A short introduction to μ -calculus

Leonardo Pacheco

Tohoku University

December 7, 2019

2 The μ -arithmetic

2) The μ -arithmetic

 \bigcirc μ -calculus and the difference hierarchy

The modal μ -formulas are generated by the following grammar:

$$\varphi := P \mid \neg P \mid X \mid \varphi \land \varphi \mid \varphi \lor \varphi \\ \mid \Diamond \varphi \mid \Box \varphi \mid \mu X.\varphi \mid \nu X.\varphi$$

P is taken from a fixed set of propositions and X is taken from a set of variables. To define negation on the μ -calculus we let it to follow the usual rules on connectives and modalities, and define

$$\neg \mu X.\varphi = \nu X.\neg \varphi [X \mapsto \neg X]$$

The models of the modal $\mu\text{-}calculus$ are the same as the models of modal logic, i.e., labeled transition systems.

Definition

- A labeled transition system is a triple $S = (S, E, \rho)$ where
 - S is the set of states,
 - $E \subseteq S \times S$ are the transitions, and
 - *ρ*: Prop → *P*(S) assigns to each proposition P the states in which P is valid.

Example

$$S_1 = \{s_0, s_1, s_2\}, E = \{s_0 \rightarrow s_1, s_1 \rightarrow s_2, s_2 \rightarrow s_2\} \text{ and } \rho(P) = \{s_1\}.$$

$$\underbrace{(s_0)}_{\neg,\rho} \longrightarrow \underbrace{(s_1)}_{\rho} \longrightarrow \underbrace{(s_2)}_{\neg,\rho} \longrightarrow \underbrace{(s_2$$

Example

$$S_2 = \{s_0, s_1\}, E = \{s_0 \rightarrow s_0, s_0 \rightarrow s_1\} \text{ and } \rho(P) = \{s_1\}.$$

$$(S_0) \rightarrow S_1)_p$$

-

• • • • • • • • • • • •

Given a transition system S and a valuation $V : Var \rightarrow \mathcal{P}(S)$, we define

$$\begin{split} \|P\|_{V}^{S} &= \rho(P) \\ \|X\|_{V}^{S} &= V(X) \\ \|\neg\varphi\|_{V}^{S} &= S \setminus \|\varphi\|_{V}^{S} \\ \|\varphi \wedge \psi\|_{V}^{S} &= \|\varphi\|_{V}^{S} \cap \|\psi\|_{V}^{S} \\ \|\Box\varphi\|_{V}^{S} &= \{s|\forall t \in S.\langle t, s \rangle \in E \implies s \in \|\varphi\|_{V}^{S}\} \\ \|\mu X.\varphi\|_{V}^{S} &= \bigcup \{U \subseteq S|U \subseteq \|\varphi\|_{V[Z \to U]}^{S}\} \end{split}$$

in the above definition, $V[Z \rightarrow U](X) = U$ if X = Z and $V[Z \rightarrow U](X) = V(X)$ otherwise.

Given a transition system S, a stage $s_0 \in S$, a valuation $V : Var \to \mathcal{P}(S)$ and a μ -calculus formula φ we define the game $\mathcal{G}_V^S(s_0, \varphi)$:

- The game vertices the pairs $\langle s,\psi\rangle$ where $s\in S$ and ψ is a subformula of $\varphi.$
- The initial state is $\langle s_0, \varphi \rangle$.

Game Semantics

Definition (Cont.)

• Players have the following plays:

•
$$\langle s, \psi_0 \land \psi_1 \rangle \rightarrow \langle s, \psi_0 \rangle$$
, $\langle s, \psi_0 \land \psi_1 \rangle \rightarrow \langle s, \psi_1 \rangle$ are edges.

- $\langle s, \psi_0 \lor \psi_1 \rangle \rightarrow \langle s, \psi_0 \rangle$, $\langle s, \psi_0 \lor \psi_1 \rangle \rightarrow \langle s, \psi_1 \rangle$ are edges.
- If $\langle s,t \rangle \in E$, then $\langle s,\Box\psi \rangle \rightarrow \langle t,\psi \rangle$ is an edge.
- If $\langle s,t \rangle \in E$, then $\langle s, \Diamond \psi \rangle \rightarrow \langle t,\psi \rangle$ is an edge.
- If $\mu X.\psi$ is a subformula of φ then $\langle s, \mu X.\psi \rangle \rightarrow \langle s, \psi \rangle$ and $\langle s, X \rangle \rightarrow \langle s, \psi \rangle$ are edges.
- If $\nu X.\psi$ is a subformula of φ then $\langle s, \nu X.\psi \rangle \rightarrow \langle s, \psi \rangle$ and $\langle s, X \rangle \rightarrow \langle s, \psi \rangle$ are edges.
- V owns (s, ψ₀ ∨ ψ₁), (s, ◊ψ), (s, P) if s ∉ ρ(P) and (s, Z) if s ∉ V(Z).
- R owns $\langle s, \psi_0 \land \psi_1 \rangle$, $\langle s, \Box \psi \rangle$, $\langle s, P \rangle$ if $s \in \rho(P)$ and $\langle s, Z \rangle$ if $s \in V(Z)$.
- The ownership of the other vertices doesn't matter.

▲ 同 ▶ → 三 ▶

Definition (Cont.)

- If a player can't make a move, he loses.
- In an infinite play, if the outernmost infinitely many times repeated operator is μ , V loses.
- In an infinite play, if the outernmost infinitely many times repeated operator is ν , V wins.

• If V has a winning strategy we state $s_0 \models^S_V \varphi$.

Example

Let $\varphi = \mu X.P \lor \Diamond X$. Intuitively, this means "eventually P holds". Let

Here, $s_0 \models \varphi$.

A 🖓

Example

Let $\varphi = \nu X . \Diamond P \land \Box X$. Intuitively, this means " $\Diamond P$ always holds". Let

Here, $s_0 \not\models \varphi$.

э

14 / 31

Theorem

The extentional semantics and game semantics are equivalent.

æ

The simple alternation hierarchy is defined by:

- Σ_0^{μ} , Π_0^{μ} : the class of formulas with no fixpoint operators.
- $\sum_{n=1}^{\mu}$: the class of formulas containing $\sum_{n=1}^{\mu} \cup \prod_{n=1}^{\mu}$ and closed under the operations $\lor, \land, \Box, \diamondsuit$ and μx .
- Π^{μ}_{n+1} : the class of formulas containing $\Sigma^{\mu}_n \cup \Pi^{\mu}_n$ and closed under the operations $\lor, \land, \Box, \diamondsuit$ and νx .
- $\Delta_n^\mu := \Sigma_n^\mu \bigcap \Pi_n^\mu$

Example

- $\mu X.P \lor \Diamond X$ is Σ_1^{μ} .
- $\nu X.\Diamond P \land \Box X$ is Π_1^{μ} .
- $\mu X.(\nu X.\Diamond P \land \Box X) \lor \Diamond X$ is Σ_2^{μ}
- $\mu X_1.\nu X_2.\mu X_3.(X_1 \wedge X_2 \wedge X_3)$ is Σ_3^{μ} .

The semantic hierarchy is defined as:

$$\Sigma^{\mu}_{n} = \{ \| arphi \|^{\mathcal{T}} | arphi \in \Sigma^{\mu}_{n} \land \ \mathcal{T} ext{ is a transition system} \}$$

Theorem (Bradfield)

The semantic hierarchy theorem is a proper hierarchy, i.e.,

$$\Sigma^{\mu}_n \subsetneq \Sigma^{\mu}_{n+1}$$
 for all n

Theorem (Bradfield)

The semantic hierarchy theorem for finite transition systems is a proper hierarchy.

1) The modal μ -calculus

2 The μ -arithmetic

 \bigcirc μ -calculus and the difference hierarchy

- We can define the μ -arithmetic by adding set variables and the fixpoint operator μ to PA.
- We can then form the set term μxX.φ. The μ operator binds x and X. (We have a restriction on φ to be X-positive, but we omit this definition here.)
- $\mu x X. \varphi$ is the defined to be the least fixed point of the operator

$$\Gamma_{\varphi}(X) = \{x | \varphi(x, X)\}.$$

Example

The following formula defines the even numbers in the μ -calculus:

$$\mu x X.(x = 0 \lor (x - 2) \in X)$$

Calculating the least fixed point of $\Gamma_{x=0\vee(x-2)\in X}$ we have

$$\emptyset\mapsto \{0\}\mapsto \{0,2\}\mapsto \{0,2,4\}\mapsto \dots\mapsto \{0,2,4,6,8,\dots\}$$

- $\Sigma_0^{\mu}, \Pi_0^{\mu}$: the class of first order formulas and set variables
- \sum_{n+1}^{μ} : the class of formulas containing $\sum_{n=1}^{\mu} \bigcup \prod_{n=1}^{W\mu}$ and closed under the first order connectives and forming $\mu X \cdot \varphi$ for $\varphi \in \sum_{n=1}^{\mu}$.
- Π_{n+1}^{μ} : the class of formulas containing $\Sigma_{n}^{\mu} \cup \Pi_{n}^{W\mu}$ and closed under the first order connectives and forming $\nu X \cdot \varphi$ for $\varphi \in \Pi_{n}^{\mu}$.
- $\Delta_n^\mu := \Sigma_n^\mu \bigcap \Pi_n^\mu$

The Alternation Hierarchy (Arithmetic Version)

Theorem (Lubarsky)

Any Σ_n^{μ} -formula can be put in the form

$$\tau_n \in \mu X_n \cdot \tau_{n-1} \in \nu X_{n-1} \cdot \tau_{n-2} \in \mu X_{n-2} \cdot \cdot \cdot \tau_1 \in \eta X_1 \cdot \varphi$$

where φ is a first order formula.

Theorem (Bradfield)

The alternation hierarchy for the μ -arithmetic is strict.

Proof Idea

We define for each Σ_n^{μ} a satisfaction formula. We do this similarly to defining the partial satisfaction formulas of PA. (Remember to make use of the normal forms.)

3

< ロ > < 同 > < 三 > < 三

Theorem (Bradfield)

For each modal μ -calculus formula $\varphi \in \Sigma_n^{\mu}$ and for each recursively presentable transition system T, $\|\varphi\|^T$ is Σ_n^{μ} -definable set of integers.

Theorem (Bradfield)

Let $\varphi(z)$ be a Σ_n^{μ} formula of μ -arithmetic. There is a r.p.t.s. T, a valuation V and a Σ_n^{μ} modal μ -formula $\overline{\varphi}$ such that $\varphi((s)_0)$ iff $s \in \|\overline{\varphi}\|_S^T$. Thus if φ is not Σ_n^{μ} -definable, neither is $\|\overline{\varphi}\|$.

We can combine these theorems with the strictness of the alternation hierarchy for the arithmetic μ -calculus to get a proof of the alternation hierarchy for the modal μ -calculus. (Indeed, this is the original proof by Bradfield.)

イロト 不得下 イヨト イヨト

1) The modal μ -calculus

2 The μ -arithmetic

3 μ -calculus and the difference hierarchy

Transfinite μ -arithmetic We can extend the definition of the alternation hierarchy for μ -arithmetic by defining Σ^{μ}_{λ} to be the set of formulas

$$\bigvee_{i<\omega}\varphi_i$$

where the φ_i can be recursively enumerated and each φ_i is in some $\sum_{\beta_i}^{\mu}$ with $\beta_i < \lambda$. We do this for $\lambda < \omega_1^{ck}$.

$\mu\text{-}calculus$ and the difference hierarchy

Let Σ_{α}^{δ} be the α -th level of the difference hierarchy of Σ_{2}^{0} . \Im is the game quantifier: $\Im \alpha . P(\alpha, \vec{x}) = {\vec{x} | I}$ wins the Gale-Steward game with payoff $P(\alpha, \vec{x})$

Theorem (Bradfield, Duparc, Quickert)

For all $\alpha < w_1^{ck}$, $\Im \Sigma_{\alpha}^{\delta} = \Sigma_{\alpha+1}^{\mu}$.

Furthermore as

Theorem (MedSalem, Tanaka)

$$igcup_{lpha < \omega_1^{ck}} \Sigma^\delta_lpha = \Delta^0_3$$

we can show

Corollary

$$\Sigma^{\mu}_{\omega^{ck}_1} = \Im \Delta^0_3$$

Leonardo Pacheco (Tohoku University)

For context, we have:

Theorem (Kechris-Moschovakis)
$\Sigma_0^\mu= \Im \Sigma_1^0= \Pi_1^1$

Theorem (Solovay)

 $\Sigma_1^\mu = \Im \Sigma_2^0 = \Sigma_1^1\text{-}\text{IND}$

We can define the μ -arithmetic as a subsystem of second arithmetic by considering as axioms:

- ACA_0 and
- μxX.φ(x, X) is the least fixed point of Γ_φ for all adequate φ. Note: we are going to skip the formalization here.

Definition

 $< \omega - \Sigma_2^0$ -Det is the subsystem of second order arithmetic that says that all (finite) Boolean combinations of Σ_2^0 sets are determined.

Theorem (Heinatsch, Möllerfeld)

Over ACA₀, μ -arithmetic and $< \omega$ - Σ_2^0 -Det are equivalent over \mathcal{L}_2 -formulas.

Theorem (Möllerfeld)

 μ -arithmetic and Π_2^1 -CA₀ are Π_1^1 -conservative over \mathcal{L}_2 -formulas. Therefore they are proof-theoretic equivalent.

Corollary (Heinatsch, Möllerfeld)

 $< \omega - \Sigma_2^0$ -Det and Π_2^1 -CA₀ are Π_1^1 -conservative over \mathcal{L}_2 -formulas. Therefore they are proof-theoretic equivalent.

- C.-H. L. Ong, Automata, Logic and Games, available at: http://www.cs.ox.ac.uk/people/luke.ong/personal/publications/ALG14-15.pdf.
- J.C. Bradfield, *Simplifying the modal mu-calculus alternation hierarchy*, 1998.
- J.C. Bradfield, J. Duparc, S. Quickert, *Fixpoint alternation and the Wadge hierarchy,* available at: http://homepages.inf.ed.ac.uk/jcb/Research/fixwadge.pdf
- C. Heinatsch, M. Möllerfeld, *The determinacy strength of* Π_2^1 -comprehension, 2010.