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ABSTRACT

Irreversibility is usually captured by a comparison between the process that happens and a corresponding “reverse process.” In the last
decades, this comparison has been extensively studied through fluctuation relations. Here, we revisit fluctuation relations from the
standpoint, suggested decades ago by Watanabe, that the comparison should involve the prediction and the retrodiction on the unique
process, rather than two processes. We identify a necessary and sufficient condition for a retrodictive reading of a fluctuation relation. The
retrodictive narrative also brings to the fore the possibility of deriving fluctuation relations based on various statistical divergences, and

clarifies some of the traditional assumptions as arising from the choice of a reference prior.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0060893

. PROCESSES VERSUS INFERENCES

Quantitative approaches to irreversibility traditionally involve a
comparison between the process physically happening, usually called
forward process, and a corresponding reverse (or backward) process. The
definition of the latter is intuitive only for some processes: somewhat iron-
ically, not for those that are paradigmatic of irreversibility. Indeed, con-
sider the erasure channel, which sends every possible input state to a
unique, fixed output state: what should one take as its reverse process?

In a previous paper, two of us proposed to look at irreversibility
as arising out of our logical inference, rather than out of physical pro-
cesses. Specifically, we proposed to define the reverse process in terms
of Bayesian retrodiction. This is a universal recipe. This retrodictive
element can be identified a posteriori in all previously reported fluctua-
tion relations that we checked, including the most famous ones, both clas-
sical”” and quantum,’ that are highlighted in the many available
reviews. '’ Besides recovering “intuitive” reverse processes, retrodiction
provides a definition for the non-intuitive ones, which smoothly removes
anomalies that were reported with other tentative definitions. Thus, it
seems plausible that all fluctuation relations can be understood in terms
of retrodiction (though the literature is too vast and sparse to make a
definitive call, we shall strengthen the evidence with Result 3 below).

In the pursuit of this line of research, we recognize that our previ-
ous paper was not radical enough. If the retrodictive origin of

irreversibility is assumed, the narrative of the two processes becomes
superfluous: using retrodiction to define a reverse process is an unnec-
essary step. There is only one process, the one that happens; what is
being compared are our forward and backward inferences on it: pre-
diction and retrodiction.

The replacement of irreversibility with irretrodictability was pio-
neered by Watanabe,'""'* though prior to our previous work no con-
nection had been drawn with the fluctuation theorems derived in the
last twenty years. Under this change of viewpoint, it is the same phys-
ics that is being described, freed from an excess baggage in the narra-
tive (and thus, possibly, on the interpretation). Besides epistemological
economy, we are going to show that this viewpoint is fruitful as it
opens previously unnoticed vistas.

The plan of this paper is as follows. In Sec. I, we present a self-
contained introduction to retrodiction, both classical and quantum;
and Sec. I1I describes two case studies in detail. Section IV deals with
Sfluctuation relations: we show that these relations are intimately
related to statistical distances (“divergences”) and that Bayesian retro-
diction arises from the requirement that the fluctuating variable can be
computed locally. We also compare the fluctuation relations obtained
in the retrodictive narrative with those obtained in the reverse-process
narrative. Section V reflects back on the structure of retrodiction, elab-
orating on the role of the unavoidable reference prior.
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A word on the presentation. This paper covers topics from statis-
tics, thermodynamics, and quantum information. We have tried to
keep the presentation self-contained. We have also adopted a compact
approach to references: besides those that prove specific results, we
shall cite mostly reference books and reviews, and occasionally a few
works that we consider clear and exemplary, useful as entry points for
the reader, without any expectation of being exhaustive.

Il. RETRODICTION: GENERALITIES

In this paper, we consider processes with discrete alphabets. The
input of the channel is denoted x € {1,2,...,d,} and the output
y € {1,2,...,d,}. We shall always have in mind d, = d, = d, keep-
ing the notation different only when clarity demands it.

Also, throughout the paper, we assume that all probability vectors
have strictly positive elements, and also all channels have only strictly
positive entries (with the exception of the permutation channels stud-
ied in Subsection III A). Arbitrarily small entries would be indistin-
guishable from an exact zero, certainly in practice, and perhaps also in
principle depending on one’s understanding of probabilities.

A. Bayesian retrodiction on classical information

As basic setting of retrodiction, consider the most elementary
form of statistical inference: at the output of a known channel ¢(y|x),
one observes the outcome y = y*, and wants to infer something about
the input x. In this paper, we focus on Bayesian retrodiction, whose
goal is to update one’s belief on the distribution of x. This requires a
prior belief, the reference prior, denoted £(x). The total prior knowl-
edge is therefore captured by the joint probability distribution
P:(x,y) = &(x)(y|x); in particular, the prior knowledge about y is
E(y) =D, &(x)p(y|x). When the knowledge on y is updated to
y = y*, one performs the Bayes’ update

Pe(x,y) 72> Pi(x,y) = Pe(x]y")d,, (1)

on the total knowledge, whence the updated knowledge on x follows
as Pe(x|y*) = &(x)@(y*|x)/E(y"). This is the most elementary exam-
ple of retrodiction.

Slightly less basic, though also widely discussed in the statistical
literature, is the retrodiction on x based on “soft evidence” on y. This
refers to the situation, in which the update on y is not a sharp value
y = y*, but a distribution u(y). In real life, soft evidence may arise by
sheer uncertainty (e.g, reading the outcome y in very dim light) or by
virtual evidence (e.g., the doctor told me a definite result z = z* for my
test, but I saw that he was tired and fear that he may have misread the
actual result y written on the sheet). The translation of such uncertain-
ties into a quantitative u(y) is not trivial, '* but we take it for granted.
For such situations, Bayes’ update (1) is generalized to Jeffrey’s update'”

P:(x,y) “2 PL(x,y) = Pe(xly) u(y). @

In the case of virtual evidence, Jeffrey’s update is a direct conse-
quence'*"” of Bayes’ update starting from z = z*, under the assump-
tion that the variable z influences directly only y and not x (cf. the
example above: the tiredness of the doctor has no direct influence on
whether I am actually sick). In other cases, it may be considered as an
actual addition to the rules of Bayesian inference (this was Jeffrey’s
own view).

scitation.org/journallaqs

Thus, the conditional probability P:(x|y) plays the role of chan-
nel for the retrodiction, in short retrodiction channel. For the remain-
der of the paper, we change the notation to

<)

<)
We shall make use at our convenience of a matrix representation.

The channel ¢(y|x) is represented by the column-stochastic matrix

¢(0]0) @(0]dx)

Pe(xly) === @lx). 3)

M? =

P(lx)

¢(dy[0) @(dy|dsx)
Similarly, the retrodiction channel (. (x|y) is represented by the col-
umn stochastic matrix

¢:(0/0) ¢¢(0ldy)

MP: = : Pe(xly)

Pe(dx|0) pe(dildy)

In this notation, we similarly define input and output distributions
p(x) as column vectors +*. For instance, the relations that define the
reference prior can be written as

MOVE =4 , MOyt = oF, (4)

B. Two remarks

Before continuing, we bring up two crucial remarks. The first is
about the reference prior. It is well known,'"'*'” and our presentation
above leaves it clear once again, that this element of subjectivity is an
unavoidable feature of Bayesian retrodiction for a generic channel.
The question of the choice of the prior is a recurring topic in Bayesian
statistics. The literature on fluctuation relations does not mention it as
such, the assumption being stated in more physical language. We shall
get back to this point in Sec. V. Here, for the sake of definiteness we
just mention two possible choices. One is the uniform prior &(x) =4
for all x. Another is the steady state of ¢, defined by y = 9. Every
stochastic map has at least one steady state, and exactly one if all its
entries are strictly positive. It follows immediately from ¢, (x|y)
= ;E—;; ¢(y|x) that the uniform prior is a steady state if and only if ¢ is
bistochastic.

The second remark, that also others felt the need to highlight,'® is
that retrodiction is not inversion. A channel has a linear inverse if there
exists M such that MM? = 1. In the case of an invertible channel,
given a valid output distribution p(y) = > ¢ (y|x)p(x), one is able to
recover the input distribution p(x). But for most invertible channels,
M is not a channel itself: there exist u(y) such that v* # M?+". In par-
ticular, since the image of the probability simplex by M? is convex,
there exists y* such that no input distribution p(x) is mapped by M?
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to 6, ,-—while retrodicting from J,,. is the most basic example of
Bayesian inference. Ultimately of course the difference is in the task:
retrodiction does not aim at reconstructing the prior through repeated
sampling, but at updating one’s belief after a single run of the process.
This is particularly clear in the example of the test for a sickness given
above. See Refs. 42 and 43 for studies of retrodiction of quantum tem-
poral dynamics.

In Subsection 11 A, we shall see a remarkable coincidence: the
channels for which the retrodiction channel coincides with the inverse,
and those for which the retrodiction channel is independent of the ref-
erence prior, are exactly the same.

C. Retrodiction on “quantume-inside” classical channels

According to our current knowledge, the most general descrip-
tion of the inner working of any classical input-output channel is
given by quantum theory. The quantum-inside description of a classi-
cal channel is as follows (Fig. 1). The classical input x prepares a sys-
tem in a state p,. The system is then sent through a quantum channel
[a completely positive, trace-preserving (CPTP) map] &, and eventu-
ally measured with the positive operator-valued measure (POVM)
{I1,}, leading to the classical outcome y. All in all,

p(ylx) = Tr(I1, &[p,]).- (5)

We want to derive the quantum description of the associated classical
retrodictionA channel (3): that is, finding states p )2 CPTP map &, and
a POVM {Il,},, such that

e (xly) = Tr(1. & [p,)). (6)

For this, we first need to define the adjoint &' of the channel, that is
the operator such that Tr(Y&[X]) = Tr(&6'[Y]X) for all operators X,
Y. Inserting this definition in (3), one finds

o:(ely) = Te((E(p0) ' [11,/200] ).

This looks like (3), but in general one has Tr(Il,/ &)
#1, Y E(x)p, # 1, and &' is a CPTP map only if ¢ is unital. In
order to identify proper states, channel and measurement, one has to
introduce a reference state

¢
p{ &),

x— —y

0%

A

X< Hx_ (?3 _py )y

Fie. 1. A quantum-inside classical channel and the corresponding retrodiction chan-
nel. The construction, described in Egs. (7)-(10), is valid for every set of states
{py}, every CPTP map E and every POVM {IT, }.

scitation.org/journallaqs

E=) &x)p. @)

As in the classical case, we assume that = and Z = &[Z] have full
rank, to skip caveats for situations of measure zero. Then one possible
construction of the quantum elements of (6) uses

1

by =5, €= I) ®
b=éz= (@06 09 (6[E), ©)
= ()9 @pa. (10

where we have introduced the notation % (A)[B] = vVAB+/A for a
positive operator A. Starting from this basic construction, one can
obtain others as follows:

Py — Us[py), (11
bz — UnObz0U", (12)
M, — .ox,', (13)

also leading to (6) for any pair of unitary channels (%, % ).

The key observation is that the retrodiction channel & turns out
to be the Petz recovery or Petz transpose map' "’ of & for the reference
state Z [Eq. (9)], or a rotated version thereof [Eq. (12)].

The Petz map, a widely used tool in quantum information,”
was previously identified on formal grounds as the generalization of
retrodiction within the quantum formalism.”* " First of all, in the
case where all the states and the channels are diagonal in the same
basis, (9) reduces to (3). Furthermore, just as the Bayesian retrodiction
¢ depends on a reference prior ¢, the Petz map &, depends on a ref-
erence state o.”* Interestingly, the Petz map was also used for quantum
fluctuation relations,” but the connection with retrodiction was not
noticed.

lll. RETRODICTION: TWO CASE STUDIES

In this section, we present first retrodiction on Hamiltonian
channels (both classical and quantum), which are provably the only
ones for which the retrodictive map is independent of the reference
prior and is identical to the inverse. Then, we discuss retrodiction for
all classical bit channels (d = 2): precisely because it is elementary, this
case study is useful to clarify features and dissipate possible confusions
about retrodiction.

1-2

A. Case study: Hamiltonian channels

We call Hamiltonian channels, both classical and quantum,
channels that are both deterministic and invertible (Watanabe'”
referred to these channels as “bilaterally deterministic”). The flows do
not cross, and each state belongs to one and only one trajectory.

For classical information, we have y = f(x) with f a bijection (in
the discrete case, a permutation), and so x = f~!(y) is uniquely
defined. In this case, it is absolutely natural to expect

Plx) = dps) = Pelxly) = dup1y), (14)

independent of the reference prior. It is readily verified that this is
indeed the case from Eq. (3), since for a bijection we have

Ey) = E(x)3,5(x)-
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This result has very appealing features: the retrodiction chan-
nel coincides with the inverse and is independent of the arbitrary
choice of reference prior. Appealing as they are, these features can-
not be taken as paradigmatic, because they are actually unique to
this case.

Result 1. The following three statements are equivalent:

I The channel ¢ is a permutation.
II The retrodiction channel { is independent of the reference prior.
III There exists a reference prior &, for which the retrodiction chan-
nel ¢ is the inverse channel !

Proof. We present a full proof here, putting on record that the
equivalence of (I) and (II) was already proved in Watanabe’s pioneer-
ing study."”

Equation (14) proves (I )—>(II III). The 1mp11cat10n (II) (I1I1)
goes as follows: Eq. (4) implies MO MPvs = ve, If MP: = M? for all
&, then M?M?v = v¢ for all vectors: then M?M? = 1, that is
p=0"

We are left to prove (IIT)—(I). Let us assume that there is a refer-
ence prior such that ¢ = @', i.e, M?:M? = 1. Let us spell out this
condition: ”

M?M? = 1 ZMf;M;ﬂx = Jux Vux

A Z (bé(x/|y)(p(y|x) =0vx Vs

<)
Zé(y)

All the terms are products of non-negative numbers, &(x) > 0 for all x
by assumption, and 1/(y) # 0 for 0 < &(y) < 1. Thus, for all the
off-diagonal terms to be zero, we need

P )p(yx) =0 Vs, (15)

This means the product of any two entries of a given y-row will always
be zero. Hence, there can be at most one non-zero entry for that row,
which means that the matrix M can have at most d non-zero entries.

eI p(x) = Ovx  Vix-

(a)

out

- 0(0]0)

o
Y
o

¢(1]1)

scitation.org/journallaqs

But there are d columns, and the sum of all the elements of each col-
umn must be 1. Thus, the only possibility is that each row and each
column have exactly one non-zero entry, and the value of the entry is
1. This defines a permutation matrix and concludes the proof. O

Incidentally, condition (15) shows that M ?:M? = 1 is not deter-
mined by the reference prior; so, at that point we had proved directly
(I11)— (11).

The same result holds for retrodiction on quantum informa-
tion—in fact, Result 1 was presented first for reasons of clarity, but can
be seen as a special case of the following:

Result 2. The following three statements are equivalent:

) The channel & is unitary.

(I)  The retrodiction channel & is independent of the reference prior.

(III) ~ There exists a reference state o, for which the retrodiction
channel & , is the inverse channel & .

Proof. The implications (I)—(II, III) follow from the direct cal-
culation of (9) for a unitary channel:

Uy =S ()0 U" o S HUH])
=W oW)o F(x)oU" o S (U[0)])

— ()2/1' — ()2/—17

where we have used %' o % = .# the identity channel, and % o
P(a)oU" = S (U[w]) thatis Uy/aUT = VUaUT.

The proof of (II)—(III) is analog to that for classical informa-
tlon Trivially, Eyo0b [#] = o holds by definition of & .. Therefore, if

= & for all o, then &[&[p]] = p for all p; whence & = &'

Finally, for the proof of (III)—>(I) since any Petz map is CPTP,
the starting assumption &, = &' implies that &' is a CPTP map.
But it is known that a CPTP map & with the same input and output
space has a CPTP inverse (that is, it is invertible, and the inverse is
itself a channel) if and only if it is unitary.””"' O

B. Classical one-bit channels

As a second case study, we consider classical stochastic processes
for d =2 (Fig. 2). We write a generic channel as

(b)

in ¢ (0/0)

o
A
o

[a—
[u—

e (1]1)

Fic. 2. Bit channels (a) and their retrodiction (b) can be depicted as the respective maps above.
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e (tp(om)
¢(1/0)

with 0 < a,b < 1. Its steady state is

b a

ﬂ(l):a—i-b’

V(O):ma/

unique unless a = b = 0 (this being expected, since every state is a
steady state for the identity channel).
The corresponding retrodiction channel with generic reference

prior is
. (#:00) B0
M= (¢5<1|o> %(11))
1-a2@ GO

_ fo E )

pE (D)

<(0) <(1)
with £(0) = (1 — a)é(0) + b&(1) and E(1) = 1 — £(0). Interestingly,

the retrodiction channel built on the steady state has the same stochas-
tic matrix as the channel itself,

M? =M? [d=2]. (18)

This can be verified without calculation, noticing that @, (x|x)
= ¢(x|x) and that M?» must also be column-stochastic.

The channel (16) is invertible if and only if a + b # 1. Result 1 of
course holds: the retrodiction channel will be the inverse if and only if
a = b =0 (identity channel) or a = b =1 (bit-flip channel). For all
the other invertible channels, retrodiction and inversion do not coin-
cide, whatever the choice of the reference prior.

The non-invertible channels, a + b = 1, make for an interesting
case study; we change the notation a — ¢, so that

MO = (‘:’) (20)

First notice that

scitation.org/journallaqs

for all input p. In other words, these channels erase whatever informa-
tion is present in the input, and produce a fixed output distribution
(which, of course, coincides with their steady state). In this sense, they
could all be called erasure channels, though the name is usually given
to the case ¢ = 0.

Because at the output all information on the input has been
destroyed, one may naively expect the retrodiction channel to produce
a completely random outcome. But this forgetting the importance of
the reference prior in retrodiction. Plugging the expressions in the
equations, one readily finds

b (E0) £0)
M *(5(1) 5(1))' @)

The retrodiction channel of an erasure channel is the erasure channel
that returns the reference prior—a result that can be easily extended to
any alphabet dimension.”” In agreement with (18), if the reference prior
is the steady state, the retrodiction channel is the same erasure channel.
The fact that one can associate a thermodynamically reversible process
to a logically irreversible channel like the erasure channel was noted for
instance by Sagawa (Ref. 44). The identity between the forward and the
reverse erasure channels was noticed by Riechers and co-workers
(Ref. 45). for a specific toy model of physical erasure. We see here that
it is an unavoidable feature, having defined the reverse process from
the steady state. These observations are summarized in Fig. 3.

IV. FLUCTUATION RELATIONS FROM RETRODICTION

The topic of this section, fluctuation relations, originated in statisti-
cal thermodynamics. As we shall see, the formal structure of these rela-
tions can be derived without any reference to that branch of physics. As
it happens, we shall mention thermodynamics only in the very last para-
graph of the section. The explicit application of these formulas to impor-
tant situations in thermodynamics was discussed in our previous paper.’

A. The process and its statistics

As we noted in the introduction, it is customary in studies of irre-
versibility to define the physical process as the forward process, and to
compare it to its corresponding reverse process. Here, we adopt a dif-
ferent narrative as follows:

* There is only one process, the one that is happening.
* A (forward) prediction on the process starts with a prior p(x) on
the input, and infers the predicted distribution

Fie. 3. (a) An e-erasure channel, (b) the retrodiction channel with steady state as reference prior, (c) the retrodiction channel for a generic reference prior.
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Pr(x,y) = p(x)p(y|x). (22)

* A retrodiction on the process starts with a prior g(y) on the out-
put, and infers the retrodicted distribution

PrE](x,y) = q(y) P (x]y). (23)

The explicit mention of & will be dropped for simplicity in the
remainder of this section and resumed in Sec. V.

We proceed to derive fluctuation relations with our narrative,
and later we show the comparison with the reverse-process narrative.

B. Derivation of the fluctuation relations

Consider a variable Q(x, y) that depends on the initial and final
states, and may be determined by the process. Its predicted distribu-
tion is

up(@) =Y (0 —Q(x,y)) Pe(x,y), (24)
Xy
while its retrodicted distribution is

(o 25 » — Q(x,y)) Pr(x,y)

:Zé(wfQ(xvy))R(xvy)PF(x'/y)7 (25)
xAy
where
_ Pr(xy)
R = By (26)

So, the difference between () and iz (w) is encoded in this ratio of
probabilities, which is exactly the quantity that appears in the statisti-
cal f-divergence’™*

Dy (Pgl|Pr) = EPF x,9) f(R(x, 7)), 27)

where the function f{r) must be convex for r € R™ and satisfy
f(1) = 0. The “entropy production,” on which the thermodynamical
literature bases fluctuation relations, uses f(r) = —In (), which gen-
erates the reverse Kullback-Leibler distance Dy (Pr||Pg). But we do
not need to choose that particular function at this stage: for any func-
tion f(r) invertible™ for r € R, if we set

Q(x,y) = f(R(x,»)), (28)
we have by definition
() = Dy(Pr||Pr). (29)

Besides, there immediately follows from (24) and (25) the fluctuation
relation

pr(@) = f (@) g (), (30)
that is the generalization of Crooks’ theorem.” By integrating over o,
one obtains the integral fluctuation relation

o)y =) Prxy) =1, 31)
Xy

that depends only on the process. This is the generalization of
Jarzynski’s equality.”

scitation.org/journallaqs

C. Comparison between retrodiction and reverse
process

In all the literature we are aware of, fluctuation relations are pre-
sented as a measure of the statistical difference between the forward
and the reverse process, not between the predicted and retrodicted distri-
butions of a single process. The difference between the two narratives
has mathematical manifestations that we are going to discuss now.

For the sake of definiteness, let us start with a canonical example.
Suppose that the variable of interest is entropy, and that in the process
under study it changes by AS. In a retrodictive approach, (23) defines
the retrodicted distribution for that same process. But if one looks at
(23) as defining a reverse process, for that process the change of
entropy will be rather —AS.

Generalizing this observation, the distribution of the variable ®
in the reverse process reads

ﬁR(w) :Z(S(w_é(xvy))PR(x7y)7 (32)

Xy

where, under assumption (28),

Q(x,) :f(R(x%y)) = ¢(Q(x.y)), (33)

because the roles of P and Py are exchanged between the forward and
the reverse process [for the choice f(r) = —In(r ) there follows the
expected minus sign g(w) = f(1/r) = —f(r) = . The resulting
fluctuation relation then reads

ir(g(@)g (@) =fH(@)pp(e). (34)

As expected, up evaluated at  is now related to fi, evaluated at g(w).
The Jacobian factor, which comes from the change of variable in the
J-function, ensures that the integral fluctuation relation takes exactly
the same form as (31).

A comparison of (30) and (34) for various choices of fis given in
Table I. For the thermodynamical case f(r) = —In(r), we have
|¢’(w)] = 1, and therefore the only difference between (30) and (34) is
that uy is evaluated at « while fiy, is evaluated at —w. Thus, in thermo-
dynamics not only the Jarzynski equality but also the Crooks fluctua-
tion theorem is the same in both narratives (up to that sign change).
Interestingly, even when reporting experiments in which the reverse
process was actually implemented, it is the retrodictive version that is
usually plotted for its visual convenience: see for instance the pioneer-
ing verification of Crooks’ fluctuation theorem with folding and
unfolding of RNA.™

D. Fluctuation relations and Bayesian retrodiction

In the retrodictive narrative, the fluctuation relation (30) and its
derivate (31) are statistical properties of the random variable ¢ defined
by (29). They are formally valid for the statistical comparison between
arbitrary Pr and Py, with no reference to the notion of retrodiction, let
alone to its mathematical expression (3). In the reverse-process narra-
tives, one studies the distribution of the values of the variable when the
roles of Pr and Py, are swapped [Eq. (33)]; but even then, the fluctua-
tion relations follow without having specified any mathematical rela-
tion between Pr and Pg. So, what is the role of Bayesian retrodiction,
or that of a proper definition of the reverse process? We are going to
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TasLe I. Fluctuation relations (FRs) obtained in the retrodictive and in the reverse-process narratives, for a few choices of « satisfying (29) for the corresponding f-divergence.

The fourth column is kept in the form (34) without possible algebraic simplifications, to facilitate the identification of g(w) and |g'(w)].

o = f(r) f-Divergence ER for retrodiction (30)

FR for reverse process (34) Integral FR (31)

Reverse Kullback-Leibler

—In (r)
(- vy

tr(w) = e “up(w)

1/r—1

Neyman y? 1
ymans () = T ()

Squared Hellinger tig(®) = (1 = Vo) up(o) p ( ) )
R

tir () (e )p=1

= (V@) (V=

fig(—w) =€
1+ o
(1-v@)) (1 - Vo)

. 9 1 1 () < 1 >_1
\1T50) (o) 1+ Lo/

prove that it singles out a specific structure for R(x, y), and that this
simple result has far-reaching consequences in the context of
thermodynamics.

Result 3. The ratio R(x, y) [Eq. (26)] is of the form F(x)G(y), for
some functions F and G, if and only if P and Py, are related as (22) and
(23), with the latter constructed from Bayesian retrodiction [Eq. (3)]. In
this case,

R(x,y) = @M
p(x) E(y)
Proof. If Prand Py, are given by (22) and (23), using (3) it is trivial
to derive (35). In the other direction: without loss of generality we
keep the form (22) for Pr and, using the product rule of joint probabil-
ities, we write Pr(x,y) = q(y)n(x|y) for the conditional distribution
(channel) # and marginal g. The assumption reads

(35)

nxly) _ zoac
=F(x)G Yeys
with F(x) = p(x)F(x) and G(y) = G(y)/q(y). Since the LHS is
strictly positive,”” sign(F(x)) = sign(G(y)) must hold for all (x, ).
Now, being a channel, # must satisfy > #(x|y) =1, that is

1/G(y) = X F(x)¢(y]x). So, finally

F(x)
ZF(x

where &(x) =F(x)/ Y., F(x) is a valid probability distribution
because all the F(x) have the same sign. O

While this result may look purely anecdotal or formal, let us
recall that in the usual thermodynamical interpretation Q(x,y)
= —In(R(x,y)) is the (non-adiabatic) stochastic entropy produc-
tion.”® Thus, whenever the stochastic entropy production can be com-
puted locally (that is, independently of the correlations between
microstates x and y), a structure of Bayesian retrodiction is unavoidable
(in the reverse-process narrative: the reverse process must be defined
through Bayesian retrodiction).

V. ON THE CHOICE OF THE REFERENCE PRIOR

In the literature on fluctuation relations, based on thermodynam-
ics, the wording “reference prior” is absent. Its role is usually taken by
an assumption of “detailed-balance.” In all the examples that we have
looked into," this corresponds to the choice of the steady state as refer-
ence prior. The operational interpretation of this choice is very physi-
cal: one takes as reference the process in which nothing changes. It has

n(xly) = w(y\x) = ¢e(xly),

also a very neat consequence when it comes to fluctuation relations:
the ratio R(x, y) given in (35), and thus the variable that enters the
fluctuation relations, depends on the channel ¢ only through its steady
state y. With this choice, one is clearly studying fluctuations around
equilibrium.”

Inspired by statistical comparisons, one may opt for a different
definition of the reference prior. One possibility is trying to keep pre-
diction and retrodiction as close as possible. With such goals, let us
take as a figure of merit

D (Pr||Pr[¢]) ZP F(x,y) In (Pffé(])zxy)y))
)

_ p(
_;Pp(x,y)l )

which we called the reverse Kullback-Leibler distance in the Sec. I'V.
Only the second term depends on the reference prior; besides, it does
not depend on ¢(y), but does depend on p(x) that may be arbitrary.
We may then choose & as to minimize the average of Dkr,(Pr||Pr[£])
over all possible choices of p. Upon such averaging, p(x) — %. Thus we
want to find ¢p = argminF[£] with

Z ¢(y[x)In

(y

~

U

(36)

ﬁt
\/

Interestingly, we have:

Result 4. The reference prior that minimizes (36) is Ep(x) = 4 the
uniform prior, for every ¢.

We present the proof in Appendix.

In the same spirit, one can study the reference priors that mini-
mize other figures of merit averaged over the possible priors p(x) and
q(y). We run some simple numerical checks at d =2 for two other fig-
ures of merit. For the Kullback-Leibler distance Dy (Pr[E]||Pr), the
steady state is generically not optimal, while the uniform prior seems
to be optimal again, even though the dependence on ¢ is different
from (36). For the guessing probability, ie., the probability that
argmaxPr(x, y) = argmaxPg[&](x, y), neither the steady state nor the
uniform prior are generically optimal.

VI. FINAL CONSIDERATIONS: DO WE NEED A REVERSE
PHYSICAL PROCESS?

The everyday meaning of (ir)reversibility in nature is captured by
the perceived “arrow of time”: if the video of the evolution played
backward makes sense, the process is reversible; if it does not make
sense, it is irreversible.
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Science has gone very far in bringing this intuition on quantita-
tive ground. The standard underlying narrative still involves two pro-
cesses: the one that we observe, and the associated reverse process (not
deemed to be strictly impossible, but very unlikely). This reverse pro-
cess is generically not the video played backward: to cite an extreme
example, nobody conceives bombs that fly upward to their airplanes
while cities are being built from rabble.””*" In the case of controlled
protocols in the presence of an unchanging environment, the reverse
process is implemented by reversing the protocol. If the environment
were to change (in an uncontrolled way, by definition of environ-
ment), the connection between the physical process and the associated
reverse one becomes thinner.

With our line of research, we are exploring the possibility that
the narrative of the reverse process may not be needed at all. In the
wording pioneered by Watanabe, irreversibility may be rather irretro-
dictability. So far, this program has found no obstacle, and has even
clarified situations that were deemed puzzling in the case of some
quantum channels.” The vistas opened by this approach also allow to
expand the scope of fluctuation relations (Sec. IV) and discuss the
choice of a reference prior (Sec. V).

Barring surprises a la John Bell, this conflict of narratives will not
be discriminated by experiments. Indeed, on the one hand, the retro-
diction channels (both classical and quantum) are by construction
valid channels: nothing forbids the physical implementation of the
corresponding processes, as indeed was done in the experimental veri-
fications of Crooks’ theorem.”® On the other hand, to falsify the retro-
dictive narrative, one would have to find a reverse process related to its
original process in a way that cannot be expressed by (or worse, con-
tradicts) logical reasoning: it is hard to see how such a claim could
ever be made. So, one’s narrative of choice will depend on the fruitful-
ness of the intuition, the economy of concepts, the elegance of the for-
mulas... In this paper, we have hinted at the superiority of the
retrodictive narrative in all these respects.
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APPENDIX: THE REFERENCE PRIOR THAT
MINIMIZES THE AVERAGE KULLBACK-LEIBLER
DISTANCE

Consider a generic classical channel ¢ with d-dimensional
input and output alphabets. Denote the reference prior as &(x)
=11 +u) with —1<u,<d-1 and Y u,=0. With this
parametrization, F[¢] = F(u) with

ARTICLE scitation.org/journallaqs

Yo o)1+ >>

1+ u,

Fu) = " o) In (
xy
On the uniform prior (1, = 0 for all x), this takes the value

F(0) = 3" ¢(ylx)In (Z fp<y|x'>).

xy x'
Thus, A = F(u) — F(0) is equal to
> o)1+ u)
A=Y opHlx)n |-~ -
; > o0l

—Zln(l—i—ux)

Z e(yx) In (14 uy)
220U S obl?)

—Zln(1+ux)

X

=> o) (1+u) =Y In(l+u)=0 :
X,y X

where the inequality is Jensen’s inequality on the first term. Thus,
we have proved that

F(u) — F(0) > 0 forallu. (A1)
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