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Definition

Lo : The language of 2nd order arithmetic.
M = (NMS): Lo-structure. NM: the 1st order part of M,
S: the 2nd order part of M.

Note: We use w to denote the standard natural numbers,
and N to denote the 1st part of a Lo-structure. If N ~
then M is called w-model.

Subsystems of 2nd order arithmetic

RCA( = IX{ + recursive sets exist.
WKLy = RCAj + any infinite binary tree has a path.
ACAy = RCAy + arithmetically defininable sets exist.
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General Form of Basis Theorems

Basis theorems have the following form in general:
Let T be a computable infinite binary tree. Then 7" has a
path s.t. (some conditions).

Examples of Basis Theorems:

Low Basis Theorem(LBT)
T has a low path.

Hyperimmune-free Basis Thorem(HFBT)

T has a hyperimmune-free path.
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There is a computable tree T' s.t. each path of T is
regarded as a countable w-model of WKL.

Combining this fact and basis theorems, we can make a
model of WKLy with some properties:

There is an w-model of WKL, which includes only
low /hyperimmune-free sets.

In this talk,

(1) we formalize this argument in 2nd order arithmetic,
(2) decide the strength of low /hyperimmune-free basis
theorem.

5/16



Basis Theorems in 2nd Order Arithmetic
@00000

Definition(low set)

For A C w, A is one of X{-complete set.
We say that a set A is low if A’ <7 (.

The jump operator is formalized in 2nd order arithmetic as

follows: Let ®(e,m, A) be a X.%-universal formula. For

ACN, A ={(e,m): P(e,m, A)}.

Definition(hyperimmune-free set)

Let X C w. X is hyperimmune-free if
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From now on, we assume 7' to be a binary tree.

Relativized Low Basis Thoerem
ACA, proves

VXVT <p X(|T| = 00 — 3Y € [T] (Y P X)' <r X).

Relativized Hyperimmune-free Basis Theorem

ACA, proves

VXVT <7 X(|T| = 00 —
Y € [T)(¥f <r Y3g <r X(f < 9))).

So, they are strong versions of weak Konig’s lemma.
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In WKLy, 3XTIY is also IIY.

Intuitively, a I1? formula ¢(X) corresponds to a effectively

closed set of a Cantor space. Thus we can find a binary
tree T's.t. [T] ={X : ¢(X)}. Moreover this argument can
be formalized in RCA,.

[Proof] Let ¢(X) be a I1? formula and 7' be a binary tree
s.t. VX(X € [T] > ¢(X)). Then

WKLo F 3Xp(X) < |T] = oc.
Clearly |T| = oo is IIY. O
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WKL proves the compactness of the Cantor space 2.
That is, for any 119 formula p(X,n),

WKLy F (Vr3XVi < n o(X,i)) = IXVn (X, n).

Intuitively, each n defines a closed subset C, of 2" s.t.
Cn ={X : p(X,n)}. Hence, this theorem says that if
{C,.} nen has finite intersection property, then an + .

This can be proved by similar way of Lemma 1.

9/16



orems in 2nd Order Arithmetic

Low basis theorem (ACAy)

VXVT <7 X(|T| = 00 — 3Y € [T] (Y D X) <7 X').

By universal ! formula, we can take an enumeration
{pe(m, A)}een of all TIY formulas. Then,

RCAg FVA (A" =1 {(e,m) : p.(m, A)}).

We will show that

Y € [T1({(e;m) : pelm, Y B X)} < X7,
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Claim: 3Y € [T]({(e,m) : pe(m,Y P X)} <r X').
[Proof] By using arithmetical comprehension, we can define
a maximal subseaquence {(e;, m;)}; of N? s.t.

3V Z(pe,(ni, ZED X) > Z € [T)),
VEIZVi < k (¢, (mi, Z D X))

By lemma 1, {(e;, m;) }ien is computable from X'
Now there exists Y s.t.

Vigpei(mi,Y@X),
‘v’e,m(cpe(m,Y@X) < (e,m) € {(e;,mi) }4).

Thus {(e,m) : pe(m, Y P X))} <7 {(es,m;)}; <r X'. O
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We can make Lo-structures in a Lo-structure. These
structures are called coded structure.

Definition(Coded Structure)

A coded structure is a pair (N, {W,},) s.t.

(1) N has 0V, +" and so on,

(2) each W, is a subset of N.

We say a coded structure (N, {W,}) is an w-structure if
N =N,0Y =0,+" = + and so on.

There exists a [T formula (X, M) s.t.

(1) WKLo F VX3My(X, M),

(2) ACAy F (X, M) — M is a coded w-model of WKL,
including X.
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Theorem (ACA,)

For any X C N, there exists a coded w-model M of WKL,
st. X eMand VY e M(Y P X) < X".

[Proof] Let X C N and (X, M) be a I formula as in the
previous fact. Then we can define an X-computable tree T’
st. M € [T] <> (X, M). Since AMY(X, M), [T] # @. By
applying low basis theorem to T', we can get M € [T] s.t.
(M@ X) <r X'. Now, if Y € M then Y < M and hence
YPX)<X. 0O
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By similar argument, we can show the followings:

ACA, proves realativized hyperimmune-free basis theorem:
VXVT <7y X(|T| = 00 — 3Y € [T]
(Y is X-hyperimmune-free)).

Theorem (ACA)

For any X C N, there exists a coded w-model M of WKL,
st. X € M and VY € M(Y is X-hyperimmune-free).

14/ 16



Basis Theorems and Models
[e]e]e] o]

Every noncomputable low set is not hyperimmune-free.

Let M, M’ be countable w-models of WKL s.t.
XeM= Xislow, X € M'= X is hyperimmune-free.
Then M N M’ = REC.
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In RCA the following relations hold.
WKLy < LBT < ACA,,
WKLy < HFBT < ACA,.

Note: We have already shown that < holds.
[Proof] M, M":w-models of WKL s.t.
M includes only low sets,
M’ includes only hyperimmune-free sets.
(1st inequality) M | WKL, + —HFBT,
M’ = WKLy + —LBT.
(2nd inequality) Since (' & M, M’ we have
M = LBT + —X{-CA,
M' E HFBT + —-X0-CA. O
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