A short introduction to μ-calculus

Leonardo Pacheco

Tohoku University

December 7, 2019

Table of Contents

(1) The modal μ-calculus
(2) The μ-arithmetic
(3) μ-calculus and the difference hierarchy

Table of Contents

(1) The modal μ-calculus
(2) The μ-arithmetic
(3) μ-calculus and the difference hierarchy

The modal μ-calculus

Definition

The modal μ-formulas are generated by the following grammar:

$$
\begin{aligned}
\varphi:=P & |\neg P| X|\varphi \wedge \varphi| \varphi \vee \varphi \\
& |\diamond \varphi| \square \varphi|\mu X . \varphi| \nu X . \varphi
\end{aligned}
$$

P is taken from a fixed set of propositions and X is taken from a set of variables. To define negation on the μ-calculus we let it to follow the usual rules on connectives and modalities, and define

$$
\neg \mu X . \varphi=\nu X . \neg \varphi[X \mapsto \neg X]
$$

Models of the modal μ-calculus

The models of the modal μ-calculus are the same as the models of modal logic, i.e., labeled transition systems.

Definition

A labeled transition system is a triple $S=(S, E, \rho)$ where

- S is the set of states,
- $E \subseteq S \times S$ are the transitions, and
- $\rho: \operatorname{Prop} \rightarrow \mathcal{P}(S)$ assigns to each proposition P the states in which P is valid.

Example

$$
S_{1}=\left\{s_{0}, s_{1}, s_{2}\right\}, E=\left\{s_{0} \rightarrow s_{1}, s_{1} \rightarrow s_{2}, s_{2} \rightarrow s_{2}\right\} \text { and } \rho(P)=\left\{s_{1}\right\} .
$$

Example
 $S_{2}=\left\{s_{0}, s_{1}\right\}, E=\left\{s_{0} \rightarrow s_{0}, s_{0} \rightarrow s_{1}\right\}$ and $\rho(P)=\left\{s_{1}\right\}$.

Extentional Semantics

Definition

Given a transition system S and a valuation $V: \operatorname{Var} \rightarrow \mathcal{P}(S)$, we define

$$
\begin{aligned}
\|P\|_{V}^{S} & =\rho(P) \\
\|X\|_{V}^{S} & =V(X) \\
\|\neg \varphi\|_{V}^{S} & =S \backslash\|\varphi\|_{V}^{S} \\
\|\varphi \wedge \psi\|_{V}^{S} & =\|\varphi\|_{V}^{S} \cap\|\psi\|_{V}^{S} \\
\|\square \varphi\|_{V}^{S} & =\left\{s \mid \forall t \in S .\langle t, s\rangle \in E \Longrightarrow s \in\|\varphi\|_{V}^{S}\right\} \\
\|\mu X \cdot \varphi\|_{V}^{S} & =\bigcup\left\{U \subseteq S \mid U \subseteq\|\varphi\|_{V[Z \rightarrow U]}^{S}\right\}
\end{aligned}
$$

in the above definition, $V[Z \rightarrow U](X)=U$ if $X=Z$ and $V[Z \rightarrow U](X)=V(X)$ otherwise.

Game Semantics

Definition

Given a transition system S, a stage $s_{0} \in S$, a valuation $V: \operatorname{Var} \rightarrow \mathcal{P}(S)$ and a μ-calculus formula φ we define the game $\mathcal{G}_{V}^{S}\left(s_{0}, \varphi\right)$:

- The game vertices the pairs $\langle s, \psi\rangle$ where $s \in S$ and ψ is a subformula of φ.
- The initial state is $\left\langle s_{0}, \varphi\right\rangle$.

Game Semantics

Definition (Cont.)

- Players have the following plays:
- $\left\langle s, \psi_{0} \wedge \psi_{1}\right\rangle \rightarrow\left\langle s, \psi_{0}\right\rangle,\left\langle s, \psi_{0} \wedge \psi_{1}\right\rangle \rightarrow\left\langle s, \psi_{1}\right\rangle$ are edges.
- $\left\langle s, \psi_{0} \vee \psi_{1}\right\rangle \rightarrow\left\langle s, \psi_{0}\right\rangle,\left\langle s, \psi_{0} \vee \psi_{1}\right\rangle \rightarrow\left\langle s, \psi_{1}\right\rangle$ are edges.
- If $\langle s, t\rangle \in E$, then $\langle s, \square \psi\rangle \rightarrow\langle t, \psi\rangle$ is an edge.
- If $\langle s, t\rangle \in E$, then $\langle s, \Delta \psi\rangle \rightarrow\langle t, \psi\rangle$ is an edge.
- If $\mu X . \psi$ is a subformula of φ then $\langle s, \mu X . \psi\rangle \rightarrow\langle s, \psi\rangle$ and $\langle s, X\rangle \rightarrow\langle s, \psi\rangle$ are edges.
- If $\nu X . \psi$ is a subformula of φ then $\langle s, \nu X . \psi\rangle \rightarrow\langle s, \psi\rangle$ and $\langle s, X\rangle \rightarrow\langle s, \psi\rangle$ are edges.
- V owns $\left\langle s, \psi_{0} \vee \psi_{1}\right\rangle,\langle s, \diamond \psi\rangle,\langle s, P\rangle$ if $s \notin \rho(P)$ and $\langle s, Z\rangle$ if $s \notin V(Z)$.
- R owns $\left\langle s, \psi_{0} \wedge \psi_{1}\right\rangle,\langle s, \square \psi\rangle,\langle s, P\rangle$ if $s \in \rho(P)$ and $\langle s, Z\rangle$ if $s \in V(Z)$.
- The ownership of the other vertices doesn't matter.

Definition (Cont.)

- If a player can't make a move, he loses.
- In an infinite play, if the outernmost infinitely many times repeated operator is μ, V loses.
- In an infinite play, if the outernmost infinitely many times repeated operator is ν, V wins.
- If V has a winning strategy we state $s_{0} \models_{V}^{S} \varphi$.

Game Semantics

Example

Let $\varphi=\mu X . P \vee \diamond X$. Intuitively, this means "eventually P holds". Let

Here, $s_{0} \models \varphi$.

Verifier
Refuter
$s_{0}, \mu X . P \vee \diamond X$
\mid
$s_{0}, P \vee \diamond X$
$s_{0}, P \vee s_{0}, \diamond X$
s_{1}, X
\mid

s_{2}, X

Game Semantics

Example

Let $\varphi=\nu X . \diamond P \wedge \square X$. Intuitively, this means " $\diamond P$ always holds". Let

Here, $s_{0} \not \vDash \varphi$.

Semantics

Theorem

The extentional semantics and game semantics are equivalent.

The Alternation Hierarchy

Definition

The simple alternation hierarchy is defined by:

- $\Sigma_{0}^{\mu}, \Pi_{0}^{\mu}$: the class of formulas with no fixpoint operators.
- \sum_{n+1}^{μ} : the class of formulas containing $\Sigma_{n}^{\mu} \cup \Pi_{n}^{\mu}$ and closed under the operations $\vee, \wedge, \square, \diamond$ and μx.
- Π_{n+1}^{μ} : the class of formulas containing $\sum_{n}^{\mu} \cup \Pi_{n}^{\mu}$ and closed under the operations $\vee, \wedge, \square, \diamond$ and νx.
- $\Delta_{n}^{\mu}:=\Sigma_{n}^{\mu} \bigcap \Pi_{n}^{\mu}$

The Alternation Hierarchy

Example

- $\mu X . P \vee \diamond X$ is Σ_{1}^{μ}.
- $\nu X . \Delta P \wedge \square X$ is Π_{1}^{μ}.
- $\mu X .(\nu X . \diamond P \wedge \square X) \vee \diamond X$ is Σ_{2}^{μ}
- $\mu X_{1} \cdot \nu X_{2} \cdot \mu X_{3} \cdot\left(X_{1} \wedge X_{2} \wedge X_{3}\right)$ is Σ_{3}^{μ}.

The Alternation Hierarchy

Definition

The semantic hierarchy is defined as:

$$
\Sigma_{n}^{\mu}=\left\{\|\varphi\|^{T} \mid \varphi \in \Sigma_{n}^{\mu} \wedge T \text { is a transition system }\right\}
$$

Theorem (Bradfield)

The semantic hierarchy theorem is a proper hierarchy, i.e.,

$$
\Sigma_{n}^{\mu} \subsetneq \Sigma_{n+1}^{\mu} \text { for all } n
$$

Theorem (Bradfield)

The semantic hierarchy theorem for finite transition systems is a proper hierarchy.

Table of Contents

(1) The modal μ-calculus

(2) The μ-arithmetic

(3) μ-calculus and the difference hierarchy

The μ-arithmetic

Definition

- We can define the μ-arithmetic by adding set variables and the fixpoint operator μ to PA.
- We can then form the set term $\mu x X . \varphi$. The μ operator binds x and X. (We have a restriction on φ to be X-positive, but we omit this definition here.)
- $\mu x X . \varphi$ is the defined to be the least fixed point of the operator

$$
\Gamma_{\varphi}(X)=\{x \mid \varphi(x, X)\}
$$

The arithmetic μ-calculus

Example

The following formula defines the even numbers in the μ-calculus:

$$
\mu x X .(x=0 \vee(x-2) \in X)
$$

Calculating the least fixed point of $\Gamma_{x=0 \vee(x-2) \in X}$ we have

$$
\emptyset \mapsto\{0\} \mapsto\{0,2\} \mapsto\{0,2,4\} \mapsto \cdots \mapsto\{0,2,4,6,8, \cdots\}
$$

The Alternation Hierarchy (Arithmetic Version)

Definition

- $\Sigma_{0}^{\mu}, \Pi_{0}^{\mu}$: the class of first order formulas and set variables
- \sum_{n+1}^{μ} : the class of formulas containing $\Sigma_{n}^{\mu} \cup \Pi_{n}^{\mathrm{W} \mu}$ and closed under the first order connectives and forming $\mu X . \varphi$ for $\varphi \in \Sigma_{n}^{\mu}$.
- Π_{n+1}^{μ} : the class of formulas containing $\Sigma_{n}^{\mu} \cup \Pi_{n}^{\mathrm{W} \mu}$ and closed under the first order connectives and forming $\nu X . \varphi$ for $\varphi \in \Pi_{n}^{\mu}$.
- $\Delta_{n}^{\mu}:=\Sigma_{n}^{\mu} \bigcap \Pi_{n}^{\mu}$

The Alternation Hierarchy (Arithmetic Version)

Theorem (Lubarsky)

Any \sum_{n}^{μ}-formula can be put in the form

$$
\tau_{n} \in \mu X_{n} \cdot \tau_{n-1} \in \nu X_{n-1} \cdot \tau_{n-2} \in \mu X_{n-2} \ldots \ldots \tau_{1} \in \eta X_{1} \cdot \varphi
$$

where φ is a first order formula.

Theorem (Bradfield)

The alternation hierarchy for the μ-arithmetic is strict.

Proof Idea

We define for each \sum_{n}^{μ} a satisfaction formula. We do this similarly to defining the partial satisfaction formulas of PA. (Remember to make use of the normal forms.)

The Alternation Hierarchy (Arithmetic Version)

Theorem (Bradfield)

For each modal μ-calculus formula $\varphi \in \sum_{n}^{\mu}$ and for each recursively presentable transition system $T,\|\varphi\|^{T}$ is \sum_{n}^{μ}-definable set of integers.

Theorem (Bradfield)

Let $\varphi(z)$ be a \sum_{n}^{μ} formula of μ-arithmetic. There is a r.p.t.s. T, a valuation V and a Σ_{n}^{μ} modal μ-formula $\bar{\varphi}$ such that $\varphi\left((s)_{0}\right)$ iff $s \in\|\bar{\varphi}\|_{S}^{T}$. Thus if φ is not \sum_{n}^{μ}-definable, neither is $\|\bar{\varphi}\|$.

We can combine these theorems with the strictness of the alternation hierarchy for the arithmetic μ-calculus to get a proof of the alternation hierarchy for the modal μ-calculus. (Indeed, this is the original proof by Bradfield.)

Table of Contents

(1) The modal μ-calculus

(2) The μ-arithmetic
(3) μ-calculus and the difference hierarchy

μ-calculus and the difference hierarchy

Definition

Transfinite μ-arithmetic We can extend the definition of the alternation hierarchy for μ-arithmetic by defining Σ_{λ}^{μ} to be the set of formulas

$$
\bigvee_{i<\omega} \varphi_{i}
$$

where the φ_{i} can be recursively enumerated and each φ_{i} is in some $\sum_{\beta_{i}}^{\mu}$ with $\beta_{i}<\lambda$. We do this for $\lambda<\omega_{1}^{c k}$.

μ-calculus and the difference hierarchy

Let Σ_{α}^{δ} be the α-th level of the difference hierarchy of Σ_{2}^{0}.
D is the game quantifier:
D $\alpha \cdot P(\alpha, \vec{x})=\{\vec{x} \mid I$ wins the Gale-Steward game with payoff $P(\alpha, \vec{x})\}$

Theorem (Bradfield, Duparc, Quickert)

For all $\alpha<w_{1}^{c k}, ~ \partial \Sigma_{\alpha}^{\delta}=\Sigma_{\alpha+1}^{\mu}$.
Furthermore as

Theorem (MedSalem, Tanaka)

$\bigcup_{\alpha<\omega_{1}^{c k}} \Sigma_{\alpha}^{\delta}=\Delta_{3}^{0}$
we can show

Corollary

$\Sigma_{\omega_{1}^{c k}}^{\mu}=\partial \Delta_{3}^{0}$.

μ-calculus and the difference hierarchy

For context, we have:

Theorem (Kechris-Moschovakis)

$$
\Sigma_{0}^{\mu}=\partial \Sigma_{1}^{0}=\Pi_{1}^{1}
$$

$$
\begin{aligned}
& \text { Theorem (Solovay) } \\
& \Sigma_{1}^{\mu}=\partial \Sigma_{2}^{0}=\Sigma_{1}^{1}-I N D
\end{aligned}
$$

A result on reverse math

Definition

We can define the μ-arithmetic as a subsystem of second arithmetic by considering as axioms:

- $A C A_{0}$ and
- $\mu x X . \varphi(x, X)$ is the least fixed point of Γ_{φ} for all adequate φ. Note: we are going to skip the formalization here.

Definition

$<\omega-\boldsymbol{\Sigma}_{2}^{0}$-Det is the subsystem of second order arithmetic that says that all (finite) Boolean combinations of $\boldsymbol{\Sigma}_{2}^{0}$ sets are determined.

A result on reverse math

Theorem (Heinatsch, Möllerfeld)

Over ACA,μ-arithmetic and $<\omega$ - $\boldsymbol{\Sigma}_{2}^{0}$-Det are equivalent over \mathcal{L}_{2}-formulas.

Theorem (Möllerfeld)

μ-arithmetic and $\Pi_{2}^{1}-C A_{0}$ are Π_{1}^{1}-conservative over \mathcal{L}_{2}-formulas. Therefore they are proof-theoretic equivalent.

Corollary (Heinatsch, Möllerfeld)

$<\omega-\boldsymbol{\Sigma}_{2}^{0}$-Det and $\Pi_{2}^{1}-C A_{0}$ are Π_{1}^{1}-conservative over \mathcal{L}_{2}-formulas. Therefore they are proof-theoretic equivalent.
C.-H. L. Ong, Automata, Logic and Games, available at: http://www.cs.ox.ac.uk/people/luke.ong/personal/publications/ALG1415.pdf.
J.C. Bradfield, Simplifying the modal mu-calculus alternation hierarchy, 1998.

目 J.C. Bradfield, J. Duparc, S. Quickert, Fixpoint alternation and the Wadge hierarchy, available at:
http://homepages.inf.ed.ac.uk/jcb/Research/fixwadge.pdf
© C. Heinatsch, M. Möllerfeld, The determinacy strength of Π_{2}^{1}-comprehension, 2010.

