Quantum Physics and Logic 2022, Oxford, 27 June – 1 July 2022

Logical Characterization of Contextual Hidden-Variable Theories Based on Quantum Set Theory

Masanao Ozawa Chubu University and Nagoya University

Introduction

- To make quantum logic great, we construct mathematics based on quantum logic.
- According to Bourbaki, we have only to construct set theory instead of constructing various branches of mathematics.
- For this purpose, Gaisi Takeuti introduced quantum set theory (QST) in 1981.
- Takeuti showed that observables (self-adjoint operators) A of the quantum system bijectively correspond to the internal real numbers \tilde{A} in QST. We generalized Takeuti's QST for arbitrary von Neumann algebras and use them to characterize contextual hidden-variable theories.

Quantum set theory

- Denote by $L(\in)$ the language of set theory without constants, and by $L(\in,U)$ the language of set theory augmented by constants denoting elements of U.
- To any von Neumann algebra \mathcal{M} with the projection lattice $\mathcal{P}(\mathcal{M})$, we constructed a set theoretical universe $V[\mathcal{M}]$ such that:
 - (i) For any statement $\phi(u_1, \ldots, u_n) \in L(\in, V[\mathcal{M}])$, the $\mathcal{P}(\mathcal{M})$ -valued truth value $[\![\phi(u_1, \ldots, u_n)]\!]$ is assigned.

- (ii) Δ_0 -Elementary Quantum Extension: $V[\mathcal{M}]$ extends the standard universe V of ZFC set theory by embedding $a \in V \mapsto \check{a} \in V[\mathcal{M}]$ such as
 - (a) $a \in b$ if and only if $[\![\check{a} \in \check{b}]\!] = 1$,
 - (b) a=b if and only if $[\![\check{a}=\check{b}]\!]=1$,
 - (c) $\phi(a_1,\ldots,a_n)$ holds in V if and only if $\llbracket \phi(\check{a}_1,\ldots,\check{a}_n) \rrbracket = 1$.
- (iii) Takeuti Correspondence: The self-adjoint operators A affiliated with $\mathcal M$ bijectively correspond to the internal real numbers $\tilde A$ in $V[\mathcal M]$ satisfying

$$\llbracket ilde{A} \leq \check{\lambda}
rbracket = E^A(\lambda)$$

(iv) Transfer Principle: For any Δ_0 -formula $\phi(x_1,\ldots,x_n)$ provable in ZFC set theory and for any $u_1,\ldots,u_n\in V[\mathcal{M}],$

$$\llbracket \phi(u_1,\ldots,u_n)
rbracket \geq \underline{ee}(u_1,\ldots,u_n),$$

where $\underline{\vee}(u_1,\ldots,u_n)$ is the $\mathcal{P}(\mathcal{M})$ -valued commutators of $u_1,\ldots,u_n\in V[\mathcal{M}]$.

(v) \mathcal{M} is abelian if and only if

$$\llbracket \phi(u_1,\ldots,u_n) \rrbracket = 1$$

for any formula $\phi(x_1, \ldots, x_n) \in L(\in)$ provable in ZFC set theory and any $u_1, \ldots, u_n \in V[\mathcal{M}]$.

Algebraic characterization

- Bohr's notion of elements of physical reality suggested in the Bohr-EPR debate:
 - (i) (Classicality) They should be described by a classical language obeying classical logic.
 - (ii) (A-Priv) If A is measured, A is an element of reality.
 - (iii) (Contextualized EPR criterion) If the value of B is inferred with probability unity by the result of A-measurement without disturbing the value of B (i.e., [A,B]=0), B is also an element of reality.
- Definition. Given a measurement context (ψ, A) , consisting of a state vector ψ and an observable A, an observable considered to have its value is called a beable in (ψ, A) .

- Halvorson and Clifton maximally characterized the beables in (ψ, A) as observables affiliated with the following von Neumann algebra \mathcal{M} , called a maximal beable subalgebra of $\mathcal{L}(\mathcal{H})$ definable by (ψ, A) .
 - (i) (Beable) \mathcal{M} is beable in ψ , i.e., there exists a probability measure μ on the space $\mathcal{D}(\mathcal{M})$ of dispersion-free states of \mathcal{M} such that

$$(\psi, X\psi) = \int_{\mathcal{D}(\mathcal{M})} \, \omega(X) d\mu(\omega),$$

for any $X \in \mathcal{M}$.

- (ii) (A-Priv) A is affiliated with \mathcal{M} .
- (iii) (Definability) $\mathcal M$ is implicitly definable by (ψ,A) , i.e., $U^*\mathcal MU=\mathcal M$ for every unitary operator U on $\mathcal H$ such that $U\psi=\psi$ and $U^*AU=A$.
- (iv) (Maximality) \mathcal{M} is maximal among all von Neumann algebras \mathcal{M} satisfying (i)–(iii).

• Theorem (Halvorson-Clifton 1999): For any measurement context (ψ,A) there uniquely exists a maximal beable subalgebra definable in (ψ,A) .

Logical characterization

• The language $L(\in, V[\mathcal{M}])$ is called ZFC-satisfiable in a state ψ iff any formula $\phi(x_1, \ldots, x_n) \in L(\in)$ provable in ZFC holds with probability unity for any $u_1, \ldots, u_n \in V[\mathcal{M}]$, i.e.,

$$(\psi,\llbracket\phi(u_1,\ldots,u_n)
bracket\psi)=1.$$

- The language $L(\in, V[\mathcal{M}])$ is called a maximal ZFC-satisfiable theory definable by a measurement context (ψ, A) iff it satisfies
 - (i) (ZFC-Satisfiability) $L(\in, V[\mathcal{M}])$ is ZFC-satisfiable in ψ .
 - (ii) (A-Priv) \tilde{A} is an internal real number in $L(\in,\mathcal{M})$.

(iii) (Definability) $L(\in, V[\mathcal{M}])$ is implicitly definable by (ψ, A) , i.e., $\alpha_U(V[\mathcal{M}]) = V[\mathcal{M}]$ for any unitary U such that $U\psi = \psi$ and $U^*AU = A$, where $\alpha_U(u)$ is defined for all $u \in V[\mathcal{M}]$ by the following recursion:

$$\alpha_U(u) = \{(\alpha_U(x), U^*u(x)U) \mid x \in \text{dom}(u)\}.$$

(iv) (Maximality) $L(\in, V[\mathcal{M}])$ is maximal among all languages $L(\in, V[\mathcal{M}])$ satisfying (i)–(iii).

- Theorem: The language $L(\in, V[\mathcal{M}])$ is ZFC-satisfiable in ψ if and only if \mathcal{M} is beable in ψ .
- Theorem: For any measurement context (ψ, A) there uniquely exists a maximal ZFC-satisfiable theory $L(\in, V[\mathcal{M}])$ definable by a measurement context (ψ, A) . In this case, \mathcal{M} is the maximal beable subalgebra definable by (ψ, A)
- Theorem: If $ilde{A} = ilde{B}$ holds with probability unity in the state ψ , i.e.,

$$(\psi, \llbracket \tilde{A} = \tilde{B} \rrbracket \psi) = 1,$$

then \tilde{B} is in the maximal ZFC-satisfiable theory definable by the measurement context (ψ,A) .

• Example. Consider the composite system S of two spin 1/2 particles with the state space $\mathcal{H}=\mathrm{C}^2\otimes\mathrm{C}^2$, in the singlet state $\psi=2^{-1/2}(|+_z\rangle|-_z\rangle-|-_z\rangle|+_z\rangle)$ and the obsevable $A=\sigma_z\otimes 1$. Let $\mathcal{B}(\psi,A)$ be the maximal beable subalgebra of $\mathcal{L}(\mathcal{H})$ definable by (ψ,A) . Let $B=1\otimes\sigma_z$. Then,

$$(\psi, \llbracket ilde{A} = ilde{B}
rbracket \psi) = 1,$$

so that $1 \otimes \sigma_z \in \mathcal{B}(\psi, A)$ but $1 \otimes (\cos \theta \sigma_z + \sin \theta \sigma_x) \not\in \mathcal{B}(\psi, A)$ if $\cos \theta \neq \pm 1$.

• Conclusion: We conclude that for any measurement context (ψ, A) there uniquely exists a maximal contextual hidden-variable theory, i.e., the maximal ZFC-satisfiable theory definable by the measurement context (ψ, A) , which maximally realizes Bohr's notion of elements of physical reality.