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Abstract—This paper considers the comparison of noisy chan-
nels from the viewpoint of statistical decision theory. Various
orderings are discussed, all formalizing the idea that one channel
is “better” than another for information transmission. The main
result is an equivalence relation that is proved for classical chan-
nels, quantum channels with classical encoding, and quantum
channels with quantum encoding.

A data-processing inequality is a mathematical statement
formalizing the fact that the information content of a signal
cannot be increased by post-processing. One of the simplest
scenarios in which a data-processing inequality can be formu-
lated is the following [1], [2]. Given are two noisy channels
w1 : X → Y and w2 : Y → Z, where X = {x}, Y = {y} ,
and Z = {z} are three finite alphabets. Then, for any index
set U = {u} and any initial joint distribution p(x, u), the joint
distribution

∑
x w2(z|y)w1(y|x)p(x, u) satisfies the following

inequalities:
I(U ;Y ) ≥ I(U ;Z) . (1)

Interpreting the random variable U as the (index labeling
the) message, X as the transmitted signal (codeword), w1 as
the communication channel, Y as the output signal, w2 as
the decoding, and Z as the recovered message, the above
inequality formalizes the fact that the information content
carried by the signal about the message cannot be increased
by any decoding performed locally at the receiver (see Fig. 1).

Data-processing inequalities hence provide necessary con-
ditions for the communication process to be “local.” Namely,
data-processing inequalities must be obeyed whenever the
physical process carrying the message from the sender to
the receiver is composed by computationally isolated parts
(encoding, transmission, decoding, etc.). Any information that
is communicated must be transmitted via a physical signal: as
such, in the absence of an external memory, information can
only decrease, never increase, along the transmission. Hence,
“locality” in this sense can be understood as the condition that
the process U → X → Y → Z forms a Markov chain.

Here we aim to derive statements that provide sufficient con-
ditions for Markov locality, in the form of a set of information-
theoretic inequalities. We refer to such statements as reverse
data-processing theorems. For example, suppose that, given
two noisy channels w : X→ Y and w′ : X→ Z, for any set U
and for any initial joint distribution p(x, u), the resulting dis-
tributions

∑
x w(y|x)p(x, u) and

∑
x w
′(z|x)p(x, u) always

u
p(x|u) x

w1(y|x)
y

w2(z|y)
z

Fig. 1. Shannon’s basic communication scheme: a message labeled by u is
passed through the (probabilistic) encoding p(x|u), which produces the input
x to the channel. This is transmitted to the receiver via the communication
channel w1. The receiver obtains the output symbol y and decodes it with
w2, thus obtaining an estimate z of u.

satisfy the inequality I(U ;Y ) ≥ I(U ;Z). Can we then
conclude that there exists a noisy channel ϕ : Y → Z such
that w′(z|x) =

∑
y ϕ(z|y)w(y|x)?

I. COMPARISON OF NOISY CHANNELS

An answer in the affirmative to the above question would
constitute an example of a reverse data-processing theorem
(RDPT). Clearly, a RDPT is a statement about the comparison
of two noisy channels, formalizing the concept that one chan-
nel is “more informative” than the other one. This problem,
first considered by Shannon [3], is intimately related to the
theory of statistical comparisons [4], [5], [6], [7], even though,
quite surprisingly, this connection remained unexplored until
recently [8].

As a matter of fact, the RDPT tentatively formulated above
does not hold: as it has been shown by Körner and Marton
in [9], the “noisiness ordering” is only necessary, but not
sufficient, for the “degradability ordering.” Such pre-orderings
(that become partial orderings when defined on channels equi-
valence classes) are defined as follows (here we follow [10]):

Definition 1 ([9], [10]). Given are two noisy channels, w :
X→ Y and w′ : X→ Z.

i) The channel w is said to be degradable to w′ if and only
if there exists another channel ϕ : Y → Z such that

w′(z|x) =
∑
y

ϕ(z|y)w(y|x) . (2)

ii) The channel w is said to be less noisy than w′ if
and only if, for any index set U, any distribution p(u),
and any encoding p(x|u), the resulting distributions
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∑
x w(y|x)p(x, u) and

∑
x w
′(z|x)p(x, u) always satisfy

the inequality

H(U |Y ) ≤ H(U |Z) . (3)

It is immediate to see that the data-processing inequality (1)
is equivalent to the relation (i) =⇒ (ii), while the fact
that a RDPT does not hold in this case is equivalent to
the relation (ii) 6=⇒ (i), proved in [9] by means of explicit
counterexamples.

As there exist many data-processing inequalities (essentially,
any meaningful measure of information should satisfy one),
even though the RDPT does not hold for (1), it may still
be possible that other data-processing inequalities instead
satisfy the reverse property. Here we focus in particular on an
alternative figure of merit for information-theoretic protocols,
namely, the average error probability. We can hence reformu-
late the definition of noisiness ordering in terms of the average
error probability, instead of the conditional entropy. We thus
introduce an “ambiguity ordering” as follows:

Definition 2 (Ambiguity). The channel w is said to be less
ambiguous than w′ if and only if, for any index set U, any
distribution p(u), and any encoding p(x|u), the average error
probabilities always satisfy the inequality

pguess(U |Y ) ≥ pguess(U |Z) , (4)

where pguess(U |Y ) , supd(u|y)

∑
x,y d(u|y)w(y|x)p(x|u)p(u)

and analogously for pguess(U |Z) .

The formal relation between Definitions 1 and 2 can be
further clarified by noticing that, in terms of the conditional
min-entropy Hmin(U |Y ) = − log2 pguess(U |Y ) [22], [23],

pguess(U |Y ) ≥ pguess(U |Z) (5)
⇐⇒ Hmin(U |Y ) ≤ Hmin(U |Z) .

In this form, the close analogy between noisiness and am-
biguity is apparent. In what follows, we will focus on the
ambiguity ordering and prove that, contrarily to the noisiness
ordering, it is equivalent to the degradability ordering. We will
consider from the beginning the case of quantum channels, re-
covering the classical scenario in the completely commutative
case.

II. QUANTUM CHANNELS

In the quantum case, alphabets and distributions are replaced
by (finite dimensional) Hilbert spaces and density operators,
respectively. Hilbert spaces are denoted by HA,HB ,HC , . . . ,
density operators by ρ, σ, τ, . . . . Formally, a density operator
satisfies two properties: ρ ≥ 0 and Tr[ρ] = 1. When the system
is in a pure state |ϕ〉, we denote the corresponding density
operator by ϕ , |ϕ〉〈ϕ|. Given two copies of the same system
A, we denote the corresponding Hilbert spaces by HA and
HĀ ∼= HA. We also need to fix one privileged maximally
entangled state that we denote by |Φ+

ĀA
〉, and that in turns

fixes two orthonormal bases once it is written as |Φ+
ĀA
〉 =

d
−1/2
A

∑
i |iĀ〉|iA〉 .

u E τuA N N (τuA) D û

Fig. 2. The basic communication scenario in which classical information is
conveyed through a quantum channel. A classical message, indexed by u, in
encoded on the quantum state τuA, which is then fed through the channel N .
The receiver, upon receiving the output state N (τuA) performs a measurement
(i.e., applies a quantum-classical decoding) in order to guess the value of u.

A quantum communication channel is described by a
completely positive trace-preserving (CPTP) linear map N ,
mapping linear operators on the input space HA to linear
operators on the output space HB . In this case we will simply
write N : A→ B. The identity channel will be denoted by id.
Since a quantum channel can be used to convey classical or
quantum information, we have two natural ways to generalize
Def. 2, schematically represented in Figs. 2 and 3.

At this point we need to recall the definition of quantum
conditional min-entropy [22]:

Hmin(A|B)ρ , log2 inf
σB≥0

{Tr[σB ] : ρAB ≤ IA ⊗ σB} .

The quantum conditional min-entropy is known to have
many applications in one-shot quantum information theory,
recovering the usual von Neumann conditional entropy in a
suitable limit (see, e.g., Ref. [24]). In particular, in the case
in which the bipartite state ρAB is classical-quantum, i.e.,
ρAB =

∑
u p(u)|u〉〈u|U ⊗ ρuB , the corresponding conditional

min-entropy Hmin(U |B)ρ is related to the error probability of
guessing U given B as follows [23]:

Hmin(U |B)ρ = − log2 sup
{Pu

B}: POVM

∑
u

p(u)Tr[ρuB PuB ]

, − log2 pguess(U |B) ,

in perfect analogy with Eq. (5). For a general bipartite state
ρAB we have the following:

Hmin(A|B)ρ

= − log2 sup
D: CPTP

dA〈Φ+
AĀ
|(idA⊗DB)(ρAB)|Φ+

AĀ
〉

, − log2 qcorr(A|B) .

We are now ready to state the definition. (We refer the reader
to Ref. [25] for a different ordering.)

Definition 3 (Ambiguity and Coherence). Given are two
quantum channels, N : A→ B and N ′ : A→ B′.

i) The channel N is said to be degradable to N ′ if and only
if there exists another quantum channel Ψ : B → B′ such
that

N ′ = Ψ ◦ N . (6)

ii) The channel N is said to be less ambiguous than N ′
if and only if, for any set U, any distribution p(u), and
any cq-encoding channel E : U → A, u 7→ τuA , the
resulting joint states ρUB ,

∑
u p(u)|u〉〈u|U ⊗ N (τuA)
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R Γ A N B D R

R̄

ϕRR̄

Fig. 3. A typical fully quantum communication scenario. The “message” now
is the entanglement in the initial state |ϕR̄R〉. The R subsystem is passed
through an encoding channel Γ : R → A, and then transmitted to the receiver
through N : A → B. The receiver then locally applies a decoding channel
D : B → R, trying to maximize the overlap of the overall bipartite state with
the maximally entangled state |Φ+

R̄R
〉.

and σUB′ ,
∑
u p(u)|u〉〈u|U ⊗ N ′(τuA) always satisfy

the inequality pguess(U |B) ≥ pguess(U |B′), that is,

Hmin(U |B)ρ ≤ Hmin(U |B′)σ . (7)

iii) The channel N is said to be more coherent than N ′
if and only if, for any auxiliary quantum system R,
any bipartite pure state |ϕR̄R〉 on HR̄ ⊗ HR ∼= H⊗2

R ,
and any quantum encoding channel Γ : R → A, the
resulting bipartite states ρR̄B , (idR̄⊗NA ◦ ΓR)ϕR̄R
and σR̄B′ , (idR̄⊗N ′A ◦ ΓR)ϕR̄R always satisfy the
inequality qcorr(R̄|B) ≥ qcorr(R̄|B′), that is,

Hmin(R̄|B)ρ ≤ Hmin(R̄|B′)σ . (8)

III. MAIN RESULT: EQUIVALENCE RELATIONS

We are now ready to state the main result.

Theorem 1. Given are two quantum channels N : A → B
and N ′ : A→ B′. The following are equivalent.

i) The channel N is degradable to N ′.
ii) For any auxiliary quantum system C, the exten-

sion idC ⊗NA is less ambiguous than the extension
idC ⊗N ′A .

iii) For some auxiliary quantum system C ∼= B′, and for
some bijective1 channel M : C → C, the extension
MC ⊗NA is less ambiguous than MC ⊗N ′A.

iv) The channel N is more coherent than N ′.
v) For some auxiliary quantum system R ∼= R̄ ∼= B′, the

bipartite states ρR̄B = (idR̄⊗NA◦ΓR)Φ+
R̄R

and σR̄B′ =

(idR̄⊗N ′A ◦ ΓR)Φ+
R̄R

satisfy the inequality

Hmin(R̄|B)ρ ≤ Hmin(R̄|B′)σ ,

for any entanglement breaking quantum channel Γ : R→
A .

Before proceeding with a sketch proof, a few comments are
in order. Condition (iii) essentially states that condition (ii)

1A bijective channel here is meant as a CPTP map that preserves linear
independence.

is redundant: it is not necessary to check that idC ⊗NA is
less ambiguous than idC ⊗N ′A for all extensions C, but it
is enough to consider just one particular extension. Moreover,
there is no need to consider the identity channel on C, but any
bijective channel (even an entanglement-breaking one) will do.

In the same way, condition (v) states that (iv) is redundant,
in that it is not necessary to check the maximally entangled
fraction for all initial pure bipartite states |ϕR̄R〉, but looking
only at what the composed channel N ◦ Γ does on the max-
imally entangled reference state |Φ+

R̄R
〉 is enough. Moreover,

we do not need to consider all possible encodings Γ : R→ A,
but to check the condition only for entanglement-breaking
encodings is sufficient. This is somewhat surprising given that
the coherence ordering is defined in terms of the maximally
entangled fraction.

The problem of characterizing statistical relations equivalent
to degradability (and approximate degradability) has been
considered before [11], [12], [13], [14], [15], [16], [17], [18],
[20], but only in the classical-quantum scenario (i.e., that
of Fig. 2). A fully quantum scenario, alternative to the one
proposed here, is discussed in [19].

In the special case in which the channel N ′ has a classical
output, in the sense that for any input the output is always
diagonalizable in some fixed basis, Theorem 1 can be streng-
thened as follows:

Theorem 2 ([14], [18]). If the output of channel N ′ is
commuting, then N is degradable to N ′ if and only if N
is less ambiguous than N ′. In other words, in this case it is
not necessary to consider extensions of the channels.

Moreover, point (v) of Theorem 1 implies the following
result for classical channels:

Corollary 1 (Classical channels). Given two noisy channels
w : X→ Y and w′ : X→ Z, the following are equivalent.

i) The channel w is degradable to w′.
ii) The channel w is less ambiguous than w′.

iii) For any encoding p(x|u), the joint distributions
1
|U|
∑
x w(y|x)p(x|u) and 1

|U|
∑
x w
′(z|x)p(x|u) always

satisfy pguess(U |Y ) ≥ pguess(U |Z) . In fact, it is possible
to fix U = Z, without loss of generality.

In other words, in Def. 2 it is possible to take, without
loss of generality, U ≡ Z and uniform p(u), and still have
equivalence between ambiguity ordering and degradability
ordering.

IV. SKETCH PROOF OF THEOREM 1

The implications (i) =⇒ (ii) =⇒ (iii) are easy to see.
The implication (iii) =⇒ (i) has been proved, using various
techniques and in various degrees of generality, in Refs. [13],
[15], [16], [18], [20].

In the same way, the implications (i) =⇒ (iv) =⇒ (v) are
also easy to see. Hence, in order to close the logical loop, we
only need to prove that (v) =⇒ (i).
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Given two quantum channels N : A → B and N ′ : A →
B′, let us consider the corresponding Choi operators, namely,

ρĀB = (idĀ⊗NA)Φ+
ĀA

,

σĀB′ = (idĀ⊗N ′A)Φ+
ĀA

,

where Ā is a system isomorphic to A (i.e., dA = dĀ)
and Φ+

ĀA
= |Φ+

ĀA
〉〈Φ+

ĀA
| is the projector on the maximally

entangled state d−1/2
A

∑
i |iĀ〉|iA〉. (The bases |iĀ〉 and |iA〉

are fixed here once and for all in this proof.) In terms of
the Choi operators, statement (i) can be reformulated as the
existence of a channel Ψ : B → B′ such that

σĀB′ = (idĀ⊗ΨB)ρĀB . (9)

Let us now introduce a set of density operators {ωi
Ā
}i

spanning the whole set of linear operator onHĀ. Then, Eq. (9)
is equivalent to the following:

σiB′ = Ψ(ρiB) , ∀i , (10)

where

ρiB = dĀ TrĀ
[
(ωiĀ ⊗ IB) ρĀB

]
,

σiB′ = dĀ TrĀ
[
(ωiĀ ⊗ IB′) σĀB′

]
.

Notice that the operators ρiB and σiB′ are all well-defined
density operators, as a consequence of the fact that ρĀ =
σĀ = d−1

Ā
IĀ).

Let us introduce now another spanning set {Xj
B′}j for

the set of linear operators on HB′ . This time, however, the
operators Xj

B′ need only be self-adjoint. Then, statement (i)
becomes equivalent to the existence of a CPTP map Ψ such
that

sss = rrr(Ψ) ,

where we defined the two real vectors sss = (sij) and rrr(Ψ) =
(rij(Ψ)) as follows:

sij = Tr
[
σiB′ X

j
B′

]
,

rij(Ψ) = Tr
[
Ψ(ρiB) Xj

B′

]
.

By defining the set S(ρ) = {rrr(Ψ) | Ψ : B → B′ CPTP},
statement (i) in this notation can be equivalently expressed as

sss ∈ S(ρ) .

The crucial observation now is that the set S(ρ) is closed,
bounded, and convex, as it inherits this structure from the set
of CPTP maps Ψ. Hence, as an application of the separation
theorem for convex sets [26], we have that statement (i) is
equivalent to the following: for any real vector ccc = (cij),

sss · ccc ≤ max
rrr∈S(ρ)

rrr · ccc .

The next step is to define, for each choice of ccc, the
corresponding self-adjoint operators Y iB′ =

∑
j cijX

j
B′ . In this

way, statement (i) can be equivalently reformulated as: for any
choice of self-adjoint operators {Y iB′},

max
Ψ: CPTP

∑
i

Tr
[
Ψ(ρiB) Y iB′

]
≥
∑
i

Tr
[
σiB′ Y iB′

]
.

The final manipulation amounts to shift and rescale the ope-
rators Y iB′ so that they become all positive semi-definite and
sum up to IB′ , namely,

Y iB′ 7→
1

λ

(
Y iB′ −

1

µ

∑
i

Y iB′ + νIB′

)
,

for suitable constants λ, µ, ν > 0. This can always be done
without loss of generality, due to the fact that Tr

[
Ψ(ρiB)

]
=

Tr
[
ρiB
]

= Tr
[
σiB′

]
, for all i.

Summarizing, until now we have shown that statement (i)
is equivalent to the following: for any POVM {P iB′},

max
Ψ: CPTP

∑
i

Tr
[
Ψ(ρiB) P iB′

]
≥
∑
i

Tr
[
σiB′ P iB′

]
. (11)

Let us know introduce a quantum system B̄ such that HB̄ ∼=
HB′ . Recalling the property of the maximally entangled state,
for which

Tr[xB′yB′ ] = dB′〈Φ+
B̄B′ |(xB̄ ⊗ yTB′)|Φ+

B̄B′〉 ,

where the transposition is meant with respect to the basis fixed
when writing |Φ+

B̄B′〉, we can rewrite condition (11) as:

max
Ψ: CPTP

〈Φ+
B̄B′ |(Γ†Ā ⊗ΨB)(ρĀB)|Φ+

B̄B′〉

≥ 〈Φ+
B̄B′ |(Γ†Ā ⊗ idB′)(σĀB′)|Φ+

B̄B′〉 ,

where Γ† : Ā→ B̄ is a unital2 CP map defined by the relation

Γ†(ZĀ) =
∑
i

Tr
[
ZĀ ω

i
Ā

]
P iB̄ ,

where ωi
Ā

are the states we fixed at the beginning of the
proof and {P i

B̄
}i is an arbitrary POVM. Using once more

the “ricochet property” of the maximally entangled state, and
recalling the fact that ρĀB and σĀB′ are Choi operators, that
is,

(Γ†
Ā
⊗ΨB)(ρĀB)

= (Γ†
Ā
⊗ΨB ◦ N )(Φ+

ĀA
)

= (idB̄ ⊗ΨB ◦ N ◦ ΓB′)(Φ+
B̄B′) ,

where ΓB′ denotes the complex conjugation of ΓB′ (namely,
a CPTP map), we finally obtain the following reformulation
of statement (i): for any measure-and-prepare CPTP map Γ :
B′ → A (recall that B̄ ∼= B′ and Ā ∼= A),

max
Ψ: CPTP

〈Φ+
B̄B′ |(idB̄ ⊗ΨB ◦ NA ◦ ΓB′)(Φ+

B̄B′)|Φ+
B̄B′〉

≥ 〈Φ+
B̄B′ |(idB̄ ⊗N ′A ◦ ΓB′)(Φ+

B̄B′)|Φ+
B̄B′〉 .

2That is, Γ†(IĀ) = IB̄ .
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A sufficient condition for statement (i) is hence given by the
following: for any measure-and-prepare CPTP map Γ : B′ →
A,

max
Ψ: CPTP

〈Φ+
B̄B′ |(idB̄ ⊗ΨB ◦ NA ◦ ΓB′)(Φ+

B̄B′)|Φ+
B̄B′〉

≥ max
Ψ′: CPTP

〈Φ+
B̄B′ |(idB̄ ⊗Ψ′B′ ◦ N ′A ◦ ΓB′)(Φ+

B̄B′)|Φ+
B̄B′〉 .

The above equation, using the results of Ref. [23], becomes

Hmin(B̄|B)(id⊗N◦Γ)Φ+ ≤ Hmin(B̄|B′)(id⊗N ′◦Γ)Φ+ ,

for all measure-and-prepare encoding CPTP maps Γ.
On the other hand, at this point it is easy to see that

the condition above is not only necessary, but also sufficient
for statement (i) to hold, due to the data-processing theorem
satisfied by conditional min-entropy (see, e.g., Ref. [24]).

V. CONCLUSIONS

We showed how the three orderings of degradability, am-
biguity, and coherence are equivalent, whereas the orderings
of degradability and noisiness are not. The proof has been
presented in full generality, encompassing classical chan-
nels, quantum channels with classical-quantum encodings,
and quantum channels with fully general quantum encodings.
In [3], Shannon considers another ordering between channels,
namely, “channel inclusion.” This is similar to the degradabi-
lity condition, in the sense that it is based on the notion of
simulability (of one channel by means of another), however,
the set of transformations allowed is much more general, as it
includes general encodings, decodings, and free use of shared
randomness. Channel inclusion too can be studied from the
general viewpoint of statistical comparison: this is the subject
of ongoing research [27].
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