Review on the strong measure zero σ-ideal and Yorioka's σ-ideals

Miguel A. Cardona

miguel.montoya@tuwien.ac.at

Technische Universität Wien

Young Logicians Gathering in Japan December 7th, 2019

The real numbers:

Reals

The real numbers:
(1) \mathbb{R} : the classical real line (connected, but not compact).

Reals

The real numbers:
(1) \mathbb{R} : the classical real line (connected, but not compact).
(2) $[0,1]$: the compact unit interval (connected, compact).

Reals

The real numbers:
(1) \mathbb{R} : the classical real line (connected, but not compact).
(2) $[0,1]$: the compact unit interval (connected, compact).
(3) $2^{\omega}=\prod_{n<\omega} 2=\{f \mid f: \omega \rightarrow 2\}$ where $2:=\{0,1\}$: the Cantor space (totally disconnected, compact)

Reals

The real numbers:
(1) \mathbb{R} : the classical real line (connected, but not compact).
(2) $[0,1]$: the compact unit interval (connected, compact).
(3) $2^{\omega}=\prod_{n<\omega} 2=\{f \mid f: \omega \rightarrow 2\}$ where $2:=\{0,1\}$: the Cantor space (totally disconnected, compact)
(4) $\omega^{\omega}=\prod_{n<\omega} \omega=\{f \mid f: \omega \rightarrow \omega\}$: the Baire space (totally disconnected, not compact).

Reals

The real numbers:
(1) \mathbb{R} : the classical real line (connected, but not compact).
(2) $[0,1]$: the compact unit interval (connected, compact).
(3) $2^{\omega}=\prod_{n<\omega} 2=\{f \mid f: \omega \rightarrow 2\}$ where $2:=\{0,1\}$: the Cantor space (totally disconnected, compact)
(4) $\omega^{\omega}=\prod_{n<\omega} \omega=\{f \mid f: \omega \rightarrow \omega\}$: the Baire space (totally disconnected, not compact).
Structure of the reals:
(1) Topolgy:

Reals

The real numbers:
(1) \mathbb{R} : the classical real line (connected, but not compact).
(2) $[0,1]$: the compact unit interval (connected, compact).
(3) $2^{\omega}=\prod_{n<\omega} 2=\{f \mid f: \omega \rightarrow 2\}$ where $2:=\{0,1\}$: the Cantor space (totally disconnected, compact)
(4) $\omega^{\omega}=\prod_{n<\omega} \omega=\{f \mid f: \omega \rightarrow \omega\}$: the Baire space (totally disconnected, not compact).
Structure of the reals:
(1) Topolgy: For $s \in 2^{<\omega}$ let
$[s]:=\left\{x \in 2^{\omega} \mid s \subseteq x(x\right.$ extends $\left.s)\right\}$. The usual product topology on 2^{ω} is given by taking $\left\{[s] \mid s \in 2^{<\omega}\right\}$ as a basis.

Reals

The real numbers:
(1) \mathbb{R} : the classical real line (connected, but not compact).
(2) $[0,1]$: the compact unit interval (connected, compact).
(3) $2^{\omega}=\prod_{n<\omega} 2=\{f \mid f: \omega \rightarrow 2\}$ where $2:=\{0,1\}$: the Cantor space (totally disconnected, compact)
(4) $\omega^{\omega}=\prod_{n<\omega} \omega=\{f \mid f: \omega \rightarrow \omega\}$: the Baire space (totally disconnected, not compact).
Structure of the reals:
(1) Topolgy: For $s \in 2^{<\omega}$ let
$[s]:=\left\{x \in 2^{\omega} \mid s \subseteq x(x\right.$ extends $\left.s)\right\}$. The usual product topology on 2^{ω} is given by taking $\left\{[s] \mid s \in 2^{<\omega}\right\}$ as a basis.
(2) Standard (Lebesgue) measure:

Reals

The real numbers:
(1) \mathbb{R} : the classical real line (connected, but not compact).
(2) $[0,1]$: the compact unit interval (connected, compact).
(3) $2^{\omega}=\prod_{n<\omega} 2=\{f \mid f: \omega \rightarrow 2\}$ where $2:=\{0,1\}$: the Cantor space (totally disconnected, compact)
(4) $\omega^{\omega}=\prod_{n<\omega} \omega=\{f \mid f: \omega \rightarrow \omega\}$: the Baire space (totally disconnected, not compact).
Structure of the reals:
(1) Topolgy: For $s \in 2^{<\omega}$ let
$[s]:=\left\{x \in 2^{\omega} \mid s \subseteq x(x\right.$ extends $\left.s)\right\}$. The usual product topology on 2^{ω} is given by taking $\left\{[s] \mid s \in 2^{<\omega}\right\}$ as a basis.
(2) Standard (Lebesgue) measure: the usual product measure μ is given by $\mu([s])=2^{-|s|}$ for any $s \in 2^{<\omega}$, where $|s|$ is the length of s.

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,
(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,
(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and
(3) $\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$.

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,
(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and
(3) $\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$.

If an ideal is closed under countable unions, it is called a σ-ideal.

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,
(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and
(3) $\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$.

If an ideal is closed under countable unions, it is called a σ-ideal.

$$
\operatorname{add}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I} \text { and } \bigcup \mathcal{J} \notin \mathcal{I}\} \text {. Additivity of } \mathcal{I}
$$

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,
(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and
(3) $\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$.

If an ideal is closed under countable unions, it is called a σ-ideal.

$$
\begin{aligned}
& \operatorname{add}(\mathcal{I})=\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I} \text { and } \bigcup \mathcal{J} \notin \mathcal{I}\} . \text { Additivity of } \mathcal{I} \\
& \operatorname{cov}(\mathcal{I})=\min \left\{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I} \text { and } \bigcup \mathcal{J}=2^{\omega}\right\} . \text { Covering of } \mathcal{I}
\end{aligned}
$$

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,
(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and
(3) $\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$.

If an ideal is closed under countable unions, it is called a σ-ideal.

$$
\begin{aligned}
\operatorname{add}(\mathcal{I}) & =\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I} \text { and } \bigcup \mathcal{J} \notin \mathcal{I}\} . \text { Additivity of } \mathcal{I} \\
\operatorname{cov}(\mathcal{I}) & =\min \left\{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I} \text { and } \bigcup \mathcal{J}=2^{\omega}\right\} . \text { Covering of } \mathcal{I} \\
\operatorname{non}(\mathcal{I}) & =\min \left\{|A|: A \subseteq 2^{\omega} \text { and } A \notin \mathcal{I}\right\} . \text { Uniformity of } \mathcal{I}
\end{aligned}
$$

Some cardinal characteristics

$\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is an ideal if,
(1) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$,
(2) if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$, and
(3) $\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{I}$ and $2^{\omega} \notin \mathcal{I}$.

If an ideal is closed under countable unions, it is called a σ-ideal.

$$
\begin{aligned}
\operatorname{add}(\mathcal{I}) & =\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I} \text { and } \bigcup \mathcal{J} \notin \mathcal{I}\} . \text { Additivity of } \mathcal{I} \\
\operatorname{cov}(\mathcal{I}) & =\min \left\{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I} \text { and } \bigcup \mathcal{J}=2^{\omega}\right\} . \text { Covering of } \mathcal{I} \\
\operatorname{non}(\mathcal{I}) & =\min \left\{|A|: A \subseteq 2^{\omega} \text { and } A \notin \mathcal{I}\right\} . \text { Uniformity of } \mathcal{I} \\
\operatorname{cof}(\mathcal{I}) & =\min \{|\mathcal{J}|: \mathcal{J} \subseteq \mathcal{I} \text { is cofinal in }\langle\mathcal{I}, \subseteq\rangle\} . \text { Cofinality of } \mathcal{I}
\end{aligned}
$$

Provable inequalities

(1) A set $A \subseteq 2^{\omega}$ is nowhere dense if its closure has empty interior.
(1) A set $A \subseteq 2^{\omega}$ is nowhere dense if its closure has empty interior.
(2) A set $A \subseteq 2^{\omega}$ is meager iff there is a sequence $\left\{F_{n} \mid n<\omega\right\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n<\omega} F_{n}$.

Two classical ideals: \mathcal{M} and \mathcal{N}

(1) A set $A \subseteq 2^{\omega}$ is nowhere dense if its closure has empty interior.
(2) A set $A \subseteq 2^{\omega}$ is meager iff there is a sequence $\left\{F_{n} \mid n<\omega\right\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n<\omega} F_{n}$.

The Baire Category Theorem

In a complete metrizable space, every nonempty open set is non-meager.

Two classical ideals: \mathcal{M} and \mathcal{N}

(1) A set $A \subseteq 2^{\omega}$ is nowhere dense if its closure has empty interior.
(2) A set $A \subseteq 2^{\omega}$ is meager iff there is a sequence $\left\{F_{n} \mid n<\omega\right\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n<\omega} F_{n}$.

The Baire Category Theorem

In a complete metrizable space, every nonempty open set is non-meager.

Define

Two classical ideals: \mathcal{M} and \mathcal{N}

(1) A set $A \subseteq 2^{\omega}$ is nowhere dense if its closure has empty interior.
(2) A set $A \subseteq 2^{\omega}$ is meager iff there is a sequence $\left\{F_{n} \mid n<\omega\right\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n<\omega} F_{n}$.

The Baire Category Theorem

In a complete metrizable space, every nonempty open set is non-meager.

Define
(1) $\mathcal{M}:=\left\{A \subseteq 2^{\omega} \mid A\right.$ is meager $\}$ and

Two classical ideals: \mathcal{M} and \mathcal{N}

(1) A set $A \subseteq 2^{\omega}$ is nowhere dense if its closure has empty interior.
(2) A set $A \subseteq 2^{\omega}$ is meager iff there is a sequence $\left\{F_{n} \mid n<\omega\right\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n<\omega} F_{n}$.

The Baire Category Theorem

In a complete metrizable space, every nonempty open set is non-meager.

Define
(1) $\mathcal{M}:=\left\{A \subseteq 2^{\omega} \mid A\right.$ is meager $\}$ and
(2) $\mathcal{N}:=\left\{A \subseteq 2^{\omega} \mid \mu(A)=0\right\}$.

Two classical ideals: \mathcal{M} and \mathcal{N}

(1) A set $A \subseteq 2^{\omega}$ is nowhere dense if its closure has empty interior.
(2) A set $A \subseteq 2^{\omega}$ is meager iff there is a sequence $\left\{F_{n} \mid n<\omega\right\}$ of closed nowhere dense sets such that $A \subseteq \bigcup_{n<\omega} F_{n}$.

The Baire Category Theorem

In a complete metrizable space, every nonempty open set is non-meager.

Define
(1) $\mathcal{M}:=\left\{A \subseteq 2^{\omega} \mid A\right.$ is meager $\}$ and
(2) $\mathcal{N}:=\left\{A \subseteq 2^{\omega} \mid \mu(A)=0\right\}$.

Both are σ-ideals.

Two more cardinal characteristics

$f \leq^{*} g$ iff $\exists m<\omega \forall n \geq m(f(n) \leq g(n))$

Two more cardinal characteristics

$$
f \leq^{*} g \text { iff } \exists m<\omega \forall n \geq m(f(n) \leq g(n))
$$

(1) $F \subseteq \omega^{\omega}$ is \leq^{*}-bounded if $\left(\exists y \in \omega^{\omega}\right)(\forall x \in F)\left(x \leq^{*} y\right)$

(1) $F \subseteq \omega^{\omega}$ is \leq^{*}-bounded if $\left(\exists y \in \omega^{\omega}\right)(\forall x \in F)\left(x \leq^{*} y\right)$
(2) $E \subseteq \omega^{\omega}$ is \leq^{*}-dominating if $\left(\forall x \in \omega^{\omega}\right)(\exists y \in E)\left(x \leq^{*} y\right)$

$$
f \leq^{*} g \text { iff } \exists m<\omega \forall n \geq m(f(n) \leq g(n))
$$

(1) $F \subseteq \omega^{\omega}$ is \leq^{*}-bounded if $\left(\exists y \in \omega^{\omega}\right)(\forall x \in F)\left(x \leq^{*} y\right)$
(2) $E \subseteq \omega^{\omega}$ is \leq^{*}-dominating if $\left(\forall x \in \omega^{\omega}\right)(\exists y \in E)\left(x \leq^{*} y\right)$
$\mathfrak{b}:=\min \left\{|F|: F \subseteq \omega^{\omega}\right.$ unbounded family $\}$.

(1) $F \subseteq \omega^{\omega}$ is \leq^{*}-bounded if $\left(\exists y \in \omega^{\omega}\right)(\forall x \in F)\left(x \leq^{*} y\right)$
(2) $E \subseteq \omega^{\omega}$ is \leq^{*}-dominating if $\left(\forall x \in \omega^{\omega}\right)(\exists y \in E)\left(x \leq^{*} y\right)$
$\mathfrak{b}:=\min \left\{|F|: F \subseteq \omega^{\omega}\right.$ unbounded family $\}$.
$\mathfrak{d}:=\min \left\{|E|: E \subseteq \omega^{\omega}\right.$ dominating family $\}$.

(1) $F \subseteq \omega^{\omega}$ is \leq^{*}-bounded if $\left(\exists y \in \omega^{\omega}\right)(\forall x \in F)\left(x \leq^{*} y\right)$
(2) $E \subseteq \omega^{\omega}$ is \leq^{*}-dominating if $\left(\forall x \in \omega^{\omega}\right)(\exists y \in E)\left(x \leq^{*} y\right)$
$\mathfrak{b}:=\min \left\{|F|: F \subseteq \omega^{\omega}\right.$ unbounded family $\}$.
$\mathfrak{d}:=\min \left\{|E|: E \subseteq \omega^{\omega}\right.$ dominating family $\}$.
$\mathfrak{c}:=2^{\aleph_{0}}$.

Cichoń's diagram

Also $\operatorname{add}(\mathcal{M})=\min \{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}$ and $\operatorname{cof}(\mathcal{M})=\max \{\mathfrak{d}, \operatorname{non}(\mathcal{M})\}$

Strong measure zero sets

For each $\sigma \in\left(2^{<\omega}\right)^{\omega}$

Strong measure zero sets

For each $\sigma \in\left(2^{<\omega}\right)^{\omega}$ define $^{\text {ht }}{ }_{\sigma} \in \omega^{\omega}$ by $^{h^{*}}(i):=|\sigma(i)|$ for each $i<\omega$.

Strong measure zero sets

For each $\sigma \in\left(2^{<\omega}\right)^{\omega}$ define $^{\text {ht }}{ }_{\sigma} \in \omega^{\omega}$ by $^{h^{*}}(i):=|\sigma(i)|$ for each $i<\omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff

Strong measure zero sets

For each $\sigma \in\left(2^{<\omega}\right)^{\omega}$ define $^{\text {ht }}{ }_{\sigma} \in \omega^{\omega}$ by $^{h^{*}}(i):=|\sigma(i)|$ for each $i<\omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff for each $f \in \omega^{\omega}$ there is some $\sigma \in\left(2^{<\omega}\right)^{\omega}$ with ht ${ }_{\sigma}=f$ such that $A \subseteq \bigcup_{n<\omega}[\sigma(n)]$.

Strong measure zero sets

For each $\sigma \in\left(2^{<\omega}\right)^{\omega}$ define $^{\text {ht }}{ }_{\sigma} \in \omega^{\omega}$ by $^{\text {ht }} \sigma(i):=|\sigma(i)|$ for each $i<\omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff for each $f \in \omega^{\omega}$ there is some $\sigma \in\left(2^{<\omega}\right)^{\omega}$ with ht $_{\sigma}=f$ such that $A \subseteq \bigcup_{n<\omega}[\sigma(n)]$.

Denote $\mathcal{S N}:=\left\{A \subseteq 2^{\omega} \mid A\right.$ has strong measure zero $\}$

Strong measure zero sets

For each $\sigma \in\left(2^{<\omega}\right)^{\omega}$ define $^{\text {ht }}{ }_{\sigma} \in \omega^{\omega}$ by $^{\text {ht }} \sigma(i):=|\sigma(i)|$ for each $i<\omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff for each $f \in \omega^{\omega}$ there is some $\sigma \in\left(2^{<\omega}\right)^{\omega}$ with ht $_{\sigma}=f$ such that $A \subseteq \bigcup_{n<\omega}[\sigma(n)]$.

Denote $\mathcal{S N}:=\left\{A \subseteq 2^{\omega} \mid A\right.$ has strong measure zero $\}$
(1) $\mathcal{S N}$ is a σ-ideal and

Strong measure zero sets

For each $\sigma \in\left(2^{<\omega}\right)^{\omega}$ define $^{\text {ht }}{ }_{\sigma} \in \omega^{\omega}$ by $^{\text {ht }} \sigma(i):=|\sigma(i)|$ for each $i<\omega$.

Definition

A set $A \subseteq 2^{\omega}$ has strong measure zero iff for each $f \in \omega^{\omega}$ there is some $\sigma \in\left(2^{<\omega}\right)^{\omega}$ with ht $_{\sigma}=f$ such that $A \subseteq \bigcup_{n<\omega}[\sigma(n)]$.

Denote $\mathcal{S N}:=\left\{A \subseteq 2^{\omega} \mid A\right.$ has strong measure zero $\}$
(1) $\mathcal{S N}$ is a σ-ideal and
(2) $\mathcal{S N} \subseteq \mathcal{N}$.

Denote $\mathrm{pw}_{k}: \omega \rightarrow \omega$ the function $\mathrm{pw}_{k}(i):=i^{k}$,

Denote $\mathrm{pw}_{k}: \omega \rightarrow \omega$ the function $\mathrm{pw}_{k}(i):=i^{k}$, and define the relation \ll on ω^{ω} as follows:

Yorioka ideals

Denote $\mathrm{pw}_{k}: \omega \rightarrow \omega$ the function $\mathrm{pw}_{k}(i):=i^{k}$, and define the relation \ll on ω^{ω} as follows:

$$
f \ll g \text { iff } \forall k<\omega\left(f \circ \mathrm{pw}_{k} \leq^{*} g\right) .
$$

Yorioka ideals

Denote $\mathrm{pw}_{k}: \omega \rightarrow \omega$ the function $\mathrm{pw}_{k}(i):=i^{k}$, and define the relation \ll on ω^{ω} as follows:

$$
f \ll g \text { iff } \forall k<\omega\left(f \circ \mathrm{pw}_{k} \leq^{*} g\right)
$$

For $\sigma \in\left(2^{<\omega}\right)^{\omega}$ set

Yorioka ideals

Denote $\mathrm{pw}_{k}: \omega \rightarrow \omega$ the function $\mathrm{pw}_{k}(i):=i^{k}$, and define the relation \ll on ω^{ω} as follows:

$$
f \ll g \text { iff } \forall k<\omega\left(f \circ \mathrm{pw}_{k} \leq^{*} g\right) .
$$

For $\sigma \in\left(2^{<\omega}\right)^{\omega}$ set

$$
\begin{aligned}
{[\sigma]_{\infty}: } & =\left\{x \in 2^{\omega}: \forall n<\omega \exists m \geq n(\sigma(m) \subseteq x)\right\} \\
& =\bigcap_{n<\omega} \bigcup_{m \geqslant n}[\sigma(m)]
\end{aligned}
$$

Yorioka ideals

Let $f \in \omega^{\omega}$ be a increasing function.

Let $f \in \omega^{\omega}$ be a increasing function. Define

$$
\mathcal{I}_{f}:=\left\{X \subseteq 2^{\omega}: \exists \sigma \in\left(2^{<\omega}\right)^{\omega}\left(X \subseteq[\sigma]_{\infty} \text { and } h_{\sigma} \gg f\right)\right\}
$$

Yorioka ideals

Let $f \in \omega^{\omega}$ be a increasing function. Define

$$
\mathcal{I}_{f}:=\left\{X \subseteq 2^{\omega}: \exists \sigma \in\left(2^{<\omega}\right)^{\omega}\left(X \subseteq[\sigma]_{\infty} \text { and } h_{\sigma} \gg f\right)\right\}
$$

Any family of this form is called a Yorioka ideal.

Let $f \in \omega^{\omega}$ be a increasing function. Define

$$
\mathcal{I}_{f}:=\left\{X \subseteq 2^{\omega}: \exists \sigma \in\left(2^{<\omega}\right)^{\omega}\left(X \subseteq[\sigma]_{\infty} \text { and } h_{\sigma} \gg f\right)\right\} .
$$

Any family of this form is called a Yorioka ideal.
Theorem(Yorioka 2002)
(1) \mathcal{I}_{f} is a σ-ideal when f is increasing and

Let $f \in \omega^{\omega}$ be a increasing function. Define

$$
\mathcal{I}_{f}:=\left\{X \subseteq 2^{\omega}: \exists \sigma \in\left(2^{<\omega}\right)^{\omega}\left(X \subseteq[\sigma]_{\infty} \text { and } h_{\sigma} \gg f\right)\right\}
$$

Any family of this form is called a Yorioka ideal.
Theorem(Yorioka 2002)
(1) \mathcal{I}_{f} is a σ-ideal when f is increasing and
(2) $\mathcal{S N}=\bigcap\left\{\mathcal{I}_{f}: f\right.$ increasing $\}$.

Extended Cichońs diagram

Also $\operatorname{add}(\mathcal{M})=\min \{\mathfrak{b}, \operatorname{non}(\mathcal{S N})\}$ and $\operatorname{cof}(\mathcal{S N}) \leq 2^{\mathfrak{D}}$

Playground

The fact that $\mathcal{M}, \mathcal{N}, \mathcal{S N}$, and \mathcal{I}_{f} are σ-ideals is rephrased as

Playground

The fact that $\mathcal{M}, \mathcal{N}, \mathcal{S N}$, and \mathcal{I}_{f} are σ-ideals is rephrased as $\aleph_{1} \leq \operatorname{add}(\mathcal{N}), \operatorname{add}(\mathcal{M}), \operatorname{add}(\mathcal{S N}), \operatorname{add}\left(\mathcal{I}_{f}\right)$.

Playground

The fact that $\mathcal{M}, \mathcal{N}, \mathcal{S N}$, and \mathcal{I}_{f} are σ-ideals is rephrased as

$$
\aleph_{1} \leq \operatorname{add}(\mathcal{N}), \operatorname{add}(\mathcal{M}), \operatorname{add}(\mathcal{S N}), \operatorname{add}\left(\mathcal{I}_{f}\right)
$$

Remember that $\aleph_{1} \leq \operatorname{add}(\mathcal{N})$ means that the union of \aleph_{0}-many null sets is null, i.e., $\bigcup_{n<\omega} N_{n} \in \mathcal{N}$ where $N_{n} \in \mathcal{N}$ for each $n<\omega$.

Playground

The fact that $\mathcal{M}, \mathcal{N}, \mathcal{S N}$, and \mathcal{I}_{f} are σ-ideals is rephrased as

$$
\aleph_{1} \leq \operatorname{add}(\mathcal{N}), \operatorname{add}(\mathcal{M}), \operatorname{add}(\mathcal{S N}), \operatorname{add}\left(\mathcal{I}_{f}\right)
$$

Remember that $\aleph_{1} \leq \operatorname{add}(\mathcal{N})$ means that the union of \aleph_{0}-many null sets is null, i.e., $\bigcup_{n<\omega} N_{n} \in \mathcal{N}$ where $N_{n} \in \mathcal{N}$ for each $n<\omega$.

Playground

Question I

Are there \aleph_{1}-many null sets whose union is not null?

Playground

Question I

Are there \aleph_{1}-many null sets whose union is not null? i.e., $\bigcup_{\alpha<\omega_{1}} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}\left(\alpha<\omega_{1}\right)$.

Playground

Question I

Are there \aleph_{1}-many null sets whose union is not null? i.e., $\bigcup_{\alpha<\omega_{1}} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}\left(\alpha<\omega_{1}\right)$. What about meager sets? i.e.,

Playground

Question I

Are there \aleph_{1}-many null sets whose union is not null? i.e., $\bigcup_{\alpha<\omega_{1}} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}\left(\alpha<\omega_{1}\right)$. What about meager sets? i.e., $\operatorname{add}(\mathcal{N})=\aleph_{1}$? $\operatorname{add}(\mathcal{M})=\aleph_{1}$?

Playground

Question I

Are there \aleph_{1}-many null sets whose union is not null? i.e., $\bigcup_{\alpha<\omega_{1}} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}\left(\alpha<\omega_{1}\right)$. What about meager sets? i.e., $\operatorname{add}(\mathcal{N})=\aleph_{1}$? $\operatorname{add}(\mathcal{M})=\aleph_{1}$?

Question II

Are there \aleph_{1}-many null sets whose union is not null, while we need \aleph_{2}-many null sets to cover 2^{ω} ?

Playground

Question I

Are there \aleph_{1}-many null sets whose union is not null? i.e., $\bigcup_{\alpha<\omega_{1}} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}\left(\alpha<\omega_{1}\right)$. What about meager sets? i.e., $\operatorname{add}(\mathcal{N})=\aleph_{1}$? $\operatorname{add}(\mathcal{M})=\aleph_{1}$?

Question II

Are there \aleph_{1}-many null sets whose union is not null, while we need \aleph_{2}-many null sets to cover 2^{ω} ? i.e., $\bigcup_{\alpha<\omega_{1}} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}\left(\alpha<\omega_{1}\right)$, but $\bigcup_{\xi<\omega_{2}} N_{\xi}^{\prime}=2^{\omega}$ for some $N_{\xi}^{\prime} \in \mathcal{N}\left(\xi<\omega_{2}\right)$, i.e.,

Playground

Question I

Are there \aleph_{1}-many null sets whose union is not null? i.e., $\bigcup_{\alpha<\omega_{1}} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}\left(\alpha<\omega_{1}\right)$. What about meager sets? i.e., $\operatorname{add}(\mathcal{N})=\aleph_{1}$? $\operatorname{add}(\mathcal{M})=\aleph_{1}$?

Question II

Are there \aleph_{1}-many null sets whose union is not null, while we need \aleph_{2}-many null sets to cover 2^{ω} ? i.e., $\bigcup_{\alpha<\omega_{1}} N_{\alpha} \notin \mathcal{N}$ for some $N_{\alpha} \in \mathcal{N}\left(\alpha<\omega_{1}\right)$, but $\bigcup_{\xi<\omega_{2}} N_{\xi}^{\prime}=2^{\omega}$ for some $N_{\xi}^{\prime} \in \mathcal{N}\left(\xi<\omega_{2}\right)$, i.e., $\operatorname{add}(\mathcal{N})=\aleph_{1}$ and $\operatorname{cov}(\mathcal{N})=\aleph_{2}$?

Review forcing

Defintion

A forcing notion \mathbb{P} is a pair $\langle\mathbb{P}, \leq\rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

Review forcing

Defintion

A forcing notion \mathbb{P} is a pair $\langle\mathbb{P}, \leq\rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

Review forcing

Defintion

A forcing notion \mathbb{P} is a pair $\langle\mathbb{P}, \leq\rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

The forcing notion is choosen in such away that its elements represents potencial aproximation of some special object, which is called generic object we would like to create, but that typically does not exists in the initial universe called ground model.

Review forcing

Defintion

A forcing notion \mathbb{P} is a pair $\langle\mathbb{P}, \leq\rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

The forcing notion is choosen in such away that its elements represents potencial aproximation of some special object, which is called generic object we would like to create, but that typically does not exists in the initial universe called ground model. Intuitively, a forcing notion is used to construct special objects.

Review forcing

Defintion

A forcing notion \mathbb{P} is a pair $\langle\mathbb{P}, \leq\rangle$ where $\mathbb{P} \neq \emptyset$ and \leq is a relation on \mathbb{P} that satisfies reflexivity and transitivity.

The forcing notion is choosen in such away that its elements represents potencial aproximation of some special object, which is called generic object we would like to create, but that typically does not exists in the initial universe called ground model. Intuitively, a forcing notion is used to construct special objects. Forcing allows us to extend a transitive model V of ZFC to other transitive model $V[G]$ of ZFC through a generic object G. This generic object is, in practice, a new subset of \mathbb{P} in V.

Examples

In Cohen's model,

Examples

In Cohen's model,

Define Cohen forcing (denoted \mathbb{C}_{λ}) as
$\mathbb{C}_{\lambda}:=\left\{[[s]]:[s] \in \operatorname{BAIRE}\left(2^{\omega \times \lambda}\right) / \mathcal{M}\left(2^{\omega \times \lambda}\right)\right\}$ ordered by $\supseteq:$
$[[s]] \leq[[t]]$ if $[s] \backslash[t] \in \mathcal{M}$.

Examples

In random's model,

Examples

In random's model,

Define random forcing (denoted \mathbb{B}_{λ}) as $\mathbb{B}_{\lambda}:=\left\{[[s]]:[s] \in \operatorname{BAIRE}\left(2^{\omega \times \lambda}\right) / \mathcal{N}\left(2^{\omega \times \lambda}\right)\right\}$ ordered by \supseteq : $[[s]] \leq[[t]]$ if $[s] \backslash[t] \in \mathcal{N}$.

Examples

In Hechler's model,

Examples

In Hechler's model,

Define Hechler forcing (denoted \mathbb{D}) as
$\mathbb{D}:=\left\{(s, f): s \in \omega^{<\omega}, f \in \omega^{\omega}\right.$ and $\left.s \subseteq f\right\}$ ordered by

$$
(t, g) \leq(s, f) \text { iff } s \subseteq t \text { and } f \leq g
$$

Matrix iteration

Examples

In a Mejía's model (2013),

Examples

In a Mejía's model (2013),

It is consistent with ZFC that

$$
\operatorname{add}(\mathcal{N})<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{N})<\operatorname{cof}(\mathcal{N})
$$

Examples

In a Brendle, C. and Mejía model (2018),

Examples

In a Brendle, C. and Mejía model (2018),

It is consistent with ZFC:
(i) $\operatorname{add}\left(\mathcal{I}_{f}\right)<\operatorname{cov}\left(\mathcal{I}_{f}\right)<\operatorname{non}\left(\mathcal{I}_{f}\right)<\operatorname{cof}\left(\mathcal{I}_{f}\right)$ for any $f \in \omega^{\omega \prime \prime}$,
(ii) $\operatorname{add}(\mathcal{N})<\operatorname{cov}(\mathcal{N})<\operatorname{non}(\mathcal{N})<\operatorname{cof}(\mathcal{N})$, and
(iii) $\operatorname{add}(\mathcal{M})<\operatorname{non}(\mathcal{M})<\operatorname{cov}(\mathcal{M})<\operatorname{cof}(\mathcal{M})$.

Examples

Questions

Is it consistent with ZFC that
(a) $\operatorname{add}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?

Examples

Questions

Is it consistent with ZFC that
(a) $\operatorname{add}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?
(b) $\operatorname{add}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?

Examples

Questions

Is it consistent with ZFC that
(a) $\operatorname{add}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?
(b) $\operatorname{add}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?

Theorem (C., Mejía and Rivera-Madrid 2019)
It is consistent with ZFC that

$$
\operatorname{add}(\mathcal{S N})=\operatorname{non}(\mathcal{S N})=\aleph_{1}<\operatorname{cov}(\mathcal{S N})=\aleph_{2}=\mathfrak{c}<\operatorname{cof}(\mathcal{S N})
$$

Examples

Questions

Is it consistent with ZFC that
(a) $\operatorname{add}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?
(b) $\operatorname{add}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?

Theorem (C., Mejía and Rivera-Madrid 2019)
It is consistent with ZFC that

$$
\operatorname{add}(\mathcal{S N})=\operatorname{non}(\mathcal{S N})=\aleph_{1}<\operatorname{cov}(\mathcal{S N})=\aleph_{2}=\mathfrak{c}<\operatorname{cof}(\mathcal{S N})
$$

Theorem (C.)

It is consistent with ZFC that

$$
\operatorname{add}(\mathcal{S N})=\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})
$$

Open Problems

Questions

It is consistent with ZFC that
(I) $\operatorname{add}\left(\mathcal{I}_{f}\right)<\operatorname{non}\left(\mathcal{I}_{f}\right)<\operatorname{cov}\left(\mathcal{I}_{f}\right)<\operatorname{cof}\left(\mathcal{I}_{f}\right)$ for all increasing function $f \in \omega^{\omega}$?

Open Problems

Questions

It is consistent with ZFC that
(I) $\operatorname{add}\left(\mathcal{I}_{f}\right)<\operatorname{non}\left(\mathcal{I}_{f}\right)<\operatorname{cov}\left(\mathcal{I}_{f}\right)<\operatorname{cof}\left(\mathcal{I}_{f}\right)$ for all increasing function $f \in \omega^{\omega}$?
(II) $\operatorname{add}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?

Open Problems

Questions

It is consistent with ZFC that
(I) $\operatorname{add}\left(\mathcal{I}_{f}\right)<\operatorname{non}\left(\mathcal{I}_{f}\right)<\operatorname{cov}\left(\mathcal{I}_{f}\right)<\operatorname{cof}\left(\mathcal{I}_{f}\right)$ for all increasing function $f \in \omega^{\omega}$?
(II) $\operatorname{add}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$?
(III) $\operatorname{add}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N})$? .

Moreover,

Question IV

Is it consistent with ZFC that
$\operatorname{add}\left(\mathcal{I}_{f}\right)<\operatorname{cov}\left(\mathcal{I}_{f}\right)<\operatorname{non}\left(\mathcal{I}_{f}\right)<\operatorname{cof}\left(\mathcal{I}_{f}\right)$ for all increasing $f \in \omega^{\omega}$
and

$$
\operatorname{add}(\mathcal{S N})<\operatorname{cov}(\mathcal{S N})<\operatorname{non}(\mathcal{S N})<\operatorname{cof}(\mathcal{S N}) \text { simultaneously? }
$$

Thank you for your attention!

