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Reals

The real numbers:

(1) R: the classical real line (connected, but not compact).

(2) [0, 1]: the compact unit interval (connected, compact).

(3) 2ω =
∏

n<ω 2 = {f | f : ω → 2} where 2 := {0, 1}: the
Cantor space (totally disconnected, compact)

(4) ωω =
∏

n<ω ω = {f | f : ω → ω}: the Baire space (totally
disconnected, not compact).

Structure of the reals:

(1) Topolgy: For s ∈ 2<ω let
[s] := {x ∈ 2ω | s ⊆ x(x extends s)}. The usual product
topology on 2ω is given by taking {[s] | s ∈ 2<ω} as a basis.

(2) Standard (Lebesgue) measure: the usual product measure µ is
given by µ([s]) = 2−|s| for any s ∈ 2<ω, where |s| is the
length of s.
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Some cardinal characteristics

I ⊆ P(2ω) is an ideal if,

(1) if A,B ∈ I, then A ∪ B ∈ I,

(2) if B ∈ I and A ⊆ B, then A ∈ I, and

(3) [2ω]<ω ⊆ I and 2ω /∈ I.

If an ideal is closed under countable unions, it is called a σ-ideal .

add(I) = min{|J | : J ⊆ I and
⋃
J /∈ I}. Additivity of I

cov(I) = min{|J | : J ⊆ I and
⋃
J = 2ω}. Covering of I

non(I) = min{|A| : A ⊆ 2ω and A /∈ I}. Uniformity of I
cof(I) = min{|J | : J ⊆ I is cofinal in 〈I,⊆〉}. Cofinality of I
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Provable inequalities

b b

b

b b

b

bℵ0

add(I)

cov(I)

non(I)

cof(I)

2ℵ0

22ℵ0
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Two classical ideals: M and N

(1) A set A ⊆ 2ω is nowhere dense if its closure has empty
interior.

(2) A set A ⊆ 2ω is meager iff there is a sequence {Fn | n < ω} of
closed nowhere dense sets such that A ⊆ ⋃

n<ω Fn.

The Baire Category Theorem

In a complete metrizable space, every nonempty open set is
non-meager.

Define

(1) M := {A ⊆ 2ω |A is meager} and

(2) N := {A ⊆ 2ω |µ(A) = 0}.
Both are σ-ideals.
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Two more cardinal characteristics

m

g

f

f ≤∗ g iff ∃m < ω∀n ≥ m(f (n) ≤ g(n))

(1) F ⊆ ωω is ≤∗-bounded if (∃y ∈ ωω)(∀x ∈ F )(x ≤∗ y)

(2) E ⊆ ωω is ≤∗-dominating if (∀x ∈ ωω)(∃y ∈ E )(x ≤∗ y)

b := min{|F | : F ⊆ ωω unbounded family}.
d := min{|E | : E ⊆ ωω dominating family}.
c := 2ℵ0 .
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Cichoń’s diagram

b b b b b

b b

b b b b b

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Also add(M) = min{b, cov(M)} and cof(M) = max{d, non(M)}
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Strong measure zero sets

For each σ ∈ (2<ω)ω

define htσ ∈ ωω by htσ(i) := |σ(i)| for each
i < ω.

σ(0) σ(1) σ(2) σ(n). . . . . .

htσ

Definition

A set A ⊆ 2ω has strong measure zero iff for each f ∈ ωω there is
some σ ∈ (2<ω)ω with htσ = f such that A ⊆ ⋃

n<ω[σ(n)].

Denote SN := {A ⊆ 2ω |A has strong measure zero}
(1) SN is a σ-ideal and

(2) SN ⊆ N .
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Yorioka ideals

Denote pwk : ω → ω the function pwk(i) := ik ,

and define the
relation � on ωω as follows:

f�g iff ∀k < ω(f ◦ pwk≤∗g).

For σ ∈ (2<ω)ω set

[σ]∞ : = {x ∈ 2ω : ∀n < ω∃m ≥ n(σ(m) ⊆ x)}
=

⋂
n<ω

⋃
m>n

[σ(m)]
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Yorioka ideals

Let f ∈ ωω be a increasing function.

Define

If := {X ⊆ 2ω : ∃σ ∈ (2<ω)ω(X ⊆ [σ]∞ and hσ � f )}.

Any family of this form is called a Yorioka ideal.

Theorem(Yorioka 2002)

(1) If is a σ-ideal when f is increasing and

(2) SN =
⋂{If : f increasing}.
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Extended Cichoń’s diagram

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

ℵ1
add(N )

add(SN )

cov(N ) non(M)

b

cov(SN )

cov(If )

add(If )

non(SN )

non(If )

cof(If )
d

cof(M) cof(N )
c

cov(M) non(N )add(M)

Also add(M) = min{b, non(SN )} and cof(SN ) ≤ 2d
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Playground

The fact that M, N , SN , and If are σ-ideals is rephrased as

ℵ1 ≤ add(N ), add(M), add(SN ), add(If ).

Remember that ℵ1 ≤ add(N ) means that the union of ℵ0-many
null sets is null, i.e.,

⋃
n<ω Nn ∈ N where Nn ∈ N for each n < ω.

Miguel A. Cardona Strong measure zero sets



Playground

The fact that M, N , SN , and If are σ-ideals is rephrased as

ℵ1 ≤ add(N ), add(M), add(SN ), add(If ).

Remember that ℵ1 ≤ add(N ) means that the union of ℵ0-many
null sets is null, i.e.,

⋃
n<ω Nn ∈ N where Nn ∈ N for each n < ω.

Miguel A. Cardona Strong measure zero sets



Playground

The fact that M, N , SN , and If are σ-ideals is rephrased as

ℵ1 ≤ add(N ), add(M), add(SN ), add(If ).

Remember that ℵ1 ≤ add(N ) means that the union of ℵ0-many
null sets is null, i.e.,

⋃
n<ω Nn ∈ N where Nn ∈ N for each n < ω.

Miguel A. Cardona Strong measure zero sets



Playground

The fact that M, N , SN , and If are σ-ideals is rephrased as

ℵ1 ≤ add(N ), add(M), add(SN ), add(If ).

Remember that ℵ1 ≤ add(N ) means that the union of ℵ0-many
null sets is null, i.e.,

⋃
n<ω Nn ∈ N where Nn ∈ N for each n < ω.

Miguel A. Cardona Strong measure zero sets



Playground

Question I

Are there ℵ1-many null sets whose union is not null?

i.e.,⋃
α<ω1

Nα 6∈ N for some Nα ∈ N (α < ω1). What about meager
sets? i.e., add(N ) = ℵ1? add(M) = ℵ1?

Question II

Are there ℵ1-many null sets whose union is not null, while we need
ℵ2-many null sets to cover 2ω? i.e.,

⋃
α<ω1

Nα 6∈ N for some
Nα ∈ N (α < ω1), but

⋃
ξ<ω2

N ′ξ = 2ω for some N ′ξ ∈ N (ξ < ω2),
i.e., add(N ) = ℵ1 and cov(N ) = ℵ2?
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Review forcing

Defintion

A forcing notion P is a pair 〈P,≤〉 where P 6= ∅ and ≤ is a relation
on P that satisfies reflexivity and transitivity.

The forcing notion is choosen in such away that its elements
represents potencial aproximation of some special object, which is
called generic object we would like to create, but that typically
does not exists in the initial universe called ground model.
Intuitively, a forcing notion is used to construct special objects.
Forcing allows us to extend a transitive model V of ZFC to other
transitive model V [G ] of ZFC through a generic object G . This
generic object is, in practice, a new subset of P in V .
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Examples

In Cohen’s model,

b b b b b

b b

b b b b b

ℵ1 λ

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Define Cohen forcing (denoted Cλ) as
Cλ := {[[s]] : [s] ∈ BAIRE(2ω×λ)/M(2ω×λ)} ordered by ⊇:
[[s]] ≤ [[t]] if [s] \ [t] ∈M.
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Examples

In random’s model,

b b b b b

b b

b b b b b

ℵ1

λ

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Define random forcing (denoted Bλ) as
Bλ := {[[s]] : [s] ∈ BAIRE(2ω×λ)/N (2ω×λ)} ordered by ⊇:
[[s]] ≤ [[t]] if [s] \ [t] ∈ N .
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Examples

In Hechler’s model,

b b b b b

b b

b b b b b

ℵ1 λ

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Define Hechler forcing (denoted D) as
D := {(s, f ) : s ∈ ω<ω, f ∈ ωω and s ⊆ f } ordered by

(t, g) ≤ (s, f ) iff s ⊆ t and f ≤ g .
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Matrix iteration

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

V0,0

V1,0

Vα,0

Vα+1,0

Vγ,0

V0,1

V1,1

Vα,1

Vα+1,1

Vγ,1

V0,ξ

V1,ξ

Vα,ξ

Vα+1,ξ

Vγ,ξ

V0,ξ+1

V1,ξ+1

Vα,ξ+1

Vα+1,ξ+1

Vγ,ξ+1

V0,π

V1,π

Vα,π

Vα+1,π

Vγ,π

Q0,0

Q1,0

Qα,0

Qα+1,0

Qγ,0

Q0,ξ

Q1,ξ

Qα,ξ

Qα+1,ξ

Qγ,ξ
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Examples

In a Mej́ıa’s model (2013),

b b b b b

b b

b b b b b

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

θ

µ

ν

λ

It is consistent with ZFC that

add(N ) < cov(N ) < non(N ) < cof(N ).
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Examples

In a Brendle, C. and Mej́ıa model (2018),

b b

b

b

b b b b b

b b b b b

b

b

b b

b b b b

b

b

ℵ1
add(N ) minadd

cov(N ) cov(Iid) cov(If ) supcov non(M)

add(If )

add(Iid)
b d

cof(M) supcof cof(N ) c

cof(If )

cof(Iid)

non(N )non(Iid)non(If )minnoncov(M)add(M)

θ

µ

ν

λ

It is consistent with ZFC:

(i) add(If ) < cov(If ) < non(If ) < cof(If ) for any f ∈ ωω”,

(ii) add(N ) < cov(N ) < non(N ) < cof(N ), and

(iii) add(M) < non(M) < cov(M) < cof(M).
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Examples

Questions

Is it consistent with ZFC that

(a) add(SN ) < cov(SN ) < non(SN ) < cof(SN )?

(b) add(SN ) < non(SN ) < cov(SN ) < cof(SN )?

Theorem (C., Mej́ıa and Rivera-Madrid 2019)

It is consistent with ZFC that

add(SN ) = non(SN ) = ℵ1 < cov(SN ) = ℵ2 = c < cof(SN ).

Theorem (C.)

It is consistent with ZFC that

add(SN ) = cov(SN ) < non(SN ) < cof(SN ).
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add(SN ) = cov(SN ) < non(SN ) < cof(SN ).
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Open Problems

Questions

It is consistent with ZFC that

(I) add(If ) < non(If ) < cov(If ) < cof(If ) for all increasing
function f ∈ ωω?

(II) add(SN ) < cov(SN ) < non(SN ) < cof(SN )?

(III) add(SN ) < non(SN ) < cov(SN ) < cof(SN )?.

Moreover,

Question IV

Is it consistent with ZFC that

add(If ) < cov(If ) < non(If ) < cof(If ) for all increasing f ∈ ωω

and

add(SN ) < cov(SN ) < non(SN ) < cof(SN ) simultaneously?
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Thank you for your attention!
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