Introduction 000 Basis Theorems in 2nd Order Arithmetic

Basis Theorems and Models 00000

Basis Theorems and Models of \mathbf{WKL}_0

鈴木 悠大

東北大学 理学研究科数学専攻

December 8th,2019

 $1 \, / \, 16$

2 Basis Theorems in 2nd Order Arithmetic

Definition

 \mathcal{L}_2 : The language of 2nd order arithmetic. $M = (\mathbb{N}^M, S)$: \mathcal{L}_2 -structure. \mathbb{N}^M : the 1st order part of M, S: the 2nd order part of M.

Note: We use ω to denote the standard natural numbers, and \mathbb{N} to denote the 1st part of a \mathcal{L}_2 -structure. If $\mathbb{N}^M \simeq \omega$ then M is called ω -model.

Subsystems of 2nd order arithmetic

 $RCA_0 = I\Sigma_1^0 + recursive sets exist.$

 $WKL_0 = RCA_0 + any$ infinite binary tree has a path.

 $ACA_0 = RCA_0 + arithmetically defininable sets exist.$

General Form of Basis Theorems

Basis theorems have the following form in general:

Let T be a computable infinite binary tree. Then T has a path s.t. (some conditions).

Examples of Basis Theorems:

Low Basis Theorem(LBT)

T has a low path.

Hyperimmune-free Basis Thorem(HFBT)

 ${\cal T}$ has a hyperimmune-free path.

Fact

There is a computable tree T s.t. each path of T is regarded as a countable ω -model of WKL₀.

Combining this fact and basis theorems, we can make a model of WKL_0 with some properties:

Fact

There is an ω -model of WKL₀ which includes only low/hyperimmune-free sets.

In this talk,

(1) we formalize this argument in 2nd order arithmetic,

(2) decide the strength of low/hyperimmune-free basis theorem.

Definition(low set)

For $A \subseteq \omega$, A' is one of Σ_1^0 -complete set. We say that a set A is low if $A' \leq_T \emptyset'$.

The jump operator is formalized in 2nd order arithmetic as follows: Let $\Phi(e, m, A)$ be a Σ_1^0 -universal formula. For $A \subseteq \mathbb{N}, A' = \{(e, m) : \Phi(e, m, A)\}.$

Definition(hyperimmune-free set)

Let $X \subseteq \omega$. X is hyperimmune-free if $\forall f \leq_T X \exists g \leq_T \emptyset \ (f < g).$ Introduction 000 Basis Theorems in 2nd Order Arithmetic $\circ \bullet \circ \circ \circ \circ$

Basis Theorems and Models 00000

From now on, we assume T to be a binary tree.

Relativized Low Basis Theorem

 ACA_0 proves

$$\forall X \forall T \leq_T X(|T| = \infty \to \exists Y \in [T] \ (Y \bigoplus X)' \leq_T X').$$

Relativized Hyperimmune-free Basis Theorem

 ACA_0 proves

$$\forall X \forall T \leq_T X(|T| = \infty \rightarrow \exists Y \in [T] (\forall f \leq_T Y \exists g \leq_T X(f < g))).$$

So, they are strong versions of weak König's lemma.

Lemma 1

In WKL₀, $\exists X \Pi_1^0$ is also Π_1^0 .

Intuitively, a Π_1^0 formula $\varphi(X)$ corresponds to a effectively closed set of a Cantor space. Thus we can find a binary tree T s.t. $[T] = \{X : \varphi(X)\}$. Moreover this argument can be formalized in RCA₀.

[Proof] Let $\varphi(X)$ be a Π_1^0 formula and T be a binary tree s.t. $\forall X(X \in [T] \leftrightarrow \varphi(X))$. Then

$$WKL_0 \vdash \exists X \varphi(X) \leftrightarrow |T| = \infty.$$

Clearly $|T| = \infty$ is Π_1^0 . \Box

Lemma 2

WKL₀ proves the compactness of the Cantor space $2^{\mathbb{N}}$. That is, for any Π_1^0 formula $\varphi(X, n)$,

$$WKL_0 \vdash (\forall n \exists X \forall i < n \ \varphi(X, i)) \rightarrow \exists X \forall n \ \varphi(X, n).$$

Intuitively, each *n* defines a closed subset C_n of $2^{\mathbb{N}}$ s.t. $C_n = \{X : \varphi(X, n)\}$. Hence, this theorem says that if $\{C_n\}_{n \in \mathbb{N}}$ has finite intersection property, then $\bigcap_n C_n \neq \emptyset$. This can be proved by similar way of Lemma 1.

Low basis theorem (ACA_0)

 $\forall X \forall T \leq_T X (|T| = \infty \to \exists Y \in [T] \ (Y \bigoplus X)' \leq_T X').$

By universal Σ_1^0 formula, we can take an enumeration $\{\varphi_e(m, A)\}_{e\in\mathbb{N}}$ of all Π_1^0 formulas. Then, $\operatorname{RCA}_0 \vdash \forall A \ (A' \equiv_T \{(e, m) : \varphi_e(m, A)\}).$ We will show that $\exists Y \in [T](\{(e, m) : \varphi_e(m, Y \bigoplus X)\} \leq_T X').$ $\begin{array}{c} \mathrm{Introduction} \\ \mathrm{000} \end{array}$

Claim: $\exists Y \in [T](\{(e,m) : \varphi_e(m, Y \bigoplus X)\} \leq_T X').$ [Proof] By using arithmetical comprehension, we can define a maximal subsequence $\{(e_i, m_i)\}_i$ of \mathbb{N}^2 s.t.

$$\exists i \forall Z (\varphi_{e_i}(n_i, Z \bigoplus X) \leftrightarrow Z \in [T]),$$

$$\forall k \exists Z \forall i < k \ (\varphi_{e_i}(m_i, Z \bigoplus X)).$$

By lemma 1, $\{(e_i, m_i)\}_{i \in \mathbb{N}}$ is computable from X'. Now there exists Y s.t.

$$\forall i \, \varphi_{e_i}(m_i, Y \bigoplus X), \\ \forall e, m \, (\varphi_e(m, Y \bigoplus X) \leftrightarrow (e, m) \in \{(e_i, m_i)\}_i).$$

Thus $\{(e, m) : \varphi_e(m, Y \bigoplus X)\} \leq_T \{(e_i, m_i)\}_i \leq_T X'. \Box$

11 / 16

We can make \mathcal{L}_2 -structures in a \mathcal{L}_2 -structure. These structures are called coded structure.

Definition(Coded Structure)

A coded structure is a pair $(N, \{W_n\}_n)$ s.t.

(1) N has
$$0^N, +^N$$
 and so on,

(2) each W_n is a subset of N.

We say a coded structure $(N, \{W_n\})$ is an ω -structure if

$$N = \mathbb{N}, 0^N = 0, +^N = +$$
 and so on.

Fact

There exists a Π_1^0 formula $\psi(X, M)$ s.t. (1) WKL₀ $\vdash \forall X \exists M \psi(X, M)$, (2) ACA₀ $\vdash \psi(X, M) \rightarrow M$ is a coded ω -model of WKL₀ including X.

12

Theorem (ACA_0)

For any $X \subseteq \mathbb{N}$, there exists a coded ω -model M of WKL₀ s.t. $X \in M$ and $\forall Y \in M(Y \bigoplus X)' \leq_T X'$.

[Proof] Let $X \subseteq \mathbb{N}$ and $\psi(X, M)$ be a Π_1^0 formula as in the previous fact. Then we can define an X-computable tree T s.t. $M \in [T] \leftrightarrow \psi(X, M)$. Since $\exists M \psi(X, M), [T] \neq \emptyset$. By applying low basis theorem to T, we can get $M \in [T]$ s.t. $(M \bigoplus X)' \leq_T X'$. Now, if $Y \in M$ then $Y \leq_T M$ and hence $(Y \bigoplus X)' \leq X'$. \Box

	Theorems		Order
	00		

By similar argument, we can show the followings:

Theorem

Int

ACA₀ proves realativized hyperimmune-free basis theorem: $\forall X \forall T \leq_T X(|T| = \infty \rightarrow \exists Y \in [T]$ (Y is X-hyperimmune-free)).

Theorem (ACA_0)

For any $X \subseteq \mathbb{N}$, there exists a coded ω -model M of WKL₀ s.t. $X \in M$ and $\forall Y \in M(Y \text{ is } X\text{-hyperimmune-free}).$

Fact

Every noncomputable low set is not hyperimmune-free.

Corollary

Let M, M' be countable ω -models of WKL₀ s.t. $X \in M \Rightarrow X$ is low, $X \in M' \Rightarrow X$ is hyperimmune-free. Then $M \cap M' = \text{REC}$.

 $15 \,/\, 16$

Corollary

$$\label{eq:kappa} \begin{split} &\ln\,\mathrm{RCA}_0 \ \mathrm{the\ following\ relations\ hold}.\\ &WKL_0 < \mathrm{LBT} < \mathrm{ACA}_0,\\ &WKL_0 < \mathrm{HFBT} < \mathrm{ACA}_0. \end{split}$$

Note: We have already shown that \leq holds.

[Proof] $M, M' : \omega$ -models of WKL₀ s.t.

M includes only low sets,

M' includes only hyperimmune-free sets.

(1st inequality) $M \models \text{WKL}_0 + \neg \text{HFBT}$,

 $M' \models \text{WKL}_0 + \neg \text{LBT}.$

(2nd inequality) Since $\emptyset' \notin M, M'$, we have

 $M \models \text{LBT} + \neg \Sigma_1^0 \text{-CA},$

 $M' \models \text{HFBT} + \neg \Sigma_1^0 \text{-CA.}$

Reference I

- Stephen G. Simpson.
 Subsystems of Second Order Arithmetic.
 Cambridge University Press, 2nd edition, 2009.
- Stephen G. Simpson.

A survey of basis theorem.

 $\label{eq:http://www.personal.psu.edu/t20/talks/ctfm1302/talk.ps, accessed November 26th, 2019.$

Robert I. Soare.

Turing Computablity, Theory and Applications. Springer, 2016.

 $16 \, / \, 16$