On Hilbert＇s tenth problem over subrings of \mathbb{Q}

Takao Yuyama
数学基礎論若手の会 2019 （at Okazaki，Aichi prefecture，Japan）
December 8， 2019
Tokyo Institute of Technology

Hilbert's tenth problem

A Diophantine equation is an equation of the form $f(\vec{x})=0$ for some (possibly multivariate) polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$.

Hilbert's tenth problem; $\operatorname{HTP}(\mathbb{Z})$ (Hilbert, 1900)

Is there an algorithm to decide whether there exists an integer solution of a given Diophantine equation?

MRDP theorem (Matiyasevich, 1970)

No such algorithm exist. That is, $\operatorname{HTP}(\mathbb{Z})$ is undecidable.
More precisely, every computably enumerable set (c.e. set) in \mathbb{Z}^{n} is a Diophantine set in \mathbb{Z}.

Hilbert's tenth problem over the rational numbers

It is natural to generalize the original Hilbert's tenth problem to arbitrary ring R.
Hilbert's tenth problem over a ring R; $\operatorname{HTP}(R)$
Is there an algorithm to decide whether there exists a solution in R of a given
Diophantine equation from $R\left[x_{1}, x_{2}, \ldots\right]$?

The undecidability status for $R=\mathbb{Q}$ is still open.
Open problem (HTP(Q))
Is $\operatorname{HTP}(\mathbb{Q})$ undecidable?

Known difficulty

The only known method to prove the undecidability of $\operatorname{HTP}(R)$ for a ring R is the following proposition.

Proposition

If \mathbb{Z} admits a Diophantine model in a ring R, then $\operatorname{HTP}(R)$ is undecidable. In particular, if \mathbb{Z} is a Diophantine set over a ring R, then $\operatorname{HTP}(R)$ is undecidable.

However, the above proposition cannot be appliable to $R=\mathbb{Q}$ when we assuming some plausible number-theoretic condition.

Theorem (Cornelissen-Zahidi, 2000)
The integers \mathbb{Z} does not admit a Diophantine model in \mathbb{Q} under the Mazur conjecture.

Activating computability theory

For $W \subseteq \mathbb{P}:=\{$ prime numbers $\}$, define $R_{W}:=\mathbb{Z}\left[W^{-1}\right] \subseteq \mathbb{Q}$ and $\operatorname{HTP}\left(R_{W}\right):=\left\{f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right] \mid f\right.$ has a solution in $\left.R_{W}\right\}$.
Eisenträger-Miller-Park-Shlapentokh (2017) observed:
The set of subrings of \mathbb{Q} is isomorphic to the Cantor space $2^{\mathbb{P}}$
There is a bijection

$$
\begin{array}{ccc}
2^{\mathbb{P}} & \longleftrightarrow & \{\text { subring } R \subseteq \mathbb{Q}\} \\
W & \longmapsto & R_{W}=\mathbb{Z}\left[W^{-1}\right] \\
\{p \mid 1 / p \in R\} & \longleftrightarrow & R .
\end{array}
$$

Basic facts

For any $W \in 2^{\mathbb{P}}$, we have $R_{W} \equiv_{\mathrm{T}} W$ and

- $\operatorname{HTP}\left(R_{W}\right)$ is c.e. in W. In particular, $W \leq_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right) \leq_{\mathrm{T}} W^{\prime}$,
- $\operatorname{HTP}(\mathbb{Z}) \equiv \emptyset^{\prime}$ and $\operatorname{HTP}(\mathbb{Q}) \leq_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right)$.

Open set associating to a polynomial

Definition (Miller, 2016)

For a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$,

- $\mathcal{A}(f):=\left\{W \in 2^{\mathbb{P}} \mid f\right.$ has a solution in $\left.R_{W}\right\}$: open set in $2^{\mathbb{P}}$,
- $\mathcal{C}(f):=\operatorname{int}(\overline{\mathcal{A}})=\left\{W \in 2^{\mathbb{P}} \left\lvert\, \exists V \in 2^{\mathbb{P}}\left[\begin{array}{l}W \subseteq V, V \text { is cofinite, } f \text { does } \\ \text { not have a solution in } R_{V}\end{array}\right]\right.\right\}$,
- $\mathcal{B}(f):=\partial \mathcal{A}(f)=\left\{\begin{array}{l|l}W \in 2^{\mathbb{P}} & \begin{array}{l}f \text { does not have a solution in } R_{W}, \\ \forall V \in 2^{\mathbb{P}}\end{array} \begin{array}{l}W \subseteq V, V \text { is cofinite } \\ f \text { has a solution in } R_{V}\end{array}\end{array}\right]$,
- $\mathcal{B}:=\bigcup_{f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]} \mathcal{B}(f)$: meager set in $2^{\mathbb{P}}$.

HTP-genericity

Definition (Miller, 2016)

A set $W \in 2^{\mathbb{P}}$ is HTP-generic if $W \notin \mathcal{B}$.

Since \mathcal{B} is meager, there are comeager many HTP-generic sets.

Proposition (Eisenträger-Miller-Park-Shlapentokh, 2017)

For any finite set $A \subseteq \mathbb{P}, \operatorname{HTP}\left(R_{\mathbb{P}-A}\right) \leq_{T} \operatorname{HTP}(\mathbb{Q})$.
This proposition yields the following one.

Proposition (Miller, 2016)

If $W \in 2^{\mathbb{P}}$ is an HTP-generic set, then $\operatorname{HTP}\left(R_{W}\right) \leq_{\mathrm{T}} W \oplus \operatorname{HTP}(\mathbb{Q})$.
We can construct co-infinie HTP-generic set $W \leq_{T} \operatorname{HTP}(\mathbb{Q})$, which satisfies $\operatorname{HTP}\left(R_{W}\right) \equiv_{\mathrm{T}} \operatorname{HTP}(\mathbb{Q})$.

HTP-completeness versus HTP-nontriviality

Definition (Miller, 2019+ ${ }^{+}$
A set $W \in 2^{\mathbb{P}}$ is HTP-complete if $W^{\prime} \leq_{1} \operatorname{HTP}\left(R_{W}\right)\left(\Rightarrow W^{\prime} \equiv_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right)\right)$.

Proposition

If there exists $W \in 2^{\mathbb{P}}$ such that it is HTP-complete and HTP-generic, then $\operatorname{HTP}(\mathbb{Q})>_{\mathrm{T}} \emptyset$.

However:
Theorem (Miller, 2019 ${ }^{+}$)
The set of HTP-complete sets is meager and null in $2^{\mathbb{P}}$.
So we introduce more suitable notion for undecidability proof.

Definition (Y.)

A set $W \in 2^{\mathbb{P}}$ is HTP-nontrivial if $W<_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right)$ (i.e., $\left.\operatorname{HTP}\left(R_{W}\right) \not \mathbb{Z}_{\mathrm{T}} W\right)$.

Main Theorem 1

We characterize the undecidability of $\operatorname{HTP}(\mathbb{Q})$ in terms of HTP-nontriviality. Define $\mathcal{N}:=\left\{W \in 2^{\mathbb{P}} \mid W\right.$ is HTP-nontrivial $\}$.

Theorem (Y.)

The following conditions are equivalent.

1. $\operatorname{HTP}(\mathbb{Q})>_{\mathrm{T}} \emptyset$,
2. \mathcal{N} is comeager in $2^{\mathbb{P}}$,
3. \mathcal{N} is not meager in $2^{\mathbb{P}}$,
4. $\mathcal{N} \cap \overline{\mathcal{B}} \neq \emptyset$.

Proof sketch.

(1) \Rightarrow (2). If $\operatorname{HTP}(\mathbb{Q})>_{\mathrm{T}} \emptyset$, then there are comeager many sets incomparable with $\operatorname{HTP}(\mathbb{Q})$. Then we have $W \not \gtrless_{\mathrm{T}} \operatorname{HTP}(\mathbb{Q}) \leq_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right)$, i.e., $W<_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right)$ for such W.
$(2) \Rightarrow(3) \Rightarrow(4)$. easy.
(4) \Rightarrow (1). For $W \in \mathcal{N} \cap \overline{\mathcal{B}}$, we have

$$
W<_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right) \leq_{\mathrm{T}} W \oplus \operatorname{HTP}(\mathbb{Q})
$$

Note that undecidability proof along this direction work even if $\operatorname{HTP}(\mathbb{Q})<_{T} \emptyset^{\prime}$!

Comparing with Miller's result

Miller has showed the following result.

Theorem (Miller, 2016)

For $C \in 2^{\omega}$, the following conditions are equivalent.

1. $C \leq_{\mathrm{T}} \operatorname{HTP}(\mathbb{Q})$,
2. $\left\{W \in 2^{\mathbb{P}} \mid C \leq_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right)\right\}=2^{\mathbb{P}}$,
3. $\left\{W \in 2^{\mathbb{P}} \mid C \leq_{\mathrm{T}} \operatorname{HTP}\left(R_{W}\right)\right\}$ is not meager.

However, undecidability proofs in this direction need to construct some fixed set C.

Banach-Mazur game

Definition

For $\mathcal{A} \subseteq 2^{\omega}$, Banach-Mazur game for \mathcal{A} (denoted by $\operatorname{BM}(\mathcal{A})$) is an infinite game played by Player I and II. They choose increasing strings $\sigma_{s} \in 2^{<\omega}$ in turns, and Player I wins if and only if $f=\bigcup_{s \in \omega} \sigma_{s} \in \mathcal{A}$.

$\mathrm{I} \uparrow \operatorname{BM}(\mathcal{A}): \Longleftrightarrow$ Player I has a winning strategy,
$\mathrm{II} \uparrow \mathrm{BM}(\mathcal{A}): \Longleftrightarrow$ Player II has a winning strategy.

Proposition

$$
\begin{aligned}
\mathrm{I} \uparrow \operatorname{BM}(\mathcal{A}) & \Longleftrightarrow \mathcal{A} \text { is comeager, } \\
\mathrm{II} \uparrow \operatorname{BM}(\mathcal{A}) & \Longleftrightarrow \mathcal{A} \text { is meager. }
\end{aligned}
$$

Main Theorem 2

Theorem (Y.)

The following conditions are equivalent.

1. $\operatorname{HTP}(\mathbb{Q})>_{\mathrm{T}} \emptyset$,
2. $\mathrm{I} \uparrow \mathrm{BM}(\mathcal{N})$,
3. $I I \not \subset \operatorname{BM}(\mathcal{N})$.

In particular, $\mathrm{BM}(\mathcal{N})$ is determined.

Proof.

(1) \Rightarrow (2). If $\operatorname{HTP}(\mathbb{Q})>_{\mathrm{T}} \emptyset$, then \mathcal{N} is comeager and $\mathrm{I} \uparrow \operatorname{BM}(\mathcal{N})$.
$(2) \Rightarrow(3)$. clear.
$\mathbf{(3)} \Rightarrow \mathbf{(1)}$. If II $\not \subset \operatorname{BM}(\mathcal{N})$, then \mathcal{N} is not meager and $\operatorname{HTP}(\mathbb{Q})>_{\mathrm{T}} \emptyset$.

Partial result

Theorem (Y.)

The set of m-nontrivial rings $\mathcal{N}_{\mathrm{m}}=\left\{W \in 2^{\mathbb{P}} \mid W<_{\mathrm{m}} \operatorname{HTP}\left(R_{W}\right)\right\}$ is comearger in $2^{\mathbb{P}}$.

Proof sketch.

For each computable function $h: \omega \rightarrow \omega$,

$$
\left\{W \in 2^{\mathbb{P}} \mid W \leq_{\mathrm{m}} \operatorname{HTP}\left(R_{W}\right) \text { via } h\right\}-\mathcal{B}
$$

is closed and nowhere dense in $2^{\mathbb{P}}-\mathcal{B}$.

Question

How about tt-nontrivial rings $\mathcal{N}_{\mathrm{tt}}:=\left\{W \in 2^{\mathbb{P}} \mid W<_{\mathrm{tt}} \operatorname{HTP}\left(R_{W}\right)\right\}$?

References

: G. Cornelissen, K. Zahidi, Topology of Diophantine Sets: Remarks on Mazur's Conjectures, Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry (Ghent, 1999), 253-260, Contemp. Math. Vol. 270, Amer. Math. Soc., Providence, RI, 2000.
: K. Eisenträger et al., As easy as \mathbb{Q} : Hilbert's tenth problem for subrings of the rationals and number fields, Trans. Amer. Math. Soc, 369(11): 8291-8315, 2017.

国 R. G. Miller, Baire Category Theory and Hilbert's Tenth Problem Inside \mathbb{Q}, in CiE 2016: Pursuit of the Universal, LNCS Vol. 9709, Springer, 2016, 343-352.
围 R. G. Miller, HTP-complete rings of rational numbers, arXiv Preprint, 2019, http://arxiv.org/abs/1907.03147.

