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Abstract: A family of probability distributions (i.e. a statistical model) is said to be
sufficient for another, if there exists a transition matrix transforming the probability
distributions in the former to the probability distributions in the latter. The Blackwell-
Sherman-Stein (BSS) Theorem provides necessary and sufficient conditions for one
statistical model to be sufficient for another, by comparing their information values in
statistical decision problems. In this paper we extend the BSS Theorem to quantum statis-
tical decision theory, where statistical models are replaced by families of density matri-
ces defined on finite-dimensional Hilbert spaces, and transition matrices are replaced by
completely positive, trace-preserving maps (i.e. coarse-grainings). The framework we
propose is suitable for unifying results that previously were independent, like the BSS
theorem for classical statistical models and its analogue for pairs of bipartite quantum
states, recently proved by Shmaya. An important role in this paper is played by statistical
morphisms, namely, affine maps whose definition generalizes that of coarse-grainings
given by Petz and induces a corresponding criterion for statistical sufficiency that is
weaker, and hence easier to be characterized, than Petz’s.

1. Introduction

The task in which an experimenter tries to learn about the true value of an unknown
parameter by observing a random variable whose distribution depends on such a value,
is generally called a statistical estimation task or a statistical decision problem. The
mathematical structure used to describe such a situation is called statistical model, i.e. a
family of probability distributions (or, more generally, measures) indexed by a parameter
set, which represents the unknown parameter one wants to learn about in the estimation
process.

An important subject in classical statistics is the comparison of statistical models
in terms of their “information value” in statistical decision problems [1–10]. Within
this area, one of the most important results has been proved by Blackwell, Sherman, and
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Stein [3–6]: the theorem states equivalent conditions for one statistical model being more
informative than another. More explicitly, the Blackwell-Sherman-Stein (from now on,
BSS) Theorem proves that one statistical model carries more information than another
if and only if the former is sufficient for the latter, namely, if and only if there exists a
transition matrix (a Markov kernel) mapping the probability distributions (measures) in
the former to the probability distributions (measures) in the latter.

In quantum statistical decision theory [11,12], where statistical models are replaced
by families of non-commuting density operators (i.e. quantum statistical models), the
notion of sufficiency has been introduced and developed by Petz [13,14], by replacing
Markov kernels with completely positive (or, at least, two-positive) trace-preserving
maps, i.e. coarse-grainings. However, the idea of applying to the quantum case concepts
from the theory of comparison of statistical models à la BSS, like e.g. the concept of infor-
mation value, has not been explicitly pursued until recently, in a work by Shmaya [15]:
there, partial ordering relations between pairs of bipartite quantum states (analogous,
in a way, to the partial ordering relations used in the BSS Theorem) are introduced,
and an equivalence relation between such partial orderings is established. Subsequently,
in [16], Chefles reformulated Shmaya’s result for the comparison of pairs of quantum
channels. However, the equivalence relations proved in [15] and [16] neither imply any
criterion for the comparison of quantum statistical models, nor are they more general
than the BSS Theorem, with which they are, in fact, logically unrelated. This is due to
the fact that both Shmaya and Chefles need, in their proofs, quantum entanglement: as
such, their results are purely quantum and cannot be compared with the case of classical
statistics, where quantum entanglement is not available.

The aim of this paper is to bridge the gap mentioned above, by developing a general
theory for the comparison of statistical models, which can be applied both to the classical
and the quantum (i.e. non-commutative) setting. In order to do this, it is mathematically
convenient to relax the definition of sufficiency introduced by Petz [13,14] and define
a weaker notion of sufficiency, which we call m-sufficiency, based on the concept of
statistical morphisms.1 Statistical morphisms are affine maps satisfying the minimum
requirements necessary to make them meaningful in a statistical sense: in fact, as we will
carefully argue in what follows, even the requirement of positivity can be lifted, without
compromising the formalism. In spite of their generality, statistical morphisms are suffi-
ciently well-behaved, so that, in some cases, they can be extended to completely positive
coarse-grainings. This fact is proved in two extension theorems, of crucial importance
in this paper, analogous to those proved for positive maps by Choi (Thm. 6 in [18]) and
Arveson (Prop. 1.2.2 in [19]).

The generality of the definition of statistical morphisms makes the main result proved
here applicable to both commutative and non-commutative scenarios. When specialized
to the classical setting, our result provides an alternative proof of the BSS Theorem,
while, in the quantum setting, an equivalent characterization of Petz’s sufficiency cri-
terion is obtained. An intermediate, ‘hybrid’ quantum-classical case is also considered
and completely characterized. We are also able to recover Shmaya’s result as a special
case, although here, in contrast with Refs. [15] and [16], we never need to resort to any
additional entangled resource.

The paper is organized as follows: in Sect. 2 we briefly review the notions of sta-
tistical models, statistical decision problems, and comparison of statistical models in
classical statistics. In Sect. 3 we introduce some basic definitions, extending the idea of

1 The term “statistical morphism” has been introduced in the classical setting by Morse and Sacksteder [17].
In this paper we use the same term, but in a non-commutative setting.
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comparison of statistical models to finite dimensional quantum systems. In Sect. 4, we
introduce the notions of statistical morphisms and m-sufficiency. In Sect. 5 we prove two
extension theorems for statistical morphisms. Section 6 contains the main result, which
is then applied, in Sect. 7, in order to recover the BSS Theorem, characterize a semi-clas-
sical scenario, and obtain an equivalent characterization of Petz’s sufficiency relation.
Section 8 deals with the scenario originally considered in Ref. [15] and the result proved
by Shmaya is recovered without the need of any entangled auxiliary resource. Finally,
Sect. 9 concludes the paper with the summary of its contents and one remark about
generalized probabilistic theories.

2. Classical Formulation

A (finite) statistical model E is defined by a triple (�,�,α), where � is a (finite)
parameter set {θ}θ∈�, � is a (finite) sample set {δ}δ∈�, and α is a family (pθ ; θ ∈ �)

of probability distributions pθ on �, i.e., pθ (δ) ≥ 0 and
∑

δ∈� pθ (δ) = 1. In the
following, it will sometimes be convenient to think of each pθ as a |�|-dimensional
probability vector �pθ = (p1

θ , . . . , pδ
θ , . . . , p|�|

θ ), whose components are defined as
pδ
θ := pθ (δ).

Remark 1. In many relevant situations, � can be considered as the set of possible states of
a physical system, so that the probability distribution pθ becomes the statistical descrip-
tion of the state of the system. This point of view, which is the guiding one in Ref. [11],
will be implicitly adopted here as well.

A statistical decision problem is defined by a triple (E ,X, �), where E = (�,�,α)

is a statistical model, X is a (finite) decision set {i}i∈X, and � : � × X → R is a payoff
function. The decision problem works as follows: upon the observation (or state) δ ∈ �,
occurring with probability pθ (δ), the statistician performs a decision, namely, he applies
a X-decision function u : � → X, gaining a payoff (or suffering a loss, if negative) of
�(θ, i), depending on the “true” law of nature θ that determined the observed state δ.
The choice of the function u : � → X corresponds to the experimenter’s choice of a
strategy.

The deterministic X-decision function u : � → X is often generalized to a random-
ized X-decision function (or X-r.d.f.) φ, which is a convex combination of X-decision
functions, i.e., a function mapping each δ ∈ � to a probability distribution tδ on X. A
convenient way to represent a X-r.d.f. φ is by giving conditional probabilities tφ(i |δ) ≥ 0,
i.e. non-negative real numbers such that

∑
i∈X tφ(i |δ) = 1, for all δ ∈ �.

Given a decision problem (E ,X, �), for each X-r.d.f. φ, we introduce the payoff vec-
tor �v(φ;E ,X, �) ∈ R|�|, whose θ th component, representing the payoff gained if the
true law of nature is θ , is defined as

vθ (φ;E ,X, �) :=
∑

i∈X

�(θ, i)
∑

δ∈�

tφ(i |δ)pθ (δ). (1)

Then, the following set

C(E ,X, �) := {�v(φ;E ,X, �) |φ is a X-r.d.f. on � } (2)

forms a (closed and bounded) convex subset ofR|�|, since it inherits the convex structure
from the set of randomized decision functions.
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Let now F = (�,�′,β) be another statistical model, with the same parameter set
� as for E , but with a different sample set �′ and a different family of probability
distributions on �′, β = (qθ ; θ ∈ �). Also for F , we can define, for each decision set
X and each payoff function � : �×X → R, the convex set of achievable payoff vectors
as

C(F ,X, �) := {�v(φ′;F ,X, �)
∣
∣φ′ is a X-r.d.f. on �′ } . (3)

In classical statistics, the following partial ordering between statistical models with
the same parameter set � is introduced (see, e. g., Ref. [6]):

Definition 1 (Information Ordering). The statistical model E = (�,�,α) is said to be
always more informative than F = (�,�′,β), in formula E ⊃ F , if and only if, for
every finite set of decisions X and every payoff function � : � × X → R, C(E ,X, �) ⊇
C(F ,X, �).

In other words, E is said to be more informative than F if every payoff vector attain-
able in the problem (F ,X, �) is also attainable in the problem (E ,X, �). The definition
of information ordering between statistical models can be simplified as follows. Given a
statistical model E = (�,�,α), for every decision problem (E ,X, �) and every X-r.d.f.
φ, we define

s(E ,X, �, φ) := 1

|�|
∑

θ∈�

∑

i∈X

�(θ, i)
∑

δ∈�

tφ(i |δ)pθ (δ). (4)

The maximum of s(E ,X, �, φ) over all X-r.d.f. φ is correspondingly defined as

$(E ,X, �) := max
φ: X-r.d.f.

1

|�|
∑

θ∈�

∑

i∈X

�(θ, i)
∑

δ∈�

tφ(i |δ)pθ (δ)

= max
φ: X-r.d.f.

1

|�|
∑

θ∈�

vθ (φ;E ,X, �). (5)

In the Bayesian approach, when there is no compelling reason to treat the sample set
differently from the parameter set, it is reasonable to interpret the factor 1/|�| as an a
priori probability distribution over the unknown parameter θ ∈ �. In this framework,
the function $(E ,X, �) is understood as the optimal expected payoff, and the following
partial ordering between statistical models governed by the same parameter set � is
introduced (see, e. g., Ref. [10]):

Definition 2 (Bayesian Information Ordering). The statistical model E = (�,�,α)

is said to be bayesianly always more informative than F = (�,�′,β), in formula
E ⊃Bayes F , if and only if, for every finite decision set X and every payoff function
� : � × X → R, $(E ,X, �) ≥ $(F ,X, �).

In other words, E is said to be bayesianly more informative than F if every expected
payoff attainable in the problem (F ,X, �) is also attainable in the problem (E ,X, �).
In Appendix A we report the proof of the following basic fact:

Proposition 1. E ⊃ F if and only if E ⊃Bayes F .
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Since the two orderings E ⊃ F and E ⊃Bayes F are equivalent, from now on we
will keep only the notation E ⊃ F , stressing the fact that the “Bayesian information
ordering” relation given in Definition 2 does not really depend on any strong Bayesian
assumption.

Another partial ordering between statistical models with the same parameter set �

is relevant, and it is defined as follows, according to [6]:

Definition 3 (Sufficiency). The statistical model E = (�,�,α) is said to be sufficient
for F = (�,�′,β), in formula E 	 F , if and only if there exists a |�′|×|�| transition
matrix M, i.e. a matrix of non-negative numbers Mδ′,δ with

∑
δ′∈�′ Mδ′,δ = 1 for all

δ ∈ �, for which �qθ = M �pθ , for all θ ∈ �.

The Blackwell-Sherman-Stein (BSS) Theorem states the following important equiv-
alence relation:

Theorem 1 (BSS Theorem [3–5]). Given two statistical models E = (�,�,α) and
F = (�,�′,β), governed by the same parameter set �, E 	 F if and only if E ⊃ F .

3. The Formulation in Quantum Theory

In what follows, we only consider quantum systems defined on finite dimensional Hil-
bert spaces H. We denote by L(H) the set of all linear operators (identified with their
representing matrices) acting on H, and by S(H) the set of all density matrices (or
states) ρ ∈ L(H), with ρ ≥ 0 and Tr[ρ] = 1. The identity matrix will be denoted by
the symbol 1, whereas the identity map will be denoted by id.

Most of the concepts used here are introduced and rigorously formalized in Refs. [11]
and [12]. For reader’s clarity, however, we will report the definitions we need, in a simpli-
fied fashion. According with [11] (see also Remark 1), we adopt the following definition:

Definition 4 (Quantum Statistical Models). A quantum statistical model is defined by
a triple R = (�,H, ρ), where � is a (finite) parameter set, H is a (finite dimensional)
Hilbert space, and ρ = (ρθ ; θ ∈ �) is a family of density matrices in S(H). A quantum
statistical model R is said to be abelian when [ρθ , ρθ ′ ] = 0, for all θ, θ ′ ∈ �.

Definition 5 (POVM’s). For any (finite) decision set X = {i}, a positive-operator–
valued X-measure (X-POVM) PX on the Hilbert space H is a family (Pi ; i ∈ X) of
operators Pi ∈ L(H), such that Pi ≥ 0 for all i ∈ X and

∑
i∈X Pi = 1. From now on,

the superscript X will be dropped when clear from the context.

Definition 6 (Quantum Statistical Decision Problems). A quantum statistical decision
problem is defined by a triple (R,X, �), where R = (�,H, ρ) is a quantum statistical
model, X is a (finite) decision set {i}i∈X, and � : � × X → R is a payoff function. The
choice of a strategy for the problem (R,X, �) corresponds to the choice of a X-POVM
P = (Pi ; i ∈ X) on H. The corresponding expected payoff is computed as

sq(R,X, �, P) := 1

|�|
∑

θ∈�

∑

i∈X

�(θ, i) Tr[ρθ Pi ]. (6)



630 F. Buscemi

The maximum expected payoff for the decision problem (R,X, �) is defined as

$q(R,X, �) := max
P

1

|�|
∑

θ∈�

∑

i∈X

�(θ, i) Tr[ρθ Pi ]. (7)

Notice the use of the subscript “q”, for “quantum”, to distinguish the expressions above
from their classical analogues appearing in (4) and (5).

Given two quantum statistical models R = (�,H, ρ) and S = (�,H′, σ ), governed
by the same parameter set �, but with different Hilbert spaces H and H′ and different
families of quantum states ρ = (ρθ ∈ S(H); θ ∈ �) and σ = (σθ ∈ S(H′); θ ∈ �),
the following partial ordering is introduced:

Definition 7 (Information Ordering). A quantum statistical model R = (�,H, ρ) is
said to be always more informative than S = (�,H′, σ ), in formula R ⊃ S, if
and only if, for every finite decision set X and every payoff function � : � × X →
R, $q(R,X, �) ≥ $q(S,X, �).

In other words, R is said to be more informative than S if every expected payoff
attainable in the problem (S,X, �) is also attainable in the problem (R,X, �).

Remark 2. We stress once more that the information ordering relation between quantum
statistical models introduced above does not depend on the a priori distribution on �

used to compute the expected payoff (7). One could in fact adopt an information ordering
for quantum statistical models analogous to that introduced in Definition 1, and prove
that the two ordering relations are equivalent. This is due to the fact that Proposition 1
is valid also for quantum statistical models.

Remark 3 (Quantum-Classical Correspondence). Given an abelian quantum statistical
model R = (�,H, ρ), it is always possible to construct, from R, a (classical) statistical
model ER = (�,�H,αρ) that is completely equivalent to R, in the sense that, for every
finite decision set X, every payoff function � : �×X → R, and every X-POVM P on H,
there exists a X-r.d.f. φ on �H such that s(ER,X, �, φ) = sq(R,X, �, P). Such a corre-
spondence is obtained by first introducing a sample set �H = {δ} with |�H| = dim H,
so that any orthonormal basis for H can be indexed by �H. Then, since all density
matrices ρθ are pairwise commuting, an orthonormal basis {|ϕδ〉 ∈ H}δ∈�H for H
exists, with respect to which all ρθ are simultaneously diagonal. Finally, the family of
probability distributions αρ = (pθ ; θ ∈ �) on �H is defined according to the relation
pθ (δ) := 〈ϕδ|ρθ |ϕδ〉, for all δ ∈ �H and θ ∈ �. Then, it is easy to check that the
statistical model ER = (�,�H,αρ), obtained in this way from R = (�,H, ρ), is
completely equivalent to the initial quantum statistical model R, in the sense explained
above. This in particular implies that, for every finite decision set X and every payoff
function � : � × X → R, $(ER,X, �) = $q(R,X, �).

Conversely, given a (classical) statistical model E = (�,�,α), it is always possible
to construct an equivalent abelian quantum statistical model RE = (�,H�, ρα), by
introducing a Hilbert space H�, with dim H� = |�|, and a family ρα = (ρθ ; θ ∈ �)

of diagonal density matrices on H�, defined by the relation ρθ = ∑
δ∈� pθ (δ)|ϕδ〉〈ϕδ|,

where {|ϕδ〉 ∈ H�}δ∈� is any orthonormal basis for H�. Also in this case, it is easy
to check that the quantum statistical model RE = (�,H�, ρα), obtained in this way
from E = (�,�,α), is completely equivalent to the initially given statistical model E ,
in the sense that, for every finite decision set X, every payoff function � : � × X → R,
and every X-r.d.f. φ on �, there exists a X-POVM P on H� such that sq(RE ,X, �, P) =
s(E ,X, �, φ). In particular, $q(RE ,X, �) = $(E ,X, �).
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These ideas can be compactly re-expressed as follows:

Postulate 1 (Correspondence principle). Classical statistical models are identified with
abelian quantum statistical models, and viceversa.

A quantum statistical model R involves a parameter set � and a Hilbert space H. In
a sense, then, a quantum statistical model constitutes an asymmetric structure, where a
quantum system carries information about a classical parameter. It is useful hence to pro-
vide a notion for a “fully quantum” information structure. This can be done as follows:
given a finite parameter set �, let H� be a Hilbert space such that dim H� = |�|, i.e.,
such that there exists a complete set of orthonormal vectors {|ϕθ 〉 ∈ H�}θ∈�, labeled by
θ , which form a basis for H�. For the sake of notation, let us denote |ϕθ 〉 simply by |θ〉.
Then, each quantum model R = (�,H, ρ) defines a corresponding bipartite quantum
state

ρR
AB := 1

|�|
∑

θ∈�

|θ〉〈θ |A ⊗ ρθ
B, (8)

where HA ∼= H�, HB ∼= H, and ρθ
B ≡ ρθ . The particular “classical-quantum” struc-

ture of the state given in (8) reflects the above mentioned “hybrid” structure of a quantum
statistical model. Instead, by allowing ρAB to be an arbitrary bipartite state, we arrive at
the following definition:

Definition 8 (Quantum Information Structures [15]). A quantum information struc-
ture�AB is defined as a triple (HA,HB, ρAB), where HA and HB are finite dimensional
Hilbert spaces, and ρAB ∈ S(HA ⊗ HB).

The notion of quantum information structure is hence the “fully quantized” analogue
of a quantum statistical model. In the same way in which a quantum statistical model
can be used to define a quantum statistical decision problem, a quantum information
structure can be used to define a quantum game2 as follows:

Definition 9 (Quantum Statistical Decision Games [15]). A quantum statistical deci-
sion game is defined as a triple (�AB,X, OX

A ), where �AB = (HA,HB, ρAB) is a
quantum information structure, X is a (finite) decision set {i}i∈X, and OX

A is a family
(Oi

A; i ∈ X) of self-adjoint payoff operators Oi
A ∈ L(HA). (From now on, the super-

script X in OX
A will be dropped when clear from the context.) The choice of a strategy

for player B corresponds to the choice of a POVM PB = (Pi
B; i ∈ X) on HB. The

corresponding expected payoff is computed as

sq(�AB,X, OA, PB) :=
∑

i∈X

Tr
[(

Oi
A ⊗ Pi

B

)
ρAB

]
. (9)

The maximum expected payoff is given by

$q(�AB,X, OA) := max
PB

∑

i∈X

Tr
[(

Oi
A ⊗ Pi

B

)
ρAB

]
. (10)

The following definition was introduced in [15] as a very natural analogue of Defi-
nition 2:

2 In the very specific sense given in Ref. [15].
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Definition 10 (Information Ordering). Given two quantum information structures
�AB = (HA,HB, ρAB) and ς AB′ = (HA,HB′ , σAB′), �AB is said to be always more
informative than ς AB′ , in formula,

�AB ⊃A ς AB′ , (11)

if and only if, for every finite decision set X and every family of self-adjoint payoff
operators OA = (Oi

A; i ∈ X) on HA,

$q(�AB,X, OA) ≥ $q(ς AB′ ,X, OA). (12)

Remark 4. In analogy with Remark 3, here we note that any quantum information struc-
ture �AB = (HA,HB, ρAB), for which a decomposition like that in Eq. (8) exists, natu-
rally induces a corresponding quantum statistical model R� = (�,HB, (ρθ

B; θ ∈ �)),
where the states ρθ

B are those appearing in (8). Moreover, any quantum statistical deci-
sion game (�AB,X, OA) built upon such a classical-quantum structure �AB is com-
pletely equivalent to a quantum statistical decision problem (R�,X, �O), in the sense
that $q(�AB,X, OA) = $q(R�,X, �O), where the payoff function �O is defined by
�(θ, i) := 〈θA|Oi

A|θA〉, with the vectors |θA〉 being the same as in (8).

For the reader’s convenience, we end this section by summarizing the contents of
Remarks 3 and 4 as follows:

1. the most general notion is that of quantum statistical decision games over quantum
information structures;

2. quantum statistical decision problems over quantum statistical models are equiva-
lent to quantum statistical decision games over hybrid classical-quantum information
structures;

3. classical statistical decision problems over statistical models are equivalent to quan-
tum decision problems over abelian quantum statistical models.

In other words, quantum information structures contain quantum statistical models (as
hybrid structures), which, in turn, contain classical statistical models (as abelian models).
For this reason we will first formulate our results for quantum information structures:
quantum statistical models and classical statistical models will be considered afterwards,
as particular cases.

4. Sufficiency Conditions for Quantum Information Structures and Statistical
Morphisms

In the previous section we extended the notion of information ordering to quantum sta-
tistical models and quantum information structures, depending on their “information
value” in quantum statistical decision problems and quantum statistical decision games,
respectively. In the following we will carefully define what it means that a quantum infor-
mation structure is sufficient for another. In order to do this, we will need to consider a
formalism which is slightly more general than the one we used before.

We begin with the following definition:

Definition 11 (State Spaces). The state space S of a quantum system defined on a Hil-
bert space H is a non-empty subset of S(H), containing all possible physical states of
the system.
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Remark 5. Usually, the state space S coincides with the set S(H) of all possible den-
sity matrices acting on H. However, there are cases in which the states accessible to the
system form a proper subset of S(H), for example, when the system is known to obey a
conservation law. For later convenience, we keep our definition of state space as general
as possible. This is also the reason why, in the above definition, there is no assumption
about the convexity of the state space, as we do not need such assumption in general
(even though, in many physically relevant situations, that would seem rather natural).

Definition 12 (Effects and Tests). An operator X ∈ L(H) is called an effect on a
state space S (defined on H) if and only if there exists an operator P ∈ L(H), with
0 ≤ P ≤ 1, such that Tr[Xρ] = Tr[Pρ], for all ρ ∈ S. For any (finite) decision set
X = {i}, a family (Mi ; i ∈ X) of operators Mi ∈ L(H) is called a X-test MX on a
state space S (defined on H) if and only if there exists a X-POVM PX = (Pi ; i ∈ X) on
H with Tr[Mi ρ] = Tr[Pi ρ], for all i ∈ X and for all ρ ∈ S. Any such POVM PX is
said to realize the test MX on S. From now on, the superscript X will be dropped when
clear from the context.

Remark 6. For a given state space S and a given decision set X, two families M =
(Mi ; i ∈ X) and N = (N i ; i ∈ X) of operators in L(H) are statistically equivalent on
S, in formula M ∼S N, if and only if Tr[Mi ρ] = Tr[N i ρ], for all i ∈ X and all
ρ ∈ S. For any family M = (Mi ; i ∈ X), let [M]S be the corresponding equivalence
class induced by ∼S. Any X-test on S can hence be thought of as the equivalence class
of some X-POVM on H.

Remark 7. A second, more physically motivated way to think of tests is the following:
X-tests on a state space S are those affine mappings, from S to probability distributions
on X, which can be physically realized as quantum measurements. This is guaranteed
by requiring, in the definition of test, the existence of at least one POVM that is statisti-
cally equivalent to it: in fact, all physically realizable quantum measurements give rise
to a POVM, and any POVM can be physically measured [21]. Such a restriction in the
definition of tests is meaningful only if there exist cases of affine mappings from a state
space S to probability distributions on a decision set X, which cannot be realized by any
POVM. If the state space is the totality of states S(H), then, all such affine mappings are
in one-to-one correspondence with POVM’s, and there is no need to introduce further
definitions. However, in the general case in which S ⊂ S(H), the distinction between
tests and “unphysical” affine mappings become relevant, and Definition 12 is necessary.

We are now in the position to rigorously introduce the idea which will be the basis
of our analysis:

Definition 13 (Statistical Morphisms). Given two state spaces Sin (defined on a
Hilbert space Hin) and Sout (defined on a Hilbert space Hout), we say that a linear
map L : L(Hin) → L(Hout) induces a statistical morphism L : Sin → Sout if and only
if the following conditions are both satisfied:

1. for every ρ ∈ Sin, L(ρ) ∈ Sout;
2. the dual transformation L∗ : L(Hout) → L(Hin), defined by trace duality,3 maps

tests on Sout into tests on Sin.

3 For any operator X ∈ L(Hout), L∗(X) ∈ L(Hin) is defined by the relation Tr[L∗(X) Y ] = Tr[X L(Y )],
for every Y ∈ L(Hin).



634 F. Buscemi

Remark 8. Notice that the notion of statistical morphism, introduced in Definition 13,
is in principle strictly weaker than the notion of positive map, which is a linear map that
transforms positive operators into positive operators. In fact, given a positive operator
P ≤ 1 on Hout, the operator L∗(P) might have negative eigenvalues, and yet be an
effect on Sin, according to Definition 12. On the contrary, a linear, trace-preserving,
positive map from L(Hin) to L(Hout) always constitutes a statistical morphism. An
open question is whether any statistical morphism can always be extended to a positive
map. Indications that this might not be true in general are provided in Ref. [22], Cor. 10.
However, at the moment of writing, an explicit counterexample is not available.

Definition 14. Given a quantum information structure �AB = (HA,HB, ρAB), the
associated state space SB(�AB) ⊆ S(HB) of physical states of the subsystem B is
defined as

SB(�AB) :=
{

TrA[(PA ⊗ 1B)ρAB]
Tr[(PA ⊗ 1B)ρAB]

∣
∣
∣
∣ PA ∈ L(HA) : 0 ≤ PA ≤ 1A

}

. (13)

Remark 9. The state spaces associated with given information structures turn out to be
convex state spaces. This can be easily verified by direct inspection.

Remark 10. From now on, it is convenient to think that, in Eq. (10), the maximum over
POVM’s PB on HB is replaced by a maximum over tests MB on SB(�AB). Such a
replacement, which is formally convenient, is quantitatively irrelevant, since it does not
affect the value of the maximum expected payoff, nor does it modify the information
ordering relation introduced in Definition 10.

We are now able to rigorously define the notion of sufficiency (in a sense analogous to
the one used by Blackwell in [6]) for quantum information structures, in its two variants:
sufficiency and m-sufficiency.

Definition 15 (Sufficiency and m-sufficiency). Given two quantum information struc-
tures �AB = (HA,HB , ρAB) and ς AB′ = (HA,HB′ , σAB′), we say that �AB is
m-sufficient for ς AB′ , in formula

�AB 	m ς AB′ , (14)

if and only if there exists a statistical morphism LB : SB(�AB) → SB′(ς AB′) such that

σAB′ = (idA ⊗ LB)(ρAB). (15)

We say that �AB is sufficient for ς AB′ , in formula

�AB 	 ς AB′ , (16)

if and only if there exists a completely positive, trace-preserving map EB : L(HB) →
L(HB′) such that

σAB′ = (idA ⊗ EB)(ρAB). (17)

Intuitively speaking, the idea of sufficiency is related with the fact that the transfor-
mation can be actually performed physically, as an open evolution. On the contrary, the
notion of m-sufficiency introduced here just assumes the existence of a formal statistical
procedure to map one strategy into another.
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5. Extension Theorems for Statistical Morphisms

Even if the notion of statistical morphism is weaker than that of positive map, two famous
extension theorems for positive maps, proved by Choi [18] and Arveson [19], can be
generalized to statistical morphisms as well.

Definition 16 (Complete State Spaces). A state space S on H is called complete for
L(H) if and only if it contains (dim H)2 linearly independent density matrices.

Definition 17 (Composition of State Spaces). Given two state spaces Sα (on Hα) and
Sβ (on Hβ ), we define the set

Sα × Sβ := {
σα ⊗ τβ

∣
∣σα ∈ Sα, τβ ∈ Sβ

}
. (18)

An operator X ∈ L(Hα ⊗Hβ) is an effect on Sα ×Sβ if and only if there exists an oper-
ator P ∈ L(Hα⊗Hβ), 0 ≤ P ≤ 1α⊗1β , such that Tr[X (σα⊗τβ)] = Tr[P (σα⊗τβ)],
for all σα ∈ Sα and τβ ∈ Sβ . In the same way we extend the notion of tests. Notice that
effects or tests on Sα × Sβ need not be factorized.

Proposition 2. Given two state spaces Sin and Sout, defined on Hin and Hout, respec-
tively, and a third auxiliary complete state space S0, defined on H0 ∼= Hout, suppose
that the linear map id ⊗ L : L(H0) ⊗ L(Hin) → L(H0) ⊗ L(Hout) induces a statis-
tical morphism from S0 × Sin to S0 × Sout. Then, there exists a completely positive,
trace-preserving map E : L(Hin) → L(Hout) such that

L(σ ) = E(σ ), (19)

for all σ ∈ Sin.

Proof. Let (Bi )d2

i=1, where d = dim H0 = dim Hout, be the POVM consisting of the d2

generalized Bell projectors acting on H0 ⊗ Hout. By trace-duality:

Tr
[

Bi (ω ⊗ L(σ ))
]

= Tr
[
(id ⊗ L∗)(Bi ) (ω ⊗ σ)

]
, (20)

for all σ ∈ Sin and all ω ∈ S0. The fact that id ⊗ L is a statistical morphism implies,
by definition, that the operators ((id ⊗ L∗)(Bi ))d2

i=1, even if not positive, yet induce a

test on S0 × Sin. In other words, there exists a POVM (B̃i )d2

i=1 on H0 ⊗ Hin such that

Tr
[
(id ⊗ L∗)(Bi ) (ω ⊗ σ)

]
= Tr

[
B̃i (ω ⊗ σ)

]
, (21)

for all σ ∈ Sin, all ω ∈ S0, and every i . Due to the assumption that S0 is complete,
there always exist d2 states in S0 which form an operator basis for L(H0). We can then
extend Eq. (21) by linearity and obtain that, in fact,

Tr
[

Bi (X ⊗ L(σ ))
]

= Tr
[

B̃i (X ⊗ σ)
]
, (22)

for all σ ∈ Sin, all X ∈ L(H0), and every i .
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Using the POVM (B̃i )d2

i=1 (whose existence we proved above), we now consider the
identity (via teleportation):

L(σ )

=
d2
∑

i=1

Trβγ

[(
Ui

α ⊗ 1βγ

) (
1α ⊗ Bi

βγ

) (
�+

αβ ⊗ Lγ (σγ )
) (

(Ui
α)† ⊗ 1βγ

)]

=
d2
∑

i=1

Trβγ

[(
Ui

α ⊗ 1βγ

) (
1α ⊗ B̃i

βγ

) (
�+

αβ ⊗ σγ

) (
(Ui

α)† ⊗ 1βγ

)]
, (23)

where �+ = d−1 ∑d
i, j=1 |i〉〈 j | ⊗ |i〉〈 j | is a maximally entangled state on H⊗2

0 and

(Ui )d2

i=1 is an appropriate family of unitary matrices on H0. The relation above holds
for all σ ∈ Sin ⊆ S(Hin). However, it is clear that the last term in Eq. (23) can be
extended, by linearity, to a completely positive trace-preserving map E : L(Hin) →
L(H0) ∼= L(Hout) defined as:

E(ρ)

:=
d2
∑

i=1

Trβγ

[(
Ui

α ⊗ 1βγ

) (
1α ⊗ B̃i

βγ

) (
�+

αβ ⊗ ργ

) (
(Ui

α)† ⊗ 1βγ

)]
, (24)

for all ρ ∈ S(Hin). This hence concludes the proof that a completely positive trace-pre-
serving map E : L(Hin) → L(Hout) exists, such that

E(σ ) = L(σ ), (25)

for all σ ∈ Sin. ��
Another important case is when the output state space Sout is abelian, namely,

[ρ, σ ] = 0, for all ρ, σ ∈ Sout. This condition, in particular, implies that there exists
an orthonormal basis {|i〉}d

i=1 for Hout that diagonalizes all ρ ∈ Sout.

Proposition 3. Given two state spaces Sin and Sout, defined on Hin and Hout, respec-
tively, let Sout be abelian. If there exists a linear map L : L(Hin) → L(Hout) inducing
a statistical morphism from Sin to Sout, then there exists a completely positive, trace-
preserving map E : L(Hin) → L(Hout) such that

L(ρ) = E(ρ), (26)

for all ρ ∈ Sin.

Proof. For d = dim Hout, let {|i〉}d
i=1 be the basis for Hout that simultaneously diago-

nalizes every σ ∈ Sout, and denote by �i ∈ L(Hout) each projector |i〉〈i |. Then, for
any σ ∈ Sout,

σ =
d∑

i=1

Tr[�i σ ]�i . (27)

Next, we note that, by definition of the trace-dual map L∗,

Tr
[
�i L(ρ)

]
= Tr

[
L∗(�i ) ρ

]
, (28)
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for all ρ ∈ Sin. The fact that L is a statistical morphism implies, by definition, that the
operators (L∗(�i ))d

i=1, even if not positive, yet induce a test on Sin. In other words,
there exists a POVM (�̃i )d

i=1 such that

Tr
[
L∗(�i ) ρ

]
= Tr

[
�̃i ρ

]
, (29)

for all ρ ∈ Sin and every i .
Using the POVM (�̃i )d

i=1 (whose existence we proved above), we recall Eq. (27)
above and consider the identity:

L(ρ) =
d∑

i=1

Tr
[
�i L(ρ)

]
�i

=
d∑

i=1

Tr
[
�̃i ρ

]
�i , (30)

The relation above holds for all ρ ∈ Sin ⊆ S(Hin). However, it is clear that the last
term in Eq. (30) can be extended, by linearity, to a completely positive trace-preserving
map E : L(Hin) → L(Hout) defined as:

E(ρ) :=
d∑

i=1

Tr
[
�̃i ρ

]
�i , (31)

for all ρ ∈ S(Hin). This hence concludes the proof that a completely positive trace-pre-
serving map E : L(Hin) → L(Hout) exists, such that

E(ρ) = L(ρ), (32)

for all ρ ∈ Sin. ��

6. A Fundamental Equivalence Relation

In this section, we prove our main result:

Theorem 2. Given two quantum information structures �AB = (HA,HB, ρAB) and
ς AB′ = (HA,HB′ , σAB′),

�AB 	m ς AB′ ⇔ �AB ⊃A ς AB′ . (33)

Moreover, the linear map inducing the statistical morphism between �AB and ς AB′ can
always be chosen to be trace-preserving on the whole space L(HB).

Remark 11. Shmaya, in Remark 7 of his Ref. [15], asks the question whether �AB ⊃A
ς AB′ is equivalent to the existence of a positive trace-preserving map P such that σAB′ =
(id ⊗ P)ρAB . The above theorem shows that Shmaya’s question is equivalent to ask-
ing whether any trace-preserving statistical morphism always admits a trace-preserving
positive extension (about this point, see Remark 8 above).
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For the sake of clarity, we divide the proof of Theorem 2 in two parts. The first part
is a lemma proved by Shmaya in Ref. [15], as a direct consequence of the Separation
Theorem for convex sets (see, e. g., Ref. [20]).

Before stating the lemma, we introduce the following notation: given a quantum infor-
mation structure�AB = (HA,HB , ρAB), a decision setX, and a testMB = (Mi

B; i ∈ X)

on the state space SB(�AB), we define the following operators:

ρi
A|M := TrB

[
(1A ⊗ Mi

B) ρAB

]
, (34)

for each i ∈ X. In Eq. (34), we can replace the family of operators MB by any other
family of operators which is statistically equivalent (in the sense of Remark 6) to MB
on SB(�AB)4. In particular, we can replace the operators Mi

B by the elements Pi
B of

any POVM PB = (Pi
B; i ∈ X) on HB realizing the test MB on SB(�AB).

We are now ready to state the following:

Lemma 1 (Shmaya [15]). Given two quantum information structures �AB = (HA,HB ,

ρAB) and ς AB′ = (HA,HB′ , σAB′), if �AB ⊃A ς AB′ , then, for any finite decision set X

and any test NB′ = (N i
B′ ; i ∈ X) on SB′(ς AB′), there exists a test MB =

(
M

i
B; i ∈ X

)

on SB(�AB) such that

ρi

A
∣
∣
∣M

= σ i
A|N (35)

for all i ∈ X.

Proof. For the reader’s convenience, we reformulate here Shmaya’s proof according to
our notation. For any finite decision set X, let us consider the set CA(�AB,X) of all
|X|-tuples

(
ρ1

A|M , ρ2
A|M , . . . , ρ

|X|
A|M

)
, (36)

where MB varies over all possible X-tests on SB(�AB). Clearly, CA(�AB,X) is a closed
and bounded convex subset of the (real) linear space of |X|-tuples (T i ; i ∈ X) of self-
adjoint matrices on HA, since it inherits its structure from the convex structure of the
set of X-tests on SB(�AB).

The proof then proceeds by reductio ad absurdum. Suppose in fact that, for some
decision set X, there exists a test NB′ = (N i

B′ ; i ∈ X) on SB′(ς AB′) such that the
corresponding |X|-tuple

(
σ 1

A|N , σ 2
A|N , . . . , σ

|X|
A|N

)
/∈ CA(�AB, X). (37)

Then, by the so-called Separation Theorem between convex sets (see, e. g., Ref. [20],
Cor. 11.4.2), there exists a |X|-tuple of self-adjoint operators (T̃ i

A; i ∈ X) on HA, such
that

max
MB

∑

i∈X

Tr
[
ρi

A|M T̃ i
]

<
∑

i∈X

Tr
[
σ i

A|N T̃ i
]
, (38)

4 This fact can be proved by noticing that the joint probability distribution pY,X( j, i) := Tr[(F j
A ⊗

Mi
B ) ρAB ], where (F j

A; j ∈ Y) is an informationally complete POVM on HA , equals, for all j ∈ Y and all

i ∈ X, that computed as Tr[(F j
A ⊗ Xi

B ) ρAB ], whenever (Xi
B ; i ∈ X) ∼SB (�AB ) (Mi

B ; i ∈ X). By the

completeness of (F j
A; j ∈ Y), we conclude that, in fact, TrB [(1A ⊗ Mi

B ) ρAB ] = TrB [(1A ⊗ Xi
B ) ρAB ],

for all i ∈ X.
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where the maximization is taken over all tests MB = (Mi
B ; i ∈ X) on SB(�AB). This

contradicts the assumption �AB ⊃A ς AB′ . ��
Proof of Theorem 2. One direction of the theorem, that is �AB 	m ς AB′ ⇒ �AB ⊃A
ς AB′ , simply follows from the definition of m-sufficiency given in Definition 15.

Only the converse direction, i.e. �AB ⊃A ς AB′ ⇒ �AB 	m ς AB′ , is hence non-triv-
ial. In order to construct a statistical morphism LB : SB(�AB) → SB′(ς AB′), consider
the decision set X = {1, 2, . . . , (dim HB′)2} and an informationally complete X-POVM
(Fi

B′ ; i ∈ X) on HB′ , with self-adjoint dual operators (θ i
B′ ; i ∈ X). The following

identity holds:

TB′ =
∑

i∈X

Tr[TB′ Fi
B′ ]θ i

B′, (39)

for all operators TB′ ∈ L(HB′). By linearity then

TAB′ =
∑

i∈X

TrB′
[
TAB′ (1A ⊗ Fi

B′)
]

⊗ θ i
B′ , (40)

for all operators TAB′ ∈ L(HA ⊗ HB′).
Let us now put, in Eq. (40), TAB′ = σAB′ . Since we assume �AB ⊃A ς AB′ , by

Lemma 1, there exists a X-POVM (F̃ i
B; i ∈ X) on HB such that

TrB

[
ρAB (1A ⊗ F̃ i

B)
]

= TrB′
[
σAB′ (1A ⊗ Fi

B′)
]
, (41)

for all i ∈ X. Fixed any such POVM (F̃ i
B; i ∈ X), we define a linear map LB : L(HB) →

L(HB′) via the relation

LB(TB) :=
∑

i∈X

Tr[TB F̃i
B]θ i

B′, (42)

for all operators TB ∈ L(HB). Equivalently, the linear map LB can be defined by the
relations L∗

B′(Fi
B′) = F̃ i

B , for all i ∈ X. This guarantees L∗
B′(1B′) = 1B , i.e. the linear

map LB is trace-preserving. Now, we have to check that the linear map LB : L(HB) →
L(HB′) so constructed in fact satisfies both conditions in Definition 13 and induces a
statistical morphism from SB(�AB) to SB′(ς AB′).

We begin by noting that, as a consequence of Eqs. (40), (41), and (42), (idA ⊗
LB)(ρAB) = σAB′ . This can be shown as follows:

σAB′ =
∑

i∈X

TrB′
[
σAB′ (1A ⊗ Fi

B′)
]

⊗ θ i
B′

=
∑

i∈X

TrB

[
ρAB (1A ⊗ F̃ i

B)
]

⊗ θ i
B′

def= (idA ⊗ LB)(ρAB). (43)

This also ensures that LB(SB(�AB)) ⊆ SB′(ς AB′).
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Let now X be an arbitrary (finite) decision set, and let NB′ := (N i
B′ ; i ∈ X) be

any X-test on SB′(ς AB′). We will now check, by applying Lemma 1, that the oper-
ators Xi

B := L∗(N i
B′) indeed constitute a test on SB(�AB). The proof goes as fol-

lows: for every ωB ∈ SB(�AB), let Rω
A ∈ L(HA) be the positive operator such that

ωB = TrA
[
(Rω

A ⊗ 1B) ρAB
]
. Consider now, for all i ∈ X, the trace

Tr[Xi
B ωB] = Tr

[
(Rω

A ⊗ Xi
B)ρAB

]

= Tr
[

Rω
A TrB

[
(1A ⊗ Xi

B) ρAB

]]

= Tr
[

Rω
A TrB

[
(1A ⊗ L∗

B(N i
B′)) ρAB

]]

= Tr
[

Rω
A TrB′

[
(1A ⊗ N i

B′) (idA ⊗ LB)(ρAB)
]]

= Tr
[

Rω
A TrB′

[
(1A ⊗ N i

B′) σAB′
]]

. (44)

Lemma 1 provides the existence of a POVM (P
i
B; i ∈ X) on HB such that

TrB

[
(1A ⊗ P

i
B) ρAB

]
= TrB′

[
(1A ⊗ N i

B′) σAB′
]
, (45)

for all i ∈ X. Plugging such POVM into Eq. (44), we obtain

Tr[Xi
B ωB] = Tr

[
Rω

A TrB′
[
(1A ⊗ N i

B′) σAB′
]]

= Tr
[

Rω
A TrB

[
(1A ⊗ P

i
B) ρAB

]]

= Tr
[
(Rω

A ⊗ P
i
B) ρAB

]

= Tr
[

P
i
B ωB

]
, (46)

for all i ∈ X. Since this holds for every ωB ∈ SB(�AB), we proved that, for any finite
X and any X-test (N i

B′ ; i ∈ X) on SB′(ς AB′), the operators Xi
B := L∗

B

(
N i

B′
)

indeed
constitute a test on SB(�AB). This shows that LB is a well-defined statistical morphism
from SB(�AB) to SB′(ς AB′), as requested. ��

7. The Blackwell-Sherman-Stein Theorem in the Quantum Case

The BSS Theorem (see Theorem 1) is about the comparison of classical statistical mod-
els. According to Postulate 1, however, we can actually identify the notion of classical
statistical models with that of abelian quantum statistical models, so that the BSS The-
orem becomes a statement about comparison of abelian quantum statistical models. In
this sense then, we call a “non-commutative (or quantum) BSS theorem” a statement
characterizing equivalent conditions for the comparison of general quantum statistical
models, recovering Theorem 1 in the abelian case. In the following, we will show how
Theorem 2 can be used to prove such a generalized statement.

Definition 18. Given a quantum statistical model R = (�,H, ρ), the associated state
space S(R) ⊂ S(H) is defined as the set of states S(R) = {ρθ : θ ∈ �}.
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Remark 12. As already noticed in Remark 10, it is irrelevant whether the maximum in
Eq. (7) is taken over POVM’s on H or over tests on S(R). For what follows, however,
it is convenient to consider the expected payoff as maximized over tests, rather than
POVM’s.

As it happens for quantum information structures (see Definition 15), also for quan-
tum statistical models we have two different notions of sufficiency:

Definition 19 (Sufficiency and m-sufficiency). The quantum statistical model R =
(�,H, ρ) is said to be m-sufficient for S = (�,H′, σ ), in formula

R 	m S, (47)

if and only if there exists a statistical morphism L : S(R) → S(S) such that

σθ = L(ρθ ), ∀θ ∈ �. (48)

The quantum statistical model R = (�,H, ρ) is said to be sufficient for S =
(�,H′, σ ), in formula

R 	 S, (49)

if and only if there exists a completely positive, trace-preserving map E : L(H) → L(H′)
such that

σθ = E(ρθ ), ∀θ ∈ �. (50)

Theorem 2, via the correspondence exhibited in Eq. (8), directly implies the follow-
ing:

Theorem 3 (Non-commutative BSS Theorem). Given two quantum statistical models
R = (�,H, ρ) and S = (�,H′, σ ),

R 	m S ⇔ R ⊃ S. (51)

Proof. Given the quantum statistical model R = (�,H, ρ), let us construct the quantum
information structure �R

AB = (HA,HB , ρAB), as done in Eq. (8). Let us repeat the same
construction (using the same basis for HA ∼= H�) to obtain ςS

AB′ = (HA,HB′ , σAB)

from S = (�,H′, σ ). Keeping in mind Remark 4, it is easy to verify that

R 	m S ⇔ �R
AB 	m ςS

AB′ , (52)

and that

R ⊃ S ⇔ �R
AB ⊃A ς

S
AB′ . (53)

We then obtain the statement by direct application of Theorem 2. ��
Further, by applying Proposition 3, we obtain the following:

Proposition 4 (Semi-classical case). Given two quantum statistical models R =
(�,H, ρ) and S = (�,H′, σ ), if S is abelian,

R 	 S ⇔ R ⊃ S. (54)



642 F. Buscemi

Proof. By definition, S is an abelian quantum statistical model if and only if S(S) is an
abelian state space. Then, due to Proposition 3, we know that, whenever S is an abelian
quantum statistical model, R 	m S if and only if R 	 S. With these remarks at hand,
the statement is finally proved as a simple consequence of Theorem 3 above. ��

Notice that Proposition 4 is still more general than the BSS Theorem, since commu-
tativity is required only for S, whereas the classical case is equivalent to the situation
in which both R and S are abelian. Proposition 4 hence describes a “semi-classical”
scenario. In the case in which also R is an abelian quantum statistical model, it is easy
to prove that any completely positive, trace-preserving map E such that σθ = E(ρθ ) can
be in fact written as a transition matrix ME, mapping the vectors �pθ of eigenvalues of
ρθ into the vectors �qθ of eigenvalues of σθ , for all θ ∈ �, in complete accordance with
the notion of sufficiency used in the BSS Theorem 1. We leave the proof of this to the
reader.

Next, we show that Theorem 3, together with Proposition 2, provides an equivalent
characterization of the sufficiency relation 	 for quantum statistical models. We first
need the following definitions:

Definition 20 (Composition of Quantum Statistical Models). Given any two quantum
statistical models R = (�,H, ρ), with ρ = (ρθ ; θ ∈ �), and T = (�,K, τ ), with
τ = (τξ ; ξ ∈ �), the composition T × R is defined as the quantum statistical model
(� × �,K ⊗ H, τ × ρ), where τ × ρ := (τξ ⊗ ρθ ; ξ ∈ �, θ ∈ �). Moreover,
S(T × R) = S(T) × S(R).

Definition 21 (Complete Quantum Statistical Models). A quantum statistical model T =
(�,K, τ ) is said to be complete if and only if S(T) is a complete state space.

Proposition 5 (Equivalent condition for sufficiency). Given two quantum statistical
models R = (�,H, ρ) and S = (�,H′, σ ), the following are equivalent:
1.

R 	 S; (55)

2.

T × R ⊃ T × S, (56)

for every auxiliary quantum statistical model T = (�,K, τ );
3.

T × R ⊃ T × S, (57)

for some complete quantum statistical model T = (�,K, τ ) with K ∼= H′.
Proof. The implications “1 ⇒ 2” and “2 ⇒ 3” are trivial. In order to prove the implication
“3 ⇒ 1”, let us consider an auxiliary quantum statistical model T = (�,H′, τ ), such that
S(T) is complete for L(H′), according to Definition 16. The condition T × R ⊃ T × S
implies, by Theorem 3, the existence of a statistical morphism L : S(T×R) → S(T×S)

such that L(τξ ⊗ ρθ ) = τξ ⊗ σθ , for all ξ ∈ � and all θ ∈ �. By the completeness of
S(T), this implies that the linear map L : L(H′) ⊗ L(H) → L(H′) ⊗ L(H′) must in
fact have the form id ⊗ L′. We are hence in the position to apply Proposition 2, which
proves the existence of a completely positive, trace-preserving map E : L(H) → L(H′)
such that σθ = E(ρθ ), for all θ ∈ �, i.e. R 	 S. ��

The corollary above makes it apparent that complete positivity is always related with
the possibility of extending a quantum system (in this case, a quantum statistical model)
by composing it with an auxiliary one.
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8. Sufficiency of Quantum Information Structures, without Entanglement

We begin this section with the following definition:

Definition 22 (Composition of Quantum Information Structures). Given two quantum
information structures �AB = (HA,HB, ρAB) and ωXY = (HX ,HY , ωXY ), the com-
position �AB ⊗ ωXY is defined as the triple (HA ⊗ HX ,HB ⊗ HY , ρAB ⊗ ωXY ).

Remark 13. From Definitions 14, 17, and 22, it simply follows that

SBY (�AB ⊗ ωXY ) ⊇ SB(�AB) × SY (ωXY ). (58)

Definition 23 (Complete Information Structures). A quantum information structure
ωXY = (HX ,HY , ωXY ) is complete if and only if:

1. the local state space SY (ωXY ) is complete (see Definition 16), and,
2. for any given linear map LY : L(HY ) → L(HY ), (idX ⊗ LY )(ωXY ) = ωXY if and

only if LY = idY .

Remark 14. In order to explicitly show the existence of a complete information structure
ωXY = (HX ,HY , ωXY ), let us consider the family of information structures ωp

XY =
(HX ,HY , ω

p
XY ), for p ∈ [0, 1], where dim HX = dim HY = d and ω

p
XY is an isotropic

state, that is,

ω
p
XY := p�+

XY + (1 − p)
1XY

d2 , (59)

with �+
XY denoting a maximally entangled state in HX ⊗ HY . These states are known

to satisfy the second condition in Definition 23 for p �= 0 [23]. Moreover, a simple
calculation shows that

SY (ω
p
XY ) =

{

pσY + (1 − p)
1Y

d

∣
∣
∣
∣ σY ∈ S(HY )

}

, (60)

meaning that, for p �= 0, SY (ω
p
XY ) is complete.

We are now able to state the following:

Proposition 6 (Comparison of quantum information structures). Given two quantum
information structures �AB = (HA,HB , ρAB) and ς AB′ = (HA,HB′ , σAB′), the fol-
lowing are equivalent:

1.

�AB 	 ς AB′ ; (61)

2.
[
ωXY ⊗ �AB

] ⊃X A
[
ωXY ⊗ ς AB′

]
, (62)

for every auxiliary quantum information structure ωXY = (HX ,HY , ωXY );
3.

[
ψ+

XY ⊗ �AB

] ⊃X A
[
ψ+

XY ⊗ ς AB′
]
, (63)

for some auxiliary quantum information structure ψ+
XY = (HX ,HY , �+

XY ), such
that �+

XY is a maximally entangled pure state and HX ∼= HY ∼= HB′ ;
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4.

[
ωXY ⊗ �AB

] ⊃X A
[
ωXY ⊗ ς AB′

]
, (64)

for some auxiliary complete quantum information structureωXY = (HX ,HY , ωXY )

with HY ∼= HB′ .

Proof. The implications “1 ⇒ 2” and “2 ⇒ 3” are trivial. The implication “3 ⇒ 4” fol-
lows from the fact that, from Eq. (59), any maximally entangled information structure
is, in particular, complete. We hence prove only the implications “4 ⇒ 1”.

Starting from (64), Theorem 2 guarantees the existence of a statistical morphism
LY B : SY B(ωXY ⊗ �AB) → SY B′(ωXY ⊗ ς AB′) such that

ωXY ⊗ σAB′ = (idX A ⊗ LY B)(ωXY ⊗ ρAB). (65)

Since ωXY is a complete state, Eq. (65) implies that the linear map LY B must in fact
have the form

LY B ≡ idY ⊗ LB . (66)

Further, the fact that idY ⊗ LB is a statistical morphism from SY B(ωXY ⊗ �AB) to
SY B′(ωXY ⊗ ς AB′) implies that idY ⊗ LB is also a statistical morphism, in particular,
from SY (ωXY ) × SB(�AB) to SY (ωXY ) × SB′(ς AB′), because of Eq. (58). Finally,
since we assumed that SY (ωXY ) is a complete state space, we can apply Proposition 2
to show that, indeed, �AB 	 ς AB′ . ��
Remark 15. In Ref. [15], the statement “3 ⇔ 1” is proved. Proposition 6 shows that
the hypotheses can in fact be relaxed so that only the property of completeness, rather
than entanglement, is required. Let us consider, as an example, the set of isotropic states
defined in (59). Such states are known to be separable for p ≤ 1

d+1 . Hence, by fixing a
value p∗ ∈ (

0, 1
d+1

]
, we have that ωp∗

XY is complete, induces a complete state space on Y ,
and, yet, it is a separable state. This fact recalls the results of Ref. [23], where it was first
noted how completeness (there referred to as “faithfulness”) can replace entanglement,
although in a different context (namely, quantum process tomography).

Remark 16. In Remark 4 we described how quantum statistical models can be identi-
fied with those quantum information structures, for which a decomposition like that
in Eq. (8) exists. One should hence expect that Proposition 6 implies Proposition 5,
whenever �AB = (HA,HB, ρAB) and ς AB′ = (HA,HB′ , σAB′) can be written in the
form of Eq. (8). In such a case, indeed, the fourth statement of Proposition 6 can be
used to re-derive Proposition 5 simply by considering an auxiliary quantum information
structure ωXY = (HX ,HY , ωXY ) of the form

ωXY := 1

|�|
∑

ξ∈�

|ξ 〉〈ξ |X ⊗ τ
ξ
Y . (67)

The crucial observation is that the above quantum information structure is complete
if and only if the corresponding quantum statistical model Tω := (�,HY , τ ), with
τ = (τξ ; ξ ∈ �), is complete. The rest of the proof is left to the interested reader.
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9. Conclusions

We extended some results from the theory of comparison of statistical models to quantum
statistical decision theory. This has been done by relaxing Petz’s definition of coarse-gra-
inings to that of statistical morphisms. By using such generalized notion, we introduced
comparison criteria for quantum statistical models and quantum information structures,
which are the direct generalization to a non-commutative setting of the comparison cri-
teria used in classical decision theory. The framework we described turned out to be
general enough to encompass both the classical and the quantum case. We showed how
results that previously were independent, like the Blackwell-Sherman-Stein theorem for
statistical models and Shmaya’s result for quantum information structures, can be in
fact recovered as special cases of a single, unifying comparison theorem, which also
sheds new light on both: the BSS Theorem has been extended to a quantum-classical
scenario, and Shmaya’s comparison criterion has been strengthened by removing the
need of auxiliary entangled resources.

As a final remark, the reader might have noticed that, as long as the states of a statis-
tical theory can be represented by self-adjoint matrices (not necessarily positive) of unit
trace, the definitions of information ordering and m-sufficiency proposed here can be
straightforwardly extended to consider such cases as well. For such generalized proba-
bilistic theories, an extension of the BSS Theorem can also be proved, along the same
lines described in the present work.
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A. Proof of Proposition 1

Proposition 1. For any two given statistical models E = (�,�,α) and F =
(�,�′,β), E ⊃ F if and only if E ⊃Bayes F .

Proof. The statement can be proved by using the Separation Theorem between convex
sets [20] as follows. (Notice that in our case all convex sets are closed and bounded, so
that we can proceed without paying attention to too many technical details.)
Generally speaking, the convex set C1 ⊂ RN is not contained in the convex set C2 ⊂ RN

if and only if there exists a point �v ∈ C1 such that �v /∈ C2. Then, the Separation Theorem
(Corollary 11.4.2 of Ref. [20]), applied to the convex set C2 and the single-point (hence
convex) set {�v}, states that, for such �v, there exists a vector �b ∈ RN such that

max
�w∈C2

N∑

n=1

bnwn <

N∑

n=1

bnvn . (68)

Equivalently, we can say that the convex set C1 ⊂ RN is contained in the convex set
C2 ⊂ RN if and only if, for all vectors �b ∈ RN ,

max
�w∈C2

N∑

n=1

bnwn ≥ max
�v∈C1

N∑

n=1

bnvn . (69)
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Moreover, for any given non-vanishing probability distribution π(n),
∑

n π(n) = 1,
the convex set C1 ⊂ RN is contained in the convex set C2 ⊂ RN if and only if, for all
vectors �b ∈ RN ,

max
�w∈C2

N∑

n=1

π(n)bnwn ≥ max
�v∈C1

N∑

n=1

π(n)bnvn . (70)

This follows from the fact that the above equation has to hold for all �b ∈ RN , so that the
non-vanishing probabilities π(n) can be absorbed in the definition of �b. In particular,
there is no loss of generality in considering π(n) = 1/N , for all n.
We now turn to the case of C(E ,X, �) and C(F ,X, �), choosing the a priori probability
on � as π(θ) = 1/|�|, for all θ . Then, for every �b ∈ R|�|,

max
φ: X-r.d.f.

1

|�|
∑

θ∈�

bθ vθ (φ;E ,X, �) = max
φ: X-r.d.f.

1

|�|
∑

θ∈�

vθ (φ;E ,X, �̃), (71)

where the function �̃ at the left-hand side is another payoff function with such that
�̃(θ, i) = �(θ, i)bθ . In other words, the vector �b can be absorbed in the definition of
the payoff function. This means that, for any finite set of decisions X and any payoff
function � : � × X → R, C(E ,X, �) ⊇ C(F ,X, �) if and only if, for every payoff
function �̃ : � × X → R,

max
φ: X-r.d.f.

1

|�|
∑

θ∈�

vθ (φ;E ,X, �̃) ≥ max
φ′: X-r.d.f.

1

|�|
∑

θ∈�

vθ (φ′;F ,X, �̃), (72)

where the maxima are taken over all possible X-r.d.f. φ on � and φ′ on �′. This, in
turns, implies the statement. ��
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