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Unified approach to witness non-entanglement-breaking quantum channels
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The ability of quantum devices to preserve or distribute entanglement is essential in employing quantum
technologies. Such ability is described and guaranteed by the non-entanglement-breaking (nonEB) feature of
participating quantum channels. For quantum information applications relying on entanglement, the certification
of the nonEB feature is indispensable in designing, testing, and benchmarking quantum devices. Here, we
develop a simple and direct approach for the certification of nonEB quantum channels. By utilizing the
prepare-and-measure test, we derive a necessary and sufficient condition for witnessing the nonEB channels,
which is applicable in almost all experimental scenarios. The approach not only unifies and simplifies existing
methods in the standard scenario and the measurement-device-independent scenario, but also furthers the nonEB
channel certification in the semi-device-independent scenario.
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I. INTRODUCTION

Quantum entanglement [1–3] is of great value in the appli-
cation of quantum information technologies [4,5]. Verifying
the maintenance of quantum entanglement of realistic devices
is thus important for performing quantum information tasks
[6–9]. Such devices generally transmit or store quantum states
and are described by the concept of quantum channels. To test
whether these devices can preserve entanglement is equiva-
lent to verifying the non-entanglement-breaking (nonEB) [10]
feature of corresponding quantum channels. Therefore, the
certification of the nonEB feature of an unknown quantum
channel is crucial for guaranteeing the functionality of quan-
tum devices [see Fig. 1(a)].

Various methods can be applied to certify nonEB quantum
channels. A natural method is using entangled sources [see
Fig. 1(b)]. By sending one subsystem of an entangled state
through the channel, the entanglement detection [11–30] at
the output side can be used to infer the nonEB feature of the
tested channel. To optimize the certification, the maximally
entangled state is usually required. Thus, the application of
this method is restricted by the quality of entangled sources in
practice. Another technological difficulty that can be involved
is about the correlated problem in the entanglement detection,
e.g., the long-distance entanglement distribution.
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To reduce experimental difficulty and costs, the prepare-
and-measure (P&M) methods [31–46] can be adopted [see
Fig. 1(c)]. By sending single-copy quantum states into the
channel and measuring the output states directly, the input-
output correlation reveals the nonEB feature of the tested
channel. In this sense, the P&M methods do not require
entangled sources and in principle can certify nonEB channels
in the simplest way.

Existing P&M methods, e.g., the process-tomography
method [31,32], channel steering [33,34], semiquantum sig-
naling games [38], and input-output games [39–42], apply
to different experimental situations. For instance, tomogra-
phy and input-output games characterize quantum channels
based on the accurate preparations and measurements; chan-
nel steering and semiquantum signaling games are immune to
detection-side imperfections but rely on accurate preparation
of quantum states. Because these methods detect the nonEB
feature from different perspectives, it is also hard to conclude
to what extent a given input-output correlation can tolerate
imperfections from experimental instruments. These motivate
the investigation of a general and unified P&M nonEB detec-
tion approach.

In this paper, we formulate a unified and efficient P&M
approach to detect nonEB channels. The approach can be
applied in almost all experimental scenarios considering trust-
worthiness of experimental instruments. For the general P&M
test on quantum channels, we derive a necessary and sufficient
condition that a nonEB channel can be certified. Based on
this condition, the nonEB feature is detected via the violation
of an inequality, whereas different bounds corresponds to
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FIG. 1. (a) The implementation of many quantum information
tasks requires the nonEB quantum channel. (b) The test of quantum
channels using entangled sources. (c) The prepare-and-measure test
without using entangled sources. In this work we show a unified and
efficient method to study prepare-and-measure methods in various
experimental scenarios.

different experimental scenarios. Particularly, the approach
can detect nonEB channels when only the dimensions of quan-
tum states are assumed in experiments. Our results not only
reduce experimental cost of nonEB channel tests in various
experimental scenario, but also can be used to inspect the least
requirements to exhibit the nonEB feature of a device.

II. P&M TESTS ON nonEB CHANNELS

The quantum channel is a completely positive and trace-
preserving map N B←A, which maps an arbitrary quantum
state ρA of system A to a quantum state ρB = N B←A(ρA) of
system B. A quantum channel is nonEB if and only if it cannot
be described by an entanglement-breaking (EB) channel in the
following form [10]:

N B←A
EB (ρA) =

∑
k

tr
[
EA

k ρA
]
τB

k . (1)

Here, EA
k are positive-operator-valued measure (POVM) el-

ements satisfying 0 � Ek � I and
∑

k Ek = I, and τB
k are

quantum states.
The EB channel is equivalent to a measure-and-prepare

process, i.e., the process of measuring input state ρ on a
POVM {Ek} and then producing another state τk according to
the outcome k. Consequently, for any entangled state ρA′A

ent with
one subsystem A transmitting through an EB channel N B←A

EB ,
the output state ρA′B = (idA′ ⊗ N B←A

EB )ρA′A
ent must be separable.

To detect the nonEB channel without entangled sources, in
this work we focus on two kinds of P&M tests, termed P&M
test I and P&M test II (see Fig. 2).

In the P&M test I, a quantum state ξx, labeled by x, is
randomly prepared and sent into an unknown channel N .
The output state N (ξx ) is then measured and an outcome b
is obtained. Denote the POVM element associated with b as
Fb. The probability to obtain b given the input label x is

PI
N (b|x) = tr

[
N B←A

(
ξA

x

)
F B

b

]
. (2)
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FIG. 2. Two types of P&M tests on unknown quantum channels.
(a) The P&M test I: the state ξx is randomly prepared and Fb denotes
the POVM element associated with outcome b. (b) The P&M test II:
states ξx and states ψy are randomly prepared, and the measurement
F is fixed.

If the measurement Fb is replaced with a fixed measurement
assisted by another random state ψy, labeled by y, we have the
P&M test II. Denote the POVM element associated with this
outcome as F . The probability to obtain this outcome given
states labels x and y is

PII
N (x, y) = tr

[
N B←A

(
ξA

x

) ⊗ ψB′
y F BB′]

. (3)

Both tests do not require entangled states. The P&M test
I is more suitable for testing distribution channels that trans-
mitting quantum states to a remote place. The P&M test II
is more suitable for testing memories that storing quantum
states at a certain place. In experiments of P&M tests, based
on the statistics PI(II)

N , nonEB channels can be detected using
the following theorem.

Theorem 1. In P&M tests I and II, the statistics of EB
channels always satisfy

W I(II)
N = w · PI(II)

N � CI(II)
EB , (4)

CI(II)
EB = min

NEB

W I(II)
NEB

, (5)

respectively, where w is a set of real coefficients.
A nonEB channel N can be certified in a P&M test if and

only if the inequality is violated.
To prove Theorem 1, we recall that, based on the Choi-

Jamiołkowski isomorphism [47,48], the EB feature of N is
fully characterized by the entanglement of the Choi state:

σ A′B
N = (idA′ ⊗ N B←A)(�A′A

+ ), (6)

where �+ = ∑
mn |mm〉〈nn|/d is the maximally entangled

state. We have the following lemma [10].
Lemma 2 (Horodecki-Shor-Ruskai). The Choi state σ A′B

N
of an EB channel N B←A is a separable density matrix satis-
fying trB[σ A′B

N ] = IA′
/dA′ .

Therefore, by using perfect entangled source, any nonEB
channel N can be certified by producing the Choi state
σN and performing a suitable entanglement witness [11,12].
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Even without entangled source, such an entanglement witness
method can be extended to the P&M approach.

Proof of Theorem 1. Let PN be the collection of statistics
PI
N (b|x) or PII

N (x, y), where the states and measurements can
be unknown. The set of PNEB for all EB channels NEB is a con-
vex set under the convex combination. Denote this set as CEB.
To see this, consider two statistics PN (1)

EB
and PN (2)

EB
produced

by EB channels N (1)
EB and N (2)

EB , respectively. The convex com-
bination of both, i.e., PNq = qPN (1)

EB
+ (1 − q)PN (2)

EB
for 0 �

q � 1, can always be produced by another EB channel N (3)
EB .

This is guaranteed by the definition of the EB channel. Let
N (1,2)

EB (ρ) = ∑
k tr[E (1,2)

k ρ]τ (1,2)
k , where

∑
k E (1,2)

k = I and
τ

(1,2)
k are quantum states. Then, Nq is equivalent to N (3)

EB (ρ) =∑
k tr[E (3)

k ρ]τ (3)
k with {E (3)

k } = {qE (1)
k , . . . ; (1 − q)E (2)

k , . . . }
and {τ (3)

k } = {τ (1)
k , . . . ; τ (2)

k , . . . }. It can be verified that N (3)
EB

is a well-defined EB channel since
∑

k E (3)
k = I and PN (3)

EB
=

PNq . Therefore, CEB is convex.
Based on the hyperplane separation theorem, two disjoint

convex sets, e.g. CEB and {PN } with PN /∈ CEB, can be
distinguished by a linear inequality. This inequality in general
has the form of WN = w · PN , where w is a set of real
parameters. The bound CEB for all EB channels is then the
minimal value of WNEB . The violation of this bound implies
that the tested channel is nonEB. �

Theorem 1 actually gives a unified approach that can
be applied in all experimental scenarios. When a detailed
experimental condition is considered, the bound CEB will have
a clear and analytical form, such that the set of probabilities
produced by nonEB channels is disjoint with the set of proba-
bilities produced by the EB channels. For convenience of the
following discussions, we introduce two operators

WI =
∑
x,b

wxbξ
T
x ⊗ Fb, (7a)

WII =
∑
x,y

wxyξ
T
x ⊗ ψT

y . (7b)

Here, the superscript T denotes the transpose.

A. The device-dependent scenario

In the standard or device-dependent (DD) scenario, all
experimental instruments can be assumed trusted or controlled
well. The desired state preparations and measurements can be
realized perfectly. In this case, P&M test II is equivalent to
P&M test I, which can be verified from the fact that a general
measurements is equivalent to a measurement on the state
with an ancilla [49]. The EB bounds for P&M test I and II
are

CI,DD
EB = dA min

σ
tr[WIσ ], (8a)

CII,DD
EB = dA

dB
min

σ
tr[WIIσ ], (8b)

where σ is a separable state satisfying trB[σ AB] = IA/dA.
Here, the fixed measurement in P&M test II is the projective
measurement onto the maximally entangled state, i.e. �+ =∑

mn |mm〉〈nn|/d . The violation of the above bounds, i.e.,

W I(II)
N < CI(II),DD

EB , implies the nonEB feature of the tested
channel N .

Particularly, by using P&M test I (or II) and properly
selecting {w, ξx, Fb} (or {w, ξx, ψy, F }), any nonEB channel
can be detected with a negative inequality value. Similar to the
entanglement witness [10,12] for entangled states, Theorem 1
provides a witness for any nonEB channel.

Corollary 3 (NonEB channel witness). For any nonEB
channel NnEB, there always exists a P&M test I (II) such that
W I(II)

NnEB
< 0 whereas CI(II),DD

EB = 0.
The proof is placed in Appendix A, where we use the

entanglement witness of the associated Choi state to give the
form of {ξx, Fb} (or {ξx, ψy, F }) in the P&M test I (or II).

In this scenario, quantum process tomography can be ap-
plied to characterize unknown quantum channels. To obtain
the process matrix of the channel, experimental resources are
usually consuming because of the large number of preparation
and measurement settings [32]. Instead of obtaining full in-
formation of the channel, the nonEB feature is detected with
less state preparations and measurements with Corollary 3.
Precisely, for a quantum system with dimension d , the tomog-
raphy method typically involves a number of d4 preparation
and measurement settings, while in the witness this number
can be reduced to d2.

B. The measurement-device-independent scenario

The witness method in the DD scenario is based on the
precise realization of desired measurements, which in practice
is difficult to guarantee. For the situation with adversaries, the
user may also only have access to untrusted measurement de-
vices. An eavesdropper may control the detection efficiencies
to always simulate a nonEB channel, and at the same time
steal transmitted quantum information without being detected
[50]. To obtain strict security and perform faithful implemen-
tation of nonEB channel detection, the witness method should
be improved to the measurement-device-independent (MDI)
scenario.

The MDI scenario is also important because in practice
the functionality of preparation instruments is much easier
to guarantee than that of measurement instruments. In this
scenario, state preparations are assumed to be perfect, while
measurements are completely unknown. The EB bounds for
two tests can be proved to be

CI,MDI
EB = dA min

σI,Fb

tr[WIσI], (9a)

CII,MDI
EB = dAdB min

σII

tr[WIIσII], (9b)

respectively. Here, σI and σII are separable states satisfying
trB[σ AB

I ] = IA/dA and trB[σ AB
II ] � IA/dA, respectively, and the

violation of the above bounds implies the nonEB feature of the
tested channel.

In fact, The P&M test I reduces to channel steering in
the MDI scenario; see [33,34] and the recent work [42].
Since the untrusted measurement does not provides enough
information to recognize all nonEB channels, the witness
result in Corollary 3 does not hold. In contrast, the P&M test II
can be developed as a witness for nonEB channels in the MDI
scenario. This can be understood by the result that a trusted
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measurement can be equivalently performed by an untrusted
measurement with a trusted source [15,17,51].

Corollary 4 (MDI nonEB channel witness). For any
nonEB channel NnEB, there always exists a P&M test II
such that W II

NnEB
< 0 whereas CII,MDI

EB = 0.
The proof is placed in Appendix A, where again we use the

entanglement witness of the associated Choi state to give the
form of {ξx, ψy} for the P&M test II.

The P&M test II simplifies and improves the semiquantum
signaling game [38] for detecting nonEB channels. Using
informationally complete sets of quantum states [49,52] as
channel input, the semiquantum signaling game defines a par-
tial order for all quantum channels [38], where EB channels
stand at the bottom. Instead of exhibiting a partial order for
all quantum channels, the MDI nonEB channel witness has a
lower requirements on input states. Thus, Corollary 4 can be
adopted in real experiments even when state preparations are
not perfect.

C. The semi-device-independent scenario

To further weaken the assumption of experimental in-
struments, we consider the scenario where both preparations
and measurements are untrusted. In fact, if all experimental
instruments are fully untrusted, then we enter the device-
independent scenario and no nonEB channel can be certified.
This is because the statistics of any P&M test on any channel
can always be explained by an EB channel with a higher
dimension [35].

Fortunately, since the quantum system usually has a fi-
nite size, the dimension of the quantum system is usually
bounded. This motivates the detection of nonEB channels in
the semi-device-independent (SDI) scenario. The application
of Theorem 1 provides EB bounds as follows:

CI,SDI
EB = dA min

σI,ξx,Fb

tr[WIσI], (10a)

CII,SDI
EB = dAdB min

σII,ξx,ψy

tr[WIIσII]. (10b)

Here, σI and σII are separable states satisfying trB[σ AB
I ] =

IA/dA and trB[σ AB
II ] � IA/dA, respectively, and the minimiza-

tion is also taken over all states or POVMs in their associate
Hilbert spaces with maximal dimension dA or dB. The viola-
tion of these bounds implies the nonEB feature of the tested
channel.

Corollary 5. In the SDI scenario, when dimensions of
input states and output states (assisting states) are dA and dB,
respectively, a quantum channel N is certified as nonEB if
there exists a P&M test I (II) such that W I(II)

N < CI(II),SDI
EB .

The proof is placed in Appendix A. Here, we straightfor-
wardly extend the P&M tests I and II to the SDI scenario. Due
to limited information on preparation and measurement, the
witness result may not hold the SDI scenario, i.e., there may
be nonEB channels escaping the certification. Despite this,
Corollary 5 is still efficient if one considers low dimensions
or large number of states and measurements, as we will show
in the following example.

III. EXAMPLE: THE DEPOLARIZING CHANNEL

To show the properties of the P&M tests in various ex-
perimental scenarios, let us consider the certification of the
depolarizing channel,

Nγ (ρ) = γ ρ + (1 − γ )
I

d
, (11)

where 0 � γ � 1 and d is dimension. It can be analytically
calculated that the nonEB region is γ > 1/(d + 1). We leave
the qudit case and detailed derivations in Appendix B, and
mainly discuss the qubit case for simplicity. Let states and
POVM elements chosen from eigenstates of three Pauli matri-
ces σx, σy, and σz, which are denoted as | + /−〉, |R/L〉, and
|0/1〉, respectively. Here, |±〉 = (|0〉 ± |1〉)/

√
2 and |R/L〉 =

(|0〉 ± i|1〉)/
√

2.
In the DD scenario, the application of Corollary 3 can be

realized by considering the entanglement witness of the asso-
ciated Choi state. An efficient P&M test I can be designed as
randomly inputting eigenstates of σi into the channel and mea-
suring the output states on the same σi. With w++ = w−− =
wRR = wLL = −1/2, w+− = w−+ = wRL = wLR = 1/2, and
w01 = w10 = 1 (other w’s are 0), we have CI,DD

EB = 0, and
W I

γ < 0 implies γ > 1/3 exactly. However, if measurement
σi is imperfect, a false certification may occur. For example,
suppose the actual measurements are σ̃i = εiσi, where εi ∈
(0, 1] are detection efficiencies. A direct application of Corol-
lary 3 gives γ > εz/

∑
i εi. If detection efficiencies satisfy

εz < (εx + εy)/2, the EB depolarizing channels in the region
εz/

∑
i=x,y,z εi < γ � 1/3 would be falsely certified.

To avoid this problem, the nonEB channel certification can
be applied in the MDI scenario. By again considering the
entanglement witness of the Choi state, an efficient P&M test
II can be designed. Let ξx and ψy be randomly prepared in
the same basis σi. If the untrusted measurement faithfully
implements �+, with the same w, we also have CII,DD

EB = 0
and W II

γ < 0 implies γ > 1/3. Even if the measurement �+
is inaccurate, no EB channel can pass the test. To see this,
suppose the actual POVM element is �′ = ε|φθ 〉〈φθ |, where
ε is the efficiency and |φθ 〉 = cos θ |00〉 + sin θ |11〉. A direct
application of Corollary 4 gives γ > γθ = 1/(1 + 2 sin 2θ ).
For θ ∈ (−π/12, 7π/12), the nonEB region 1/3 � γθ < γ �
1 can be certified. For other values of θ , the nonEB channel
would be certified and one has to change to another in-
equality. Therefore, imperfect measurements can only weaken
the performance of the MDI witness but never cause false
certification.

Less quantum states can also certify nonEB channels
with our method. Using ξx, ψy ∈ {| + /−〉, |0/1〉} and w01 =
w10 = 1 and w+− = w−+ = −w++ == −w−− = 1/2, the
EB bound is calculated as 0 and the violation gives
1/2 < γ � 1. If the input states are further reduced to
ξx ∈ {|0〉〈0|, |+〉〈+|} and ψy ∈ {|1〉〈1|, |−〉〈−|}, with w01 =
w+− = −w0− = 1, the EB bound is still 0 and the violation
certifies the same 1/2 < γ � 1. There is a gap between the
certified region and the theoretical nonEB region because less
states are used.

In the SDI scenario, due to the analytical difficulty in
calculating EB bounds, we numerically discuss the minimal
γ that can be certified for fixed dimensions dA and dB. As
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TABLE I. The minimal γ certified by the P&M tests on the qubit
depolarizing channel Nγ , given dimensions of Hilbert spaces as dA

and dB, respectively.

The P&M test I
�������dA

dB

2 3 4 5

2 0.34 0.39 0.58 0.58
3 0.58 0.67
4 0.70 0.75
5 0.82 0.87

The P&M test II
�������dA

dB

2 3 4 5

2 0.34 0.58 0.70 0.82
3 0.58
4 0.70
5 0.82

shown in Table I, our method can still certify nonEB channels
efficiently. Particularly, when dA = dB = 2, almost all nonEB
depolarizing channels can be detected. When dA and dB

increase, it becomes hard for the weak nonEB depolarizing
channel to pass the test. In P&M test I the nonEB feature is
certified only when dB is small, while in P&M test II the same
minimal γ is certified for the same pair of dA and dB because
of the symmetry between ξx and ψy in this case. When dA

and dB are large, due to the specific inequalities and limited
states and measurements in the tests, the nonEB feature is not
revealed. This can be improved with a better optimization or
using more quantum states.

Our results can be used to determine the minimal exper-
imental requirements to reveal the nonEB feature. Consider
the qubit depolarizing channel with γ = 0.55. The above dis-
cussion shows that both P&M tests can certify this channel in
the DD and MDI scenarios. Particularly, in the MDI scenario
one can use only four states. This channel can also be certified
even when both preparation and measurement instruments are
untrusted but have fixed dimensions, precisely (dA = 2, dB �
3), in P&M test I or dA = dB = 2 in the P&M test II.

IV. CONCLUSION

In this paper, we have formulated a unified framework for
the P&M test on the nonEB channel. We have derived a neces-
sary and sufficient condition for certifying a nonEB quantum
channel, then applied it to various experimental scenarios for
two kinds of P&M tests. In the DD scenario, because accurate
and faithful state preparations and measurements can be per-
formed, the nonEB channel witness can be directly realized.
However, such certification is not reliable when measurement
instruments are imperfect. We then applied the inequality
criterion in the MDI scenario, and showed that P&M test II
can be formulated as a witness. The certification in the MDI
scenario is not only robust to imperfect measurements, but
also applicable for relaxed requirements of state preparations.
Considering real-life trustworthiness of sources, we further

extended the inequality method to the SDI scenario. Based
on dimensions of Hilbert spaces solely, both SDI P&M tests
certify nonEB channels effectively.

The inequality criterion uses different EB bounds in asso-
ciated scenarios for the same inequality. These bounds have
clear and compact forms, most of which can be calculated
analytically. After a P&M test, based on the violation of
different EB bounds in corresponding scenarios, the minimal
experimental requirements for exhibiting the nonEB feature
can be obtained. Our results complement the entanglement de-
tection in the temporal situation via the certification of nonEB
quantum channels, and can be adopted in the evaluation and
designation of real quantum devices.
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APPENDIX A: PROOFS FOR COROLLARIES

Here, we give the proofs of Corollaries 3, 4, and 5.
For the P&M test I, the input-output correlation is

PI
N (b|x) = tr[N (ξx )Fb] = tr[ξxN †(Fb)]

= dAtr
[
ξT

x ⊗ N †(Fb)�+
]

= dAtr
[(

ξT
x ⊗ Fb

)
id ⊗ N (�+)

]
= dAtr

[(
ξT

x ⊗ Fb
)
σN

]
, (A1)

where tr[N (A)B] = tr[AN †(B)] and tr[ATB] = dtr[A ⊗
B�+] have been used, and dA is the dimension of HA. Then,
the inequality expression is

W I
N = dAtr[WIσN ], (A2)

with WI = ∑
x,b wxbξ

T
x ⊗ Fb.

In the DD scenario, both ξx and Fb are known. Based on
Lemma 2, the EB channel bound is

CI,DD
EB = dA min

σNEB

tr[WIσNEB ] (A3)

= dA min
σsep

tr[WIσsep], (A4)

where σsep is a separable state satisfying trB[σ AB
sep ] = IA/dA. In

the MDI scenario, ξx is known while Fb is unknown; while,
in the SDI scenario, both ξx and Fb are unknown except
dimensions. To exclude all effects from unknown terms, the
EB channel bounds are

CI,MDI
EB = dA min

σsep,Fb

tr[WIσsep], (A5)

CI,SDI
EB = dA min

σsep,ξx,Fb

tr[WIσsep], (A6)
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where σsep satisfies the same condition as in Eq. (A4), and
the minimization is also taken over all Fb or ξx in associated
operator spaces.

For the P&M test II, the input-output correlation is

PII
N (x, y) = tr[N (ξx ) ⊗ ψyF ]

= tr[ξx ⊗ ψy(N † ⊗ id)F ]

= dAtr
[(

ξT
x ⊗ I ⊗ ψy

)
(I ⊗ F )(σN ⊗ I)

]
= dAdBtr

[
ξT

x ⊗ ψT
y σ̃N (F )

]
, (A7)

where

σ̃N (F ) = 1

dB
tr2[(I ⊗ F )(σN ⊗ I)]T3 (A8)

is an unnormalized state. Here, tr2 acts on the second operator
space, and T3 is the transpose on the third operator space.
Then, the inequality expression is

W II
N = dAdBtr[WIIσ̃N (F )], (A9)

where WII = ∑
xy wxyξ

T
x ⊗ ψT

y .
In the DD scenario, ξx and ψy can be prepared well. If

we let the measurement be F = �+, then σ̃N (�+) = σN /d2
B.

Based on Lemma 2, the corresponding EB bound is

CII,DD
EB = dA

dB
min
σNEB

tr[WIIσNEB ] (A10)

= dA

dB
min
σsep

tr[WIIσsep], (A11)

where σsep is a separable state satisfying trB[σ A′B
sep ] = IA′

/dA′ .
In the MDI and SDI scenarios the measurement F is unknown,
but for EB channels the corresponding σ̃N can be simplified.
The Choi state of an EB channel is separable, i.e., σNEB =∑

k pkτ
′
k ⊗ τk with

∑
k pkτ

′
k = IA/dA. For any POVM element

F ,

σ̃NEB (F ) = 1

dB
tr2[(I ⊗ F )(σN ⊗ I)]T3

=
∑

k

pkτ
′
k ⊗ tr2

[
F

(
τk ⊗ I

dB

)]T3

=
∑

k

pkτ
′
k ⊗ τ̃k, (A12)

where τ̃k is an unnormalized state satisfying tr[τ̃k] � 1. Thus,
trB[σ̃NEB (F )] � IA/dA, and the EB channel bounds in the MDI
and SDI scenarios are

CII,MDI
EB = dAdB min

σsep

tr[WIIσsep], (A13)

CII,SDI
EB = dAdB min

σsep,ξx,ψy

tr[WIIσsep], (A14)

where σsep satisfies the same condition as in Eq. (A10).
Proof of Corollaries 2–4. Recall that for an arbitrary en-

tangled state ρent, there always exists a witness W such that
tr[W ρent] < 0 while tr[W ρsep] � 0 holds for all separable
states ρsep. For convenience, the witness W can be decom-
posed as W = ∑

i j ci jAi ⊗ Bj , where ci j are real coefficients
and Ai and Bj are operators satisfying 0 < Ai, Bj � I.

To prove Corollaries 2 and 3, we can always choose wxb

(wxy), ξx, and Fb (ψy) such that WI(II) is an entanglement
witness for the Choi state σNnEB of the tested nonEB chan-
nel NnEB. For the P&M test I, let wxb = cxbtr[Mx], ξx =
MT

x /tr[Mx], and Fb = Nb. It can be verified that WI = W
and CI,DD

EB = 0. For the P&M test II, similarly, let wxy =
cxytr[Mx]tr[Ny], ξx = MT

x /tr[Mx], and ψy = NT
y /tr[Ny]. We

also have WII = W . Then, from Eqs. (A10) and (A13), we
have the EB channel bounds CII,DD

EB = 0 and CII,MDI
EB = 0, re-

spectively. Therefore, Corollary 3 and Corollary 4 are proved.
Corollary 5 naturally holds from Theorem 1 and (A14). �
Notice that, in this proof if we use the singular value

decomposition in writing the witness, we will have W =∑d
k=1 Ãk ⊗ B̃k , where d is the minimal dimension of systems

A and B. After transferring to WI(II), the number of preparation
and measurement settings, i.e., number of pairs (ξx, Fb), is not
more than d2.

APPENDIX B: THE DEPOLARIZING CHANNEL

For the depolarizing channel Nγ , the entanglement witness
for its Choi state σNγ

is Wdep = I/d − �+ [53], based on
which we can construct the nonEB channel witness in both
DD and MDI scenarios.

In the DD scenario, we let the P&M test I be Table II. It
can be verified that WI = Wdep. Thus, CI,DD

EB = 0 and, from
Corollary 2, the negative value of

W I
Nγ

= (d − 1)[1 − (d + 1)γ ] < 0 (B1)

implies the exactly nonEB region of the depolarizing channel,
i.e., γ > 1/(d + 1).

Suppose that in the experiment, the actual measurements
are F̃μ = εμFμ, where εμ represents the detection efficiency.
For simplicity, we assume that the efficiency for measuring
|k〉〈k| is εz, for measuring +kl is εx, and for measuring −kl is
εkl = εy. The inequality value is

WNγ
=

[
εz − γ εz − γ

εx + εy

2
d

]
(d − 1). (B2)

If we still apply WNγ
< 0, then we would obtain γ > γε =

2εz/(2εz + dεx + dεy). When εz � (εx + εy)/2, the EB region
γε < γ � 1/(1 + d ) would be falsely certified as nonEB.
When εz > (εx + εy)/2, the nonEB region 1/(d + 1) < γ �
γε would not be certified.

In the MDI scenario, the P&M test II can be chosen as
Table III, we can also obtain WII = Wdep. The EB channel
bound is CII,MDI

EB = 0 and if the untrusted measurement im-
plements �+ faithfully, then we have the inequality value

W II
Nγ

= d − 1

d
[1 − (d + 1)γ ]. (B3)

The violation also implies γ > 1/(d + 1) such that all of the
nonEB region is witnessed.

To discuss the situation when �+ is not perfectly mea-
sured, we consider the qubit case and suppose the actual
measurement is �′ = ε|φθ 〉〈φθ |, where ε ∈ (0, 1] and |φθ 〉 =
cos θ |00〉 + sin θ |11〉. The inequality value becomes

W II,MDI
Nγ

= ε

2
[1 − (1 + 2 sin 2θ )γ ]. (B4)
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TABLE II. A P&M test I in the DD scenario. Here, {|k〉|k = 1, . . . , d} forms an orthonormal basis for the Hilbert space with dimension d .
The ±kl and Rkl/Lkl denote the operators projected onto the states |±kl〉 = (|k〉 ± |l〉)/

√
2 and |Rkl/Lkl〉 = (|k〉 ± i|l〉)/

√
2, respectively.

w = {wμ} � = {ξμ} F = {Fμ} μ

wk = 1 ξk = |k〉〈k| Fk = I − |k〉〈k| k = 1, . . . , d
wμν = −1/2 (ξμ, Fν ) ∈ {(+kl , +kl ), (−kl , −kl ), 1 � k < l � d

(Rkl , Rkl ), (Lkl , Lkl )}
wμν = 1/2 (ξμ, Fν ) ∈ {(+kl , −kl ), (−kl , +kl ),

(Rkl , Lkl ), (Lkl , Rkl )}

The negative value implies γ > γθ = 1/(1 + 2 sin 2θ ). For
θ ∈ (−π/12, π/4), we would have 1/3 � γθ < 1 and the
nonEB region γ ∈ (γθ , 1] can be certified. For other values
of θ , we would have either γ > 1 or γ < −1; i.e., errors in
the measurement destroy the test.

For the certification in the SDI scenario, we consider
the P&M tests I and II as follows. Denote the eigenstates
of Pauli matrices σx, σy, and σz as |±〉, |R/L〉, and |0/1〉,
respectively. In the P&M test I, we consider the statis-
tics PI

Nγ
= {PI

Nγ
(b|x)|x, b ∈ {0, 1; +,−; R, L}}. In the P&M

test II, we consider the statistics PII
Nγ

= {PII
Nγ

(xy)|x, y ∈
{0, 1; +,−; R, L}} and the measurement realized as �+. We
further choose the inequality expression as wxb,wxy ∈ {±1},
and simplify the calculation by computing the minimal dis-
tance between PI(II)

Nγ
and PI(II)

NEB
generated by EB channels,

instead of calculating each inequality individually. That is, we
numerically calculate

DistI
γ = min

NEB,ξx,Fb

∣∣PI
Nγ

− PI
NEB

∣∣
∝ min

σI,ξx,Fb

∑
x,b

∣∣tr[ξT
x ⊗ Fb(σNγ

− σI )
]∣∣, (B5)

DistII
γ = min

NEB,ξx,Fb(ψy )

∣∣PII
Nγ

− PII
NEB

∣∣
∝ min

σII,ξx,Fb

∑
x,y

∣∣tr[ξT
x ⊗ ψT

y (σNγ
− σII )

]∣∣, (B6)

for P&M tests I and II, respectively. The minimal γ such that
DistI(II)

γ > 0 are concluded for each dA and dB.

TABLE III. A P&M test II in the MDI scenario. Here, {|k〉|k = 1, . . . , d} forms an orthonormal basis for the Hilbert space with dimension
d . The ±kl and Rkl/Lkl denote the operators projected onto the states |±kl〉 = (|k〉 ± |l〉)/

√
2 and |Rkl/Lkl〉 = (|k〉 ± i|l〉)/

√
2, respectively.

w = {wμ} � = {ξμ} � = {ψμ} μ

wkl = 1 − δkl ξk = |k〉〈k| ψl = |l〉〈l| k, l = 1, . . . , d
wμν = −1/2 (ξμ, ψν ) ∈ {(+kl , +kl ), (−kl ,−kl ), 1 � k < l � d

(Rkl , Lkl ), (Lkl , Rkl )}
wμν = 1/2 (ξμ, ψν ) ∈ {(+kl , −kl ), (−kl , +kl )},

(Rkl , Rkl ), (Lkl , Lkl )}
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