On Hilbert's tenth problem over subrings of $\ensuremath{\mathbb{Q}}$

Takao Yuyama 数学基礎論若手の会 2019 (at Okazaki, Aichi prefecture, Japan) December 8, 2019

Tokyo Institute of Technology

A Diophantine equation is an equation of the form $f(\vec{x}) = 0$ for some (possibly multivariate) polynomial $f \in \mathbb{Z}[x_1, x_2, ...]$.

Hilbert's tenth problem; $HTP(\mathbb{Z})$ (Hilbert, 1900)

Is there an algorithm to decide whether there exists an integer solution of a given Diophantine equation?

MRDP theorem (Matiyasevich, 1970)

No such algorithm exist. That is, $\mathrm{HTP}(\mathbb{Z})$ is undecidable.

More precisely, every computably enumerable set (c.e. set) in \mathbb{Z}^n is a Diophantine set in \mathbb{Z} .

It is natural to generalize the original Hilbert's tenth problem to arbitrary ring R.

Hilbert's tenth problem over a ring R; HTP(R)

Is there an algorithm to decide whether there exists a solution in R of a given Diophantine equation from $R[x_1, x_2, ...]$?

The undecidability status for $R = \mathbb{Q}$ is still open.

Open problem (HTP(\mathbb{Q}))

Is $\operatorname{HTP}(\mathbb{Q})$ undecidable?

The only known method to prove the undecidability of HTP(R) for a ring R is the following proposition.

Proposition

If \mathbb{Z} admits a Diophantine model in a ring R, then HTP(R) is undecidable. In particular, if \mathbb{Z} is a Diophantine set over a ring R, then HTP(R) is undecidable.

However, the above proposition cannot be appliable to $R = \mathbb{Q}$ when we assuming some plausible number-theoretic condition.

Theorem (Cornelissen-Zahidi, 2000)

The integers $\mathbb Z$ does not admit a Diophantine model in $\mathbb Q$ under the Mazur conjecture.

Activating computability theory

For $W \subseteq \mathbb{P} := \{ \text{ prime numbers } \}$, define $R_W := \mathbb{Z}[W^{-1}] \subseteq \mathbb{Q}$ and $\operatorname{HTP}(R_W) := \{ f \in \mathbb{Z}[x_1, x_2, \dots] \mid f \text{ has a solution in } R_W \}.$ Eisenträger-Miller-Park-Shlapentokh (2017) observed:

The set of subrings of \mathbb{Q} is isomorphic to the Cantor space $2^{\mathbb{P}}$ There is a bijection

$$2^{\mathbb{P}} \qquad \stackrel{\sim}{\longleftrightarrow} \quad \{ \text{ subring } R \subseteq \mathbb{Q} \} \\ W \qquad \longmapsto \qquad R_W = \mathbb{Z}[W^{-1}] \\ p \mid 1/p \in R \} \quad \longleftarrow \qquad R.$$

Basic facts

For any $W \in 2^{\mathbb{P}}$, we have $R_W \equiv_{\mathrm{T}} W$ and

- $\operatorname{HTP}(R_W)$ is c.e. in W. In particular, $W \leq_{\mathrm{T}} \operatorname{HTP}(R_W) \leq_{\mathrm{T}} W'$,
- $\operatorname{HTP}(\mathbb{Z}) \equiv \emptyset' \text{ and } \operatorname{HTP}(\mathbb{Q}) \leq_{\mathrm{T}} \operatorname{HTP}(R_W).$

Definition (Miller, 2016)

For a polynomial $f \in \mathbb{Z}[x_1, x_2, \dots]$,

• $\mathcal{A}(f) := \{ W \in 2^{\mathbb{P}} \mid f \text{ has a solution in } R_W \}$: open set in $2^{\mathbb{P}}$,

• $\mathcal{C}(f) := \operatorname{int}(\overline{\mathcal{A}}) = \left\{ W \in 2^{\mathbb{P}} \middle| \exists V \in 2^{\mathbb{P}} \left[\begin{matrix} W \subseteq V, V \text{ is cofinite, } f \text{ does} \\ \operatorname{not have a solution in } R_V \end{matrix} \right] \right\},$ • $\mathcal{B}(f) := \partial \mathcal{A}(f) = \left\{ \begin{matrix} W \in 2^{\mathbb{P}} \\ W \in 2^{\mathbb{P}} \end{matrix} \middle| \begin{matrix} f \text{ does not have a solution in } R_W, \\ \forall V \in 2^{\mathbb{P}} \begin{bmatrix} W \subseteq V, V \text{ is cofinite } \Longrightarrow \\ f \text{ has a solution in } R_V \end{matrix} \right] \right\},$

• $\mathcal{B} := \bigcup_{f \in \mathbb{Z}[x_1, x_2, \dots]} \mathcal{B}(f)$: meager set in $2^{\mathbb{P}}$.

HTP-genericity

```
Definition (Miller, 2016)
```

A set $W \in 2^{\mathbb{P}}$ is HTP-generic if $W \notin \mathcal{B}$.

Since \mathcal{B} is meager, there are comeager many HTP-generic sets.

Proposition (Eisenträger-Miller-Park-Shlapentokh, 2017) For any finite set $A \subseteq \mathbb{P}$, $\operatorname{HTP}(R_{\mathbb{P}-A}) \leq_{\mathrm{T}} \operatorname{HTP}(\mathbb{Q})$.

This proposition yields the following one.

```
Proposition (Miller, 2016)
```

If $W \in 2^{\mathbb{P}}$ is an HTP-generic set, then $\operatorname{HTP}(R_W) \leq_{\mathrm{T}} W \oplus \operatorname{HTP}(\mathbb{Q})$.

We can construct co-infinie HTP-generic set $W \leq_{\mathrm{T}} \mathrm{HTP}(\mathbb{Q})$, which satisfies $\mathrm{HTP}(R_W) \equiv_{\mathrm{T}} \mathrm{HTP}(\mathbb{Q})$.

HTP-completeness versus HTP-nontriviality

Definition (Miller, 2019⁺)

A set $W \in 2^{\mathbb{P}}$ is HTP-complete if $W' \leq_1 \operatorname{HTP}(R_W)$ ($\Rightarrow W' \equiv_T \operatorname{HTP}(R_W)$).

Proposition

If there exists $W \in 2^{\mathbb{P}}$ such that it is HTP-complete and HTP-generic, then $HTP(\mathbb{Q}) >_T \emptyset$.

However:

```
Theorem (Miller, 2019<sup>+</sup>)
```

The set of HTP-complete sets is meager and <u>null</u> in $2^{\mathbb{P}}$.

So we introduce more suitable notion for undecidability proof.

Definition (Y.)

A set $W \in 2^{\mathbb{P}}$ is HTP-nontrivial if $W <_{\mathrm{T}} \mathrm{HTP}(R_W)$ (i.e., $\mathrm{HTP}(R_W) \not\leq_{\mathrm{T}} W$).

Main Theorem 1

We characterize the undecidability of $HTP(\mathbb{Q})$ in terms of HTP-nontriviality. Define $\mathcal{N} := \{ W \in 2^{\mathbb{P}} \mid W \text{ is HTP-nontrivial } \}.$

Theorem (Y.)

The following conditions are equivalent.

HTP(Q) >_T Ø,
 N is comeager in 2^P,
 N is not meager in 2^P,
 N ∩ B ≠ Ø.

Proof sketch.

(1) ⇒ (2). If HTP(Q) >_T Ø, then there are comeager many sets incomparable with HTP(Q). Then we have W ≱_T HTP(Q) ≤_T HTP(R_W), i.e., W <_T HTP(R_W) for such W.
(2) ⇒ (3) ⇒ (4). easy.
(4) ⇒ (1). For W ∈ N ∩ B, we have W <_T HTP(R_W) ≤_T W ⊕ HTP(Q). □

Note that undecidability proof along this direction work even if $HTP(\mathbb{Q}) <_T \emptyset'!$

Miller has showed the following result.

```
Theorem (Miller, 2016)
```

For $C \in 2^{\omega}$, the following conditions are equivalent.

```
    C ≤<sub>T</sub> HTP(Q),
    { W ∈ 2<sup>P</sup> | C ≤<sub>T</sub> HTP(R<sub>W</sub>) } = 2<sup>P</sup>,
    { W ∈ 2<sup>P</sup> | C ≤<sub>T</sub> HTP(R<sub>W</sub>) } is not meager.
```

However, undecidability proofs in this direction need to construct some fixed set ${\cal C}.$

Banach-Mazur game

Definition

For $\mathcal{A} \subseteq 2^{\omega}$, Banach-Mazur game for \mathcal{A} (denoted by BM(\mathcal{A})) is an infinite game played by Player I and II. They choose increasing strings $\sigma_s \in 2^{<\omega}$ in turns, and Player I wins if and only if $f = \bigcup_{s \in \omega} \sigma_s \in \mathcal{A}$.

Proposition

 $I \uparrow BM(\mathcal{A}) \iff \mathcal{A} \text{ is comeager},$ $II \uparrow BM(\mathcal{A}) \iff \mathcal{A} \text{ is meager}.$

Main Theorem 2

Theorem (Y.)

The following conditions are equivalent.

- 1. $\operatorname{HTP}(\mathbb{Q}) >_{\mathrm{T}} \emptyset$,
- 2. I $\uparrow \operatorname{BM}(\mathcal{N})$,
- 3. II $\not T \operatorname{BM}(\mathcal{N}).$

In particular, $BM(\mathcal{N})$ is determined.

Proof.

- (1) \Rightarrow (2). If $\operatorname{HTP}(\mathbb{Q}) >_{T} \emptyset$, then \mathcal{N} is comeager and $I \uparrow BM(\mathcal{N})$.
- (2) \Rightarrow (3). clear.
- (3) \Rightarrow (1). If II $\Upsilon BM(\mathcal{N})$, then \mathcal{N} is not meager and $HTP(\mathbb{Q}) >_T \emptyset$.

Partial result

Theorem (Y.)

The set of m-nontrivial rings $\mathcal{N}_{m} = \{ W \in 2^{\mathbb{P}} \mid W <_{m} HTP(R_{W}) \}$ is comearger in $2^{\mathbb{P}}$.

Proof sketch.

For each computable function $h: \omega \to \omega$, $\{ W \in 2^{\mathbb{P}} \mid W \leq_{\mathrm{m}} \mathrm{HTP}(R_W) \text{ via } h \} - \mathcal{B}$ is closed and nowhere dense in $2^{\mathbb{P}} - \mathcal{B}$.

Question

How about tt-nontrivial rings $\mathcal{N}_{tt} := \{ W \in 2^{\mathbb{P}} \mid W <_{tt} HTP(R_W) \}$?

References

- G. Cornelissen, K. Zahidi, Topology of Diophantine Sets: Remarks on Mazur's Conjectures, *Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry (Ghent, 1999)*, 253–260, Contemp. Math. Vol. 270, *Amer. Math. Soc., Providence, RI*, 2000.
- K. Eisenträger et al., As easy as Q: Hilbert's tenth problem for subrings of the rationals and number fields, Trans. Amer. Math. Soc, 369(11): 8291–8315, 2017.
- R. G. Miller, Baire Category Theory and Hilbert's Tenth Problem Inside Q, in CiE 2016: Pursuit of the Universal, LNCS Vol. 9709, Springer, 2016, 343–352.
- R. G. Miller, HTP-complete rings of rational numbers, arXiv Preprint, 2019, http://arxiv.org/abs/1907.03147.