

Remember that $\aleph_1 \leq \operatorname{add}(\mathcal{N})$ means that the union of \aleph_0 -many null sets is null, i.e., $\bigcup_{n \leq \omega} N_n \in \mathcal{N}$ where $N_n \in \mathcal{N}$ for each $n < \omega$.

Are there \aleph_1 -many null sets whose union is not null?

Are there \aleph_1 -many null sets whose union is not null? i.e., $\bigcup_{\alpha < \omega_1} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}$ ($\alpha < \omega_1$).

Are there \aleph_1 -many null sets whose union is not null? i.e., $\bigcup_{\alpha < \omega_1} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}$ ($\alpha < \omega_1$). What about meager sets? i.e.,

Are there \aleph_1 -many null sets whose union is not null? i.e., $\bigcup_{\alpha < \omega_1} N_\alpha \notin \mathcal{N}$ for some $N_\alpha \in \mathcal{N}$ ($\alpha < \omega_1$). What about meager sets? i.e., $\operatorname{add}(\mathcal{N}) = \aleph_1$? $\operatorname{add}(\mathcal{M}) = \aleph_1$?

Are there \aleph_1 -many null sets whose union is not null? i.e., $\bigcup_{\alpha < \omega_1} N_\alpha \notin \mathcal{N}$ for some $N_\alpha \in \mathcal{N}$ ($\alpha < \omega_1$). What about meager sets? i.e., $\operatorname{add}(\mathcal{N}) = \aleph_1$? $\operatorname{add}(\mathcal{M}) = \aleph_1$?

Question II

Are there \aleph_1 -many null sets whose union is not null, while we need \aleph_2 -many null sets to cover 2^{ω} ?

Are there \aleph_1 -many null sets whose union is not null? i.e., $\bigcup_{\alpha < \omega_1} N_\alpha \notin \mathcal{N}$ for some $N_\alpha \in \mathcal{N}$ ($\alpha < \omega_1$). What about meager sets? i.e., $\operatorname{add}(\mathcal{N}) = \aleph_1$? $\operatorname{add}(\mathcal{M}) = \aleph_1$?

Question II

Are there \aleph_1 -many null sets whose union is not null, while we need \aleph_2 -many null sets to cover 2^{ω} ? i.e., $\bigcup_{\alpha < \omega_1} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}$ ($\alpha < \omega_1$), but $\bigcup_{\xi < \omega_2} N'_{\xi} = 2^{\omega}$ for some $N'_{\xi} \in \mathcal{N}$ ($\xi < \omega_2$), i.e.,

Are there \aleph_1 -many null sets whose union is not null? i.e., $\bigcup_{\alpha < \omega_1} N_\alpha \notin \mathcal{N}$ for some $N_\alpha \in \mathcal{N}$ ($\alpha < \omega_1$). What about meager sets? i.e., $\operatorname{add}(\mathcal{N}) = \aleph_1$? $\operatorname{add}(\mathcal{M}) = \aleph_1$?

Question II

Are there \aleph_1 -many null sets whose union is not null, while we need \aleph_2 -many null sets to cover 2^{ω} ? i.e., $\bigcup_{\alpha < \omega_1} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}$ ($\alpha < \omega_1$), but $\bigcup_{\xi < \omega_2} N'_{\xi} = 2^{\omega}$ for some $N'_{\xi} \in \mathcal{N}$ ($\xi < \omega_2$), i.e., $\operatorname{add}(\mathcal{N}) = \aleph_1$ and $\operatorname{cov}(\mathcal{N}) = \aleph_2$?

A forcing notion \mathbb{P} is a pair $\langle \mathbb{P}, \leq \rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

A forcing notion \mathbb{P} is a pair $\langle \mathbb{P}, \leq \rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

A forcing notion \mathbb{P} is a pair $\langle \mathbb{P}, \leq \rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

The forcing notion is choosen in such away that its elements represents *potencial aproximation* of some *special object*, which is called *generic object* we would like to create, but that typically does not exists in the initial universe called ground model.

A forcing notion \mathbb{P} is a pair $\langle \mathbb{P}, \leq \rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

The forcing notion is choosen in such away that its elements represents *potencial aproximation* of some *special object*, which is called *generic object* we would like to create, but that typically <u>does not exists in the initial universe</u> called ground model. Intuitively, a forcing notion is used to construct *special objects*.

A forcing notion \mathbb{P} is a pair $\langle \mathbb{P}, \leq \rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

The forcing notion is choosen in such away that its elements represents *potencial aproximation* of some *special object*, which is called *generic object* we would like to create, but that typically <u>does not exists in the initial universe</u> called ground model. Intuitively, a forcing notion is used to construct *special objects*. Forcing allows us to extend a transitive model V of ZFC to other transitive model V[G] of ZFC through a generic object G. This generic object is, in practice, a new subset of \mathbb{P} in V. In Cohen's model,

In Cohen's model,

Define Cohen forcing (denoted \mathbb{C}_{λ}) as $\mathbb{C}_{\lambda} := \{[[s]] : [s] \in BAIRE(2^{\omega \times \lambda}) / \mathcal{M}(2^{\omega \times \lambda})\}$ ordered by \supseteq : $[[s]] \leq [[t]]$ if $[s] \setminus [t] \in \mathcal{M}$. In random's model,

In random's model,

Define random forcing (denoted \mathbb{B}_{λ}) as $\mathbb{B}_{\lambda} := \{[[s]] : [s] \in BAIRE(2^{\omega \times \lambda}) / \mathcal{N}(2^{\omega \times \lambda})\}$ ordered by \supseteq : $[[s]] \leq [[t]]$ if $[s] \setminus [t] \in \mathcal{N}$.
In Hechler's model,

In Hechler's model,

Define Hechler forcing (denoted \mathbb{D}) as $\mathbb{D} := \{(s, f) : s \in \omega^{<\omega}, f \in \omega^{\omega} \text{ and } s \subseteq f\}$ ordered by $(t, g) \leq (s, f) \text{ iff } s \subseteq t \text{ and } f \leq g.$

In a Mejía's model (2013),

In a Mejía's model (2013),

It is consistent with ZFC that

 $\operatorname{add}(\mathcal{N}) < \operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{N}) < \operatorname{cof}(\mathcal{N}).$

In a Brendle, C. and Mejía model (2018),

In a Brendle, C. and Mejía model (2018),

It is consistent with ZFC:

(i) add(*I_f*) < cov(*I_f*) < non(*I_f*) < cof(*I_f*) for any *f* ∈ ω^ω",
(ii) add(*N*) < cov(*N*) < non(*N*) < cof(*N*), and
(iii) add(*M*) < non(*M*) < cov(*M*) < cof(*M*).

Questions

Is it consistent with ZFC that

(a) $\operatorname{add}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$?

Questions

Is it consistent with ZFC that

(a)
$$\operatorname{add}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$$
?

(b) $\operatorname{add}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$?

Questions

Is it consistent with ZFC that

(a)
$$\operatorname{add}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$$
?

(b) $\operatorname{add}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$?

Theorem (C., Mejía and Rivera-Madrid 2019)

It is consistent with ZFC that

$$\operatorname{add}(\mathcal{SN}) = \operatorname{non}(\mathcal{SN}) = \aleph_1 < \operatorname{cov}(\mathcal{SN}) = \aleph_2 = \mathfrak{c} < \operatorname{cof}(\mathcal{SN}).$$

Questions

Is it consistent with ZFC that

(a)
$$\operatorname{add}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$$
?

(b) $\operatorname{add}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$?

Theorem (C., Mejía and Rivera-Madrid 2019)

It is consistent with ZFC that

$$\operatorname{add}(\mathcal{SN}) = \operatorname{non}(\mathcal{SN}) = \aleph_1 < \operatorname{cov}(\mathcal{SN}) = \aleph_2 = \mathfrak{c} < \operatorname{cof}(\mathcal{SN}).$$

Theorem (C.)

It is consistent with ZFC that

$$\operatorname{add}(\mathcal{SN}) = \operatorname{cov}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN}).$$

Open Problems

Questions

It is consistent with ZFC that

(I) $\operatorname{add}(\mathcal{I}_f) < \operatorname{non}(\mathcal{I}_f) < \operatorname{cov}(\mathcal{I}_f) < \operatorname{cof}(\mathcal{I}_f)$ for all increasing function $f \in \omega^{\omega}$?

Open Problems

Questions

It is consistent with ZFC that

- (I) $\operatorname{add}(\mathcal{I}_f) < \operatorname{non}(\mathcal{I}_f) < \operatorname{cov}(\mathcal{I}_f) < \operatorname{cof}(\mathcal{I}_f)$ for all increasing function $f \in \omega^{\omega}$?
- (II) $\operatorname{add}(\mathcal{SN}) < \operatorname{cov}(\mathcal{SN}) < \operatorname{non}(\mathcal{SN}) < \operatorname{cof}(\mathcal{SN})$?

Open Problems

Questions

It is consistent with ZFC that

- (I) $\operatorname{add}(\mathcal{I}_f) < \operatorname{non}(\mathcal{I}_f) < \operatorname{cov}(\mathcal{I}_f) < \operatorname{cof}(\mathcal{I}_f)$ for all increasing function $f \in \omega^{\omega}$?
- $(\mathsf{II}) \ \mathrm{add}(\mathcal{SN}) < \mathrm{cov}(\mathcal{SN}) < \mathrm{non}(\mathcal{SN}) < \mathrm{cof}(\mathcal{SN})?$
- $(\mathsf{III}) \ \mathrm{add}(\mathcal{SN}) < \mathrm{non}(\mathcal{SN}) < \mathrm{cov}(\mathcal{SN}) < \mathrm{cof}(\mathcal{SN})?.$

Moreover,

Question IV

Is it consistent with ZFC that

 $\operatorname{add}(\mathcal{I}_f) < \operatorname{cov}(\mathcal{I}_f) < \operatorname{non}(\mathcal{I}_f) < \operatorname{cof}(\mathcal{I}_f)$ for all increasing $f \in \omega^{\omega}$

and

 $\mathrm{add}(\mathcal{SN}) < \mathrm{cov}(\mathcal{SN}) < \mathrm{non}(\mathcal{SN}) < \mathrm{cof}(\mathcal{SN}) \text{ simultaneously?}$

Thank you for your attention!