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There are several inequalities in physics which limit how well we can process physical systems to achieve some
intended goal, including the second law of thermodynamics, entropy bounds in quantum information theory, and
the uncertainty principle of quantum mechanics. Recent results provide physically meaningful enhancements
of these limiting statements, determining how well one can attempt to reverse an irreversible process. In this
paper, we apply and extend these results to give strong enhancements to several entropy inequalities, having to
do with entropy gain, information gain, entropic disturbance, and complete positivity of open quantum systems
dynamics. Our first result is a remainder term for the entropy gain of a quantum channel. This result implies
that a small increase in entropy under the action of a subunital channel is a witness to the fact that the channel’s
adjoint can be used as a recovery map to undo the action of the original channel. We apply this result to pure-loss,
quantum-limited amplifier, and phase-insensitive quantum Gaussian channels, showing how a quantum-limited
amplifier can serve as arecovery from a pure-loss channel and vice versa. Our second result regards the information
gain of a quantum measurement, both without and with quantum side information. We find here that a small
information gain implies that it is possible to undo the action of the original measurement if it is efficient. The
result also has operational ramifications for the information-theoretic tasks known as measurement compression
without and with quantum side information. Our third result shows that the loss of Holevo information caused
by the action of a noisy channel on an input ensemble of quantum states is small if and only if the noise can
be approximately corrected on average. We finally establish that the reduced dynamics of a system-environment
interaction are approximately completely positive and trace preserving if and only if the data processing inequality

holds approximately.
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I. INTRODUCTION

The second law of thermodynamics constitutes a fundamen-
tal limitation on our ability to extract energy from physical
systems [1-3]. The data processing inequality represents a
limitation on our ability to process information, being the
basis for most of the important capacity theorems in quantum
information theory [4]. The entropic uncertainty principle
of quantum mechanics places a limitation on how well we
can measure incompatible observables [5,6]. These seemingly
disparate statements have a common mathematical foundation
in an entropy inequality known as the monotonicity of quantum
relative entropy [7,8], which states that the quantum relative
entropy cannot increase under the action of a quantum channel.
More precisely, the quantum relative entropy between two
density operators p and o is defined as [9]

D(pllo) = Tr{p[log p — logal}, (D
and the monotonicity of quantum relative entropy states
that [7,8]

D(pllo) = DIN(p)IIN (o)), 2)
where N is a quantum channel.

Recently, researchers have explored refinements of these
statements in various contexts, with the common theme
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being to understand how well one can attempt to reverse an
irreversible process. One of the main technical developments
which has allowed for these refined statements is a strength-
ening of the monotonicity of quantum relative entropy of the
following form [10]:

D(pllo) = DN (p)IN(0)) —log F(p.(R o N)(p)), (3)

where F(w,7) = ||Jo+/7|? is the quantum fidelity [11]
between two density operators w and 7, and R is a recovery
channel with the property that it perfectly recovers the o state,
in the sense that 0 = (R o N)(o) (see also [12,13] for later
developments and [14] for an important earlier development
with conditional mutual information).

Several applications follow as a consequence. Refer-
ence [15] gave an application in thermodynamics, proving
that if the free energies of two states are close and if it is
possible to transition from one state to another via a thermal
operation such that there is an energy gain in the process, then
one can approximately reverse this thermodynamic transition
without using any energy at all. Reference [16] showed
how to tighten the uncertainty principle in the presence of
quantum memory [17] with another term related to how
much disturbance a given measurement causes, thus unifying
several aspects of quantum physics, including measurement
incompatibility, entanglement, and measurement disturbance,
in a single entropic uncertainty relation. Finally, Ref. [10]
has given an increased understanding of many well known
entropy inequalities in quantum information, such as the joint
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convexity of quantum relative entropy, the non-negativity
of quantum discord, the Holevo bound, and multipartite
information inequalities.

In this paper, we continue with this theme and derive several
new results:

(1) First, we give a strong improvement of the well known
statement that the quantum entropy cannot decrease under the
action of a unital quantum channel (a channel which preserves
the identity operator). The bound that we derive has a rather
simple proof, following from the operator concavity of the
logarithm (related to the method used in [13]). The main
physical implication of this result is that if the entropy gain
under the action of a unital channel is not too large, then it is
possible to reverse the action of this channel by applying its
adjoint (which is a quantum channel in this case).

(2) Next, we consider the information gain of a quantum
measurement, a concept introduced in [18] and subsequently
refined in [19-22]. The information gain of a quantum
measurement quantifies how much data we can gather by
performing a quantum measurement on a given state. It has an
operational interpretation as the rate at which a sender needs to
transmit classical information to a receiver in order for them to
simulate a quantum measurement on a given state [22]. Here,
we prove that if the information gain is not too large, then it is
possible to reverse the action of the measurement and, in the
operational context, one can also simulate the measurement
well on average without sending any classical data at all. The
result also applies if the measurement is performed on one
share of a bipartite state.

(3) Third, we provide a clear operational meaning for the
notion of entropic disturbance, defined in [23] as the loss of
the Holevo information due to the action of a noisy channel
on an initial ensemble of quantum states. We accomplish this
by showing that a small loss of Holevo information implies
that the action of the noisy channel on the input ensemble can
be approximately undone, on average. This result answers a
question left open from [23].

(4) Finally, we give a refinement of the recent link between
the data processing inequality and complete positivity of
open quantum systems dynamics [24]. In [24], it was shown
that the data processing inequality holds if and only if the
reduced dynamics of an evolution can be described by a
completely positive trace-preserving map. Here, we show
how this result holds approximately, which should allow
for experimental tests if desired. That is, we show that the
data processing inequality holds approximately if and only
if the reduced dynamics of an evolution are approximately
completely positive and trace-preserving (see Sec. VI for
precise statements).

The rest of the paper is devoted to giving more details and
explanations of these results. We begin in the next section
by setting notation, giving definitions, and reviewing the
prior literature in more detail. We then follow with each of
the aforementioned results and conclude in Sec. VII with a
summary.

II. PRELIMINARIES

This section reviews background material on quantum
information, all of which is available in [4]. Let L(H)
denote the algebra of bounded linear operators acting on a
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Hilbert space H. Let £, (H) denote the subset of positive
semidefinite operators. We also write X > 0 if X € £, (H).
An operator p is in the set D(H) of density operators (or
states) if p € L (H) and Tr{p} = 1. The tensor product of two
Hilbert spaces H and Hp is denoted by Ha ® Hp or Hap.
Given a multipartite density operator pap € D(Ha ® Hp), we
unambiguously write py = Trg{pap} for the reduced density
operator on system A. We use pap, 0ap, Tap, WAB, €IC., tO
denote general density operators in D(H 4 ® Hp), while Y45,
©AB, $AB, €tc., denote rank-one density operators (pure states)
in D(H 4 ® Hp) (with it implicit, clear from the context, and
the above convention implying that ¥ 4,¢4,¢4 may be mixed
if Yap,0ap,Pap are pure). A purification |¢p?)ps € Hr ® Ha
of astate p4 € D(H4)issuchthat py = Trr{|¢”)(d”|ra}. An
isometry U : H — H’ is a linear map such that UTU = Iy,.
Often, an identity operator is implicit if we do not write it
explicitly (and should be clear from the context).

Throughout this paper, we take the usual convention
that f(A) = Zi:ai7é0 f(@))i){i| when given a function f
and a Hermitian operator A with spectral decomposition
A =), ali){i|. In particular, A~! is interpreted as a gen-
eralized inverse, so that A~' = Zi:a;#o ai_l [i)(i], log (A) =
Zi:ai>0 lOg ((,l,)ll) (l|7 exp (A) = Zi:ai;éo exXp (al)|l) (l |7 etc.
Throughout the paper, we interpret log as the binary logarithm.
We employ the shorthand supp(A) and ker(A) to refer to the
support and kernel of an operator A, respectively.

A linear map Nj_p : L(Ha) — L(Hp) is positive if
N p(oa) € L(Hp)+ whenever o4 € L(H4)4. Let idy de-
note the identity map acting on a system A. A linear map
Na_p is completely positive if the map idg @ NMy_p is
positive for a reference system R of arbitrary size. A linear
map N,_ p is trace preserving if Tr{Ns_ z(t4)} = Tr {74}
for all input operators 74 € L(H 4). It is trace nonincreasing
if Tr{Na_ p(t4)} < Tr{rs} for all T4 € L, (H4). A quantum
channel is a linear map which is completely positive and
trace preserving (CPTP). A positive operator-valued measure
(POVM) is a set { A"} of positive semidefinite operators such
that ", A™ = I.For X,Y € L(H),let (X,Y) = Tr{X'Y} de-
note the Hilbert-Schmidt inner product. The adjoint (M 4_, 3)T
of a linear map M 4_, g is the unique linear map satisfying

(Yp, Mo p(Xa)) = (Map) (Y5), X4), “4)

for all X4 € L(H4) and Yp € L(Hp). A linear map M. p
is unital if it preserves the identity, i.e., Ma_ p(I4) = Ip.
It then follows that a linear map is unital if and only if its
adjoint is trace preserving. A linear map M4, p is subunital
if M p(I4) < Ip, and this is equivalent to the adjoint of
M s_, p being trace nonincreasing. A quantum channel U :
L(HA) — L(Hp) is an isometric channel if it has the action
UXy) =UX U, where X4 € L(H ) and U : Hy — Hp is
an isometry.

A quantum instrument is a quantum channel that accepts a
quantum system as input and outputs two systems: a classical
one and a quantum one. More formally, a quantum instrument
is a collection { "'} of completely positive trace nonincreasing
maps, such that the sum map ) A" is a quantum channel.
We can write the action of a quantum instrument on an input
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operator P as the following quantum channel:

P — > N (P)® |x)(x]. Q)

where {|x)} is an orthonormal basis labeling the classical
output of the instrument.

The trace distance between two quantum states p,o €
D(H) is equal to ||p —oll;. It has a direct operational
interpretation in terms of the distinguishability of these states.
That is, if p or o are prepared with equal probability and the
task is to distinguish them via some quantum measurement,
then the optimal success probability in doing so is equal
to (1 + ||p — oll1/2)/2. The fidelity is defined as F(p,0) =
||ﬁﬁ ||% [11], and more generally we can use the same
formula to define F(P,Q) if P,Q € L,(H). Uhlmann’s
theorem states that [11]

F(pa,04) =max |(¢” |raUr @ 1419")ral?s (©6)

where |¢”)ra and |¢p7)ra are purifications of p, and oy,
respectively, and the optimization is with respect to all
isometries Ug. The same statement holds more generally for
P,Q € L.(H). We will also use the notation v/ F(p,0) =
| ﬁﬁ |l1 to denote the “root fidelity” when convenient. The
direct-sum property of the fidelity is that

VF(xs,txs) = Y/ px(0ax(OVF (03,75), (1)

for classical-quantum states
wxs = Y px(®)]x)(x|x ® o, ®)
Txs = ) qx(®)x) x|y ® T4 ©)

The quantum relative entropy D(P| Q) between P,Q €
L (H), with P # 0, is defined as [9]

D(P| Q) = Tr{P[log P — log 01} (10)

if supp(P) C supp(Q) and as +oo otherwise. The relative
entropy D(P| Q) is non-negative if Tr{P} > Tr{Q}, a result
known as Klein’s inequality [25]. Thus, for density operators
p and o, the relative entropy is non-negative, and furthermore,
it is equal to zero if and only if p = o. The quantum relative
entropy obeys the following property:

D(P|Q) = D(P|Q", (1)

for P,Q,Q0" € Li(H) such that Q < Q’. The following
relationship between fidelity and quantum relative entropy is
well known (see, e.g., [26]):

D(P|Q) = —log F(P,Q). 12)

The quantum entropy H(p) of a density opera-
tor p is H(p)=—Tr{p logp}. We often write this
as H(A), if p4s is the density operator for system
A. The conditional entropy of a bipartite density op-
erator pup is equal to H(A|B), = H(AB), — H(B),.
The mutual information is equal to I(A;B), = H(A), —
H(A|B),. The conditional mutual information of a tri-
partite state pspc is equal to I(A;B|C), = H(B|C), —
H(B|AC),. The following identities are well known
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(see, e.g., [4]):

H(A), = —D(pallla), 13)
H(A|B), = —=D(pasllla ® pp), (14)
I(A; B), = D(pasllpa ® pp)- 15)

The following “recoverability theorem” is an enhancement
of the monotonicity of quantum relative entropy [mentioned
in (3)] and was proved recently in [12], by an extension of the
methods from [10]:

D(pllo) = DN (p)IN(0)) —log F(p,(R o N)(p)), (16)

where p € D(H), 0 € L (H), N : L(H) — L(H)is a quan-
tum channel, and R is a recovery quantum channel of the
following form:

R(Q) = Tr{(I — Ty Q)T

+ / dt pORL(0), (17)

[e.¢]

where I () is the projection onto the support of (o),
r € DH), p(t) = %[cosh(t) 4177 (18)

is a probability distribution on ¢t € R,
Uy (X) = 0" X" (19)
for w positive semidefinite,
Pon(Q) =o' 2NN () 2QN () )02 (20)

is a completely positive, trace nonincreasing map known as the
Petz recovery map [27,28], and R’a v isarotated or “swiveled”
Petz recovery map, defined as

R:r/\/' = Z/{U,—t o P(T,N o u/\/((r),t- (21)

In fact, the following stronger statement holds [12]:
D(pllo) = DN (p)|IN (o))

—/ dt p(t)log F(p.(RY 3 o N)(p)), (22)

which will be useful for our purposes here. The inequality
in (16) implies the following one:

I(A; BIC), = —log F(papc,Rc—ac(ppc))s (23)

where Re_ ac is defined from (17), by taking o = pac
and NV = Tr,. This follows from the definition we gave for
I(A; B|C),, the equality in (14), and the inequality in (16).
Similarly, the following holds as well:

oo
I(A; BIC), > — f _d1 pO1og F(panc- Ry v, (pnc)).
(24
by taking o = pac and N = Tr,. Explicitly, the action of the

recovery map R'/> on an operator wc is given as follows:
y P X pac Teg p cl1Sg :

2 1-it)/2 -
R;/AC,TrA(CUC) = p,(4clt)/ [IA ® pc[

x p§é+it)/2]' (25)

(l—iz)/Z]wC E[(1+ir)/2]]

0

062314-3



FRANCESCO BUSCEMI, SIDDHARTHA DAS, AND MARK M. WILDE

III. ENTROPY GAIN

It is well known that the quantum entropy cannot decrease
under the action of a subunital, positive, and trace-preserving
map [29,30]:

HN(p)) = H(p), (26)

where p € D(H) and N : L(H) — L(H') is a subunital,
positive, and trace-preserving map. This entropy inequality
follows as a simple consequence of the monotonicity of
quantum relative entropy (now shown to hold for positive,
trace-preserving maps [31]). That is, (26) follows by picking
o =1 in (2) and applying (11) and that N is subunital,
whereby

— H(p) = D(plD) 27)
= DIN(0)IIN (D)) (28)
> DWN(p)Il1) (29)
= —HWN(p)). (30)

This entropy inequality has a number of applications in
quantum information and other contexts.
The following theorem leads to an enhancement of (26):
Theorem 1. Let p € D(H) and let N : L(H) — L(H') be
a positive and trace-preserving map. Then

HN(p)) — H(p) = D(pll(N" o N)(p)). €29
Proof. This follows because

HWN(p)) — H(p)

= Tr{p log p} — Tr{N(p)log N'(0)} (32)
= Tr{p log p} — Tr{pN'(log N'(p))} (33)
> Tr{p log p} — Tr{p log VT o N)(p)}  (34)
= D(p|(NT o N)(p)). (35)

The second equality is from the definition of the adjoint. The
inequality follows from operator concavity of the logarithm
and the operator Jensen inequality for positive unital maps [32]
(see also [13], Lemma 3.10]). |

If \V is additionally subunital [33], then Theorem 1 implies
that AT is trace nonincreasing, which in turn implies that
D(p||(NT o N)(p)) > 0 by Klein’s inequality. Thus, in this
case, we obtain a significant strengthening of the well known
fact that the entropy increases under the action of a subunital,
positive, trace-preserving map.

The resulting entropy inequality also leads to an in-
terpretation in terms of recoverability, in the sense dis-
cussed in [10]. That is, we can take the recovery map to
be

R(Y) = NT(Y) + Tr{(id =N YY)}z, (36)
where t is any state in D(H), and we get that, for all p,
HN(p)) — H(p) = D(p[[(R o N)(p)) (37)

by applying (11), because (R o N)(p) = (N o N)(p). Note
that R is a positive map if N is. We also note that if N
is subunital the quantity D(p|/(R o N)(p)) can be viewed
as a measure of how much N deviates from being an
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isometry, being equal to zero if N is an isometric chan-
nel and nonzero otherwise (here we could also maximize
the quantity with respect to input states p and output
states 7).

Thus, what we find is an improvement over what we would
get by applying (16) or the main result of [13]. First, there is
a mathematical advantage in the sense that A/ is not required
to be a channel, but it suffices for it to be a positive map. This
addresses an open question from [31] for a very special case.
Some might also consider this to be a physical advantage as
well, given that in some situations the description of quantum
dynamical evolutions is not given by a completely positive map
(see, e.g., [24], and references therein). Second, the remainder
term in (37) features the quantum relative entropy and thus
is stronger than the — log F' bound in (16) [cf. (12)] and the
“measured relative entropy” term from [13]. Finally, note that
Theorem 1 represents an improvement of some of the results
from [34,35].

A. Application to bosonic channels

Theorem 1 finds application for practical bosonic channels
that have a long history in quantum information theory, in
particular, the pure-loss and quantum-limited amplifier chan-
nels, and even all phase insensitive Gaussian channels [36]. A
pure-loss channel is defined from the following input-output
Heisenberg-picture relation:

b= ma+

where a, 13, and ¢é are the field-mode annihilation operators
representing the sender’s input, the receiver’s output, and
the environmental input of the channel. The parameter n €
[0,1] represents the average fraction of photons that make
it from the sender to receiver. For the pure-loss channel, the
environment is prepared in the vacuum state. Let 13, denote the
CPTP map corresponding to this channel. A quantum-limited
amplifier channel is defined from the following input-output
Heisenberg-picture relation:

b=+Ga+G—1¢é, (39)

where @, b, and ¢ have the same physical meaning as
given for the pure-loss channel. The parameter G € [1,00)
represents the gain or amplification factor of the channel.
For the quantum-limited amplifier channel, the environment
is prepared in the vacuum state. Let A denote the CPTP map
corresponding to this channel.

One of the critical insights of [37] is that these channels are
“almost unital,” in the sense that

1—ne, (38)

B,(I)y=n""1, Ac()=G'I, (40)

and that their adjoints are strongly related, in the sense
that

BI; :77_1“41/77» 41

AL =G 'Byg. (42)

Observe that the pure-loss channel is superunital and the
amplifier channel is subunital. These facts allow us to apply
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Theorem 1 and the fact that D(p|lco) = D(p|lo) — logc for
¢ > 0 to find that

H(B,(p)) — H(p) Z D(pl(Ai/y o By)(p)) +logn, (43)

H(Ag(p)) — H(p) = D(p||(Bi)6 0 Ag)(p)) +1og G. (44)

These bounds demonstrate that a quantum-limited amplifier
suffices as a reversal channel for a pure-loss channel and vice
versa. Note that the above reversal is only good for weak
losses and weak amplifiers (i.e., if n = 1 or G &~ 1). We can
also conclude that

H((Ag o By)(p)) — H(p)
= D(pll(Aiy 0 Bijg o Ag o B,)(p)) +log[nGl, (45)

because
(Ag o B! = [nG1™" Ay, 0 By (46)

The above bound applies to any phase insensitive quantum
Gaussian channel, given that any such channel can be written
as a serial concatenation of a pure-loss channel and a quantum-
limited amplifier channel [38,39].

B. Optimized entropy gain
In [40], the minimal entropy gain of a quantum channel was
defined as

GWN) = il;f[H(N(p)) — H(p)], (47)

and the following bounds were established for a channel with
the same input and output Hilbert space H:

—logdim(H) < GN) < 0. (48)

(see also [41-43] for related work). Applying Theorem 1 gives
the following alternate lower bound for the entropy gain of a
quantum channel:

GWN) > inf D(plI(NT o N')(p)). (49)

C. Entropy gain in the presence of quantum side information

A generalization of the entropy inequality in (37) holds for
the case of the conditional quantum entropy, found by applying
the same method:

Corollary 2. Let ppp € D(H4 ® Hp) and Ny_ 4 ®idp :
L(Hap) — L(Hap) be a positive and trace-preserving map.
Then

H(A'|B), — H(A|B),
> D(oasll(Nasa) o Nasad(pan)),  (50)

where 045 = (Na— 4 @ idg)(0ap).
Proof. This follows by applying Theorem 1 and definitions.
From Theorem 1, we can conclude that

H(A'B), — H(AB),
> D(pall(Nasa) o Nasad(pas)). (51

PHYSICAL REVIEW A 93, 062314 (2016)

Consider also that
H(A'B), — H(AB),
= H(A'B), — H(B), — [H(AB), — H(B),] (52)
= H(A'|B), — H(A|B),, (53)

where we have used that H(B), = H(B),. Combining these
gives (50). |

Remark 3. In the above corollary, note that we need not
necessarily take the map NV_, 4 to be completely positive—
we merely require that Ny, 4 ® idp be a positive map. For
example, if system B is a qubit, then we only require Ns_, 4/
to be two-positive in order for the corollary to apply.

IV. INFORMATION GAIN

Groenewold originally defined the information gain of a
quantum instrument {N/*}, when performed on a quantum
state p4, as follows [18]:

IgUN™ Y oa) = H(pa) = Y px()H(p}),  (54)

where

X
P = N alen) px(x) =Tr{Ni_ 4 (pa)}).  (55)
px(x)
This definition was based on the physical intuition that infor-
mation gain should be identified with the entropy reduction
of the measurement. However, it was later realized that the
entropy reduction can be negative, and that this happens if
and only if the instrument is not an efficient measurement (an
efficient measurement is such that each A/* consists of a single
Kraus operator [44,45]).

Apparently without realizing the connection to Groe-
newold’s information gain of a measurement, Winter con-
sidered the operational, information-theoretic task [22] of
determining the rate at which classical information would need
to be communicated from a sender to a receiver in order to
simulate the action of the measurement on a given state (if
shared randomness is allowed for free between sender and
receiver). He called this task “measurement compression,”’
given that the goal is to send the classical output of the
measurement at the smallest rate possible, in such a way that
a third party would not be able to distinguish the output of
the protocol performed on many copies of ¢% , from the same
number of copies of the following state:

orx = 3 Tra {(ide @A ) (954)} @ 1) (], (56)

where ¢%, is a purification of p and {|x)} is an orthonormal
basis for the classical output X of the measurement. He found
that the optimal rate of measurement compression is equal to
the mutual information of the measurement I (R; X),.

After Winter’s development, Ref. [20] suggested that the
information gain of the measurement should be defined as its
mutual information. The advantage of such an approach is that
the mutual information /(R; X), is non-negative and has a
clear operational interpretation. Furthermore, it is equal to the
entropy reduction in (54) for efficient measurements [20] and
thus connects with Groenewold’s original intuition.
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Winter’s result was later extended in two different direc-
tions. First, Ref. [21] allowed for a correlated initial state p4p,
shared between the sender and receiver before communication
begins. In this case, the optimal rate at which the sender
needs to transmit classical information in order to simulate the
measurement is equal to the conditional mutual information
I(R; X|B),,, where the conditional mutual information is with
respect to the following state:

wrpx = Y Tra {(idr ®N;_ 1) (D745)} ® ) (x]x, (57)

and ¢%,, is a purification of psp. We can thus call
I(R; X|B),, the information gain in the presence of quantum
side information (IG-QSI), and the information-processing
task is known as measurement compression with quantum
side information [21]. In general, the IG-QSI is smaller than
I(RB; X),, which is the rate at which classical communication
would need to be transmitted if the receiver does not make use
of the B system. The other extension of Winter’s result was
to determine the rate required to simulate the instrument on
an arbitrary input state, and the optimal rate was proved to be
equal to the optimized information gain

max I(R; X),, (58)
P

where the optimization is with respect to all input states pa
leading to a purification ¢% , [19].

A. General bounds on the information gain

Let us consider now the channel A associated to a quantum
instrument {N/*}, as defined in (5). By defining the state o4 x
as

opax = NA—>A/X(;OA) (59)
= Nl (o) ® 1) (xlx (60)
=Y px@)ph ® |x)(xlx, (61)

Theorem 1 in this case gives
H(A'X), — H(A),
=H(X)o + Y _ px()H(p}) — H(pa)  (62)

= H(X)y — Ig(N*},04) (63)
= D(pall N o N)(pa)). (64)

namely,
Ic(IN*}pa) < H(X)o — D(palNT o N)(pa)).  (65)

The above upper bound on Groenewold’s information gain is
valid for any quantum instrument {//*} and any state p.

A much tighter bound can be given if the instrument is
efficient. In this case, it is easy to prove that the channel
N defined in (5) is always subunital. This a consequence of
the fact that, if N5_ ,(Ca) = Vi_ 4/ALCa/AL(ViL )T,
where A’ are POVM elements and V;_ ,, are isometries, then
NE L Ax) = Vi A(VE ) < 1y, for all x. Moreover,
for efficient measurements Groenewold’s information gain
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and the mutual information of the measurement /(R; X), are
equal [20].

Thus, for efficient quantum instruments, Theorem 1 leads
to the following bound:

H(X)o — I(R; X); = H(X|R)s (66)
> D(pal(RoN)(pa)), — (67)

where R is a recovery channel independent of p. In other
words, whenever the reference R and the classical outcome X
are almost perfectly correlated, i.e., H(X|R), ~ 0, then the
action of the instrument on the input state p can be almost
perfectly corrected on average, i.e., D(04||(R o N)(p4)) ~ 0.

We notice here that the quantity in (66) has been given an
interesting thermodynamical interpretation in Ref. [46], so that
the above bound can be seen as a strengthening of the second
law for efficient quantum measurements.

The above bound also provides a way to quantify, in an
information-theoretic way, “how close” a given POVM is to the
ideal measurement of an observable: one just needs to prepare
a state p that commutes with that observable (for example, the
maximally mixed state 1/d) and feed it through an efficient
measurement of the given POVM. The entropy difference
in (66) is then a good indicator of such a “closeness,” being
null whenever the POVM corresponds to a sharp measurement
along the diagonalizing basis. This method is somewhat similar
to the approach introduced in Ref. [47].

B. Information gain without quantum side information

In what follows, we demonstrate how the refined entropy
inequalities in (22) and (24) have implications for the informa-
tion gain of a quantum measurement, both without and with
quantum side information. We begin with the simpler case of
information gain without quantum side information, a scenario
considered in [20]. The theorem below gives a lower bound on
the information gain in terms of how well one can recover from
the action of an efficient measurement. It can be viewed as a
corollary of the more general statement given in Theorem 5 in
the next section.

Theorem 4. Let p € D(H4) and {N*} be a quantum instru-
ment, where each V¥ : L(H ) — L(H4). Then the following
inequality holds:

I(R; X)o 2 —log F(ogrx.,0r ® 0x). (68)

If the quantum instrument is efficient, then the above inequality
implies that

I(R;X), > —2log [pr(x)ﬁ(w%( Z*A/M;’QA)]’

(69)
for some collection {U/},_, ,}, where each{f}, _, , is anisometric
quantum channel, ‘1’1%;4' is a purification of p}, defined in (55),
and px(x) is defined in (55).

Proof. The inequality in (68) is a simple consequence of (15)
and (12). The inequality in (69) follows because

VF(orx,0r @ 0x) =Y _ px(WF (95 .03).  (70)
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Applying Uhlmann’s theorem [see (6)], we can conclude that
there exist isometric channels U3,  , such that F(¢y',¢%) =
FU o (@Ry), ¢k ) for all x. [ |
The implication of the inequality in (69) is that if the
information gain of the measurement is small, so that

I(R;X)s ~ 0, (71)

then it is possible to reverse the action of the measurement ap-
proximately, in such a way as to restore the post-measurement
state to the original state with a fidelity

D PxOVF (U s (BR0)-0ka) 1. (72)

We can thus view this result as a one-sided information-
disturbance trade-off. Note that [20], Theorem 1] contains
an observation related to this. The observation above is also
related to the general one from [48], but the result above is
stronger: an inability to find correction isometries, which leads
to a small fidelity, is a witness to having a large information
gain I(R; X),, due to the presence of the negative logarithm
in (69).

The inequality in (69) also has an operational implication
for Winter’s measurement compression task. If the information
gain is small, so that (71) holds, then the sender and receiver
can simulate the measurement with a high fidelity per copy of
the source state, in such a way that the sender does not need to
transmit any classical information at all. The receiver can just
prepare many copies of p, locally, perform the measurements,
and deliver the outputs of the measurements as the classical
data. This situation occurs because the reference system R
is approximately decoupled from the classical output, in the
sense that F(ogy,0r ® ox) ~ 1if I(R; X), =~ 0.

C. Information gain with quantum side information
We can readily extend the above results to the case of
quantum side information, by employing the inequality in (23).
This leads to the following theorem:
Theorem 5. Let pap € D(H4 ® Hp) and {N*} be a quan-
tum instrument, where each N : L(H ) — L(H ). Then the
following inequality holds:

(o]

I(R:X|B) > —2 / di p(1)

—00

x log |:Z pX(x)‘/F(wJICQB’R;}Jﬂ(wRB))}9
(73)
where

wrpx = Y Tra {NiL 4 (SRap) } ® 1K) (xlx, (74

o . .
@R 4p 18 a purification of pup,

X _ NX—»A’(¢£AB>
Wrpa = —px(X) , (75)

px(x)=Tr {NXHA, ((»bzAB)}’ (76)
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{px (x)’ng’t/ 2} is a quantum instrument defined by
/2
R);;t/ (wgrB)
_ (w)é)(l—it)/ng[(l —ir)/2](wRB)a);[(l+it)/2] (a)g)(l-&-it)/z’
(77)

and p(t) is defined in (18). If the instrument {/\/*} is efficient,
then the following inequality holds as well:

o0

dt p(t)log [ > px(x)y/ Fx,t},

(78)

I(R: X|B), > —2/

for some collection {4, , }, where

Foy = F(0hgu (R QUL 0) (0554))  (79)

and each U, ,, is an isometric quantum channel.
Proof. We begin by proving the inequality in (73). Consider
that

I(R; X|B),,
Oo 12
P —/ dt p(t)log F(wRBX,RB/_>Bx(wRB))7 (80)
—00

where

g;it)/Zw;[(l—it)/Z]a)RBwE[(H—iz)/Z]w(B};—iz)/z,
(81)

which is a direct consequence of (24). By a direct calculation,

we find that

Ry px(@rs) = Y px(0)x)(xlx ® Ry *(wrp).  (82)

12
RB/—>BX(wRB) =w

with R)g’t/ ? defined in (77). This then leads to the inequality
in (73), by applying the direct-sum property of fidelity. The
inequality in (78) is an application of Uhlmann’s theorem, after

observing that the rank-one operator Ry"*(¢,,) purifies

R),;”/ *(wgs) and the rank-one operator Wy p 4 Durifies whp.
The aforementioned operators are rank-one if the measurement
is efficient (which is what we assumed in the statement of the
theorem). |

The implications of Theorem 5 are similar to those of
Theorem 4, except they apply to a setting in which quantum
side information is available. If the information gain of the
measurement is small, so that

I(R; X|B),, ~ 0, (83)

then it is possible to reverse the action of the measurement ap-
proximately, in such a way as to restore the post-measurement
state of systems RA’ to the original state on systems RA with
a fidelity larger than

/ dt p®) Y px(0)y/Frs ~ 1. (84)

This follows from the concavity of the fidelity. The reversal
operation consists of two steps. First, Bob performs the
instrument { pX(x)R);‘t/ 2}. He then forwards the outcomes to
Alice, who performs a channel corresponding to the inverse
of the isometric quantum channel U/, ,,. Then, the average
fidelity is high if the information gain is small. We can view
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this result as a one-sided information-disturbance trade-off
which extends the aforementioned one without quantum side
information.

The inequality in (78) also has an operational implication
for measurement compression with quantum side informa-
tion [21]. If the IG-QSI is small, so that (83) holds, then
the sender and receiver can simulate the measurement with
a high fidelity per copy of the source state, in such a
way that the sender does not need to transmit any classical
information at all. The receiver can just perform the instrument
{px()R}"*} with probability p(r) on the individual B
systems of many copies of p4 g and deliver the classical outputs
of the measurements as the classical data. This situation occurs
because the X system of wgpyx is approximately recoverable
from B alone, in the sense that ffooc dt p(t) Y, px(x)/Fy, =
1 if I(R;X|B),~ 0. This latter result might have
implications for quantum communication complexity
(cf. [49]).

V. ENTROPIC DISTURBANCE

Reference [23] (see in particular Sec. 5 therein) considered
the possibility of introducing an entropic measure of average
disturbance as follows. Imagine that an initial ensemble of
quantum states £ = {px(x); p}}« is fed through a quantum
channel NV : L(H4) — L(H4'). Consider the Holevo infor-
mation of the initial ensemble &:

X&) = H(p%) = Y px()H(p}), (85)

where pi denotes the average quantum state ) . px(x)p3.
By the monotonicity of the Holevo information, the following
inequality holds:

Ax(E) = x(E) — xN(©) =0, (86)

where by N(E) we
{px(xX); N (o)}

It is known that the condition Ax(€) =0 implies the
existence of a recovery CPTP linear map R : L(Ha) —
L(H 4) such that

mean the output ensemble

RoN(p}) = o, (87)

for all x [50]. In Ref. [23] the question was considered, whether
a similar conclusion would hold also in the approximate case,
but an answer was given only in the case in which the input
ensemble consists of two mutually unbiased bases distributed
with uniform prior, as done in [51].

Recent results about approximate recoverability give a
solution to this problem, by demonstrating that there exists
a recovery channel that can approximately recover if the loss
of Holevo information is small. In fact, a special case of this
problem was already solved in [10], Corollary 16] when N is
a measurement channel. Here we establish the following more
general theorem:

Theorem 6. Let £ = {px(x),p}} be an ensemble of states
in D(H,) and N : L(H4) — L(H4) a quantum channel.
Then there exists a recovery channel R : L(H ) — L(Ha)
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such that
X(€) = X ()
> —2log ) px(VF(pi.(RoN)(p})).  (88)

Proof. Introduce an auxiliary system X and the bipartite
classical-quantum state

pxa =Y px(0)IxX)(x|x ® pj, (89)

where the vectors {|x)} are orthonormal in the Hilbert space
‘Hx. In an analogous way, we also write

oxa =Y px@xlx @ Naa(py).  (90)

Then,
X&) = xWN(&))
=1(X;A), — [(X;A)), 9D
=—H(X|A), + H(X|A"), 92)
= D(pxalllx ® pa)
—D((dx Ny a)(px)ll(idx ON A a)Ix ® pa)).
93)

We now invoke (16), noticing that, in this case, the operator o
has the special form Iy ® p4 and the noise acts only locally,
i.e., it has the form idy ® N4, .. These two facts together
imply that (16) can be written in this case as follows:

X(E) — xWN(&)
2 —log F(pxa,(idx ®Ra—a)(0x4)), (94)

where R : L(Ha) = L(Ha) is a suitable recovery channel.
Finally, we make use of the direct-sum property of the fidelity
in (7) to establish (88). |

VI. COMPLETELY POSITIVE TRACE-PRESERVING
MAPS AND QUANTUM DATA PROCESSING

This section demonstrates how the inequality in (23) and
the Alicki-Fannes-Winter inequality [52,53] lead to a robust
version of the main conclusion of [24], which links the data
processing inequality to complete positivity of open quantum
systems dynamics.

There, the problem of open quantum systems evolution
in the presence of initial system-environment correlations
was considered. In fact, if the system and its surrounding
environment are correlated already before the interaction
governing their joint evolution is turned on, then in general
there does not necessarily exist a linear (let alone positive
or even completely positive) map describing the reduced
dynamics of the system [1]. Reference [24] proposed to use the
quantum data-processing inequality as a criterion to establish
whether the system’s reduced dynamics are compatible with a
CPTP linear map or not.

The operational framework considered in [24] can be
summarized as follows:

(1) It is assumed that possible joint system-environment
states belong to a known family of states that constitutes the
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promise to the problem. It is also assumed that such a family
is “steerable,” namely, that there exists a tripartite density
operator pror such that the reference R is able to steer all
possible bipartite system-environment states in the family.
Such a condition encompasses essentially all cases considered
in the literature. We therefore assume that, at some initial time
t = 1, the system-environment correlations can be described
by means of one given tripartite state pror.

(2) Moving to the next instant in time, t = t + A, the
system-environment pair has evolved according to some
isometry V : QF — Q'E’, while the reference R remains
unchanged. The tripartite configuration oo £ has correspond-
ingly evolved to the tripartite configuration orpr = (Igp ®
Voe)oroe(Ir ® VgE)-

(3) Only at this point do we focus on the reduced
reference-system dynamics (i.e., the transformation mapping
PR to oro), checking whether these are compatible with the
application of a CPTP linear map on the system Q alone. More
explicitly, we check whether there exists a CPTP linear map
E:0— Q/ such that ORQ = (idg ®5Q)(,0RQ).

The following theorem generalizes to the approximate
scenario the insight provided in Ref. [24].

Theorem 7. Fix a tripartite configuration pgrpg. Sup-
pose that the data processing inequality holds approxi-
mately for all joint system-environment evolutions Vor_, o'g/,
ie.,

I(R; 0o < I(R; Q)+, 95
where ¢ > 0 and
oroe = Vor—0EProEV b - (96)

Then the conditional mutual information is nearly equal to
Zero:

I(R:E|Q), < &, o7

and the reduced dynamics are approximately CPTP, i.e., to
every unitary interaction Vpg_, o'g/, there exists a CPTP map
Ep-» ¢ such that

—log F(org.€0—0(PrO)) < €. (98)

Proof. We begin by proving (97) with the same approach
used in [24]. Consider the particular evolution in which
Q' = QF and system E’ is trivial. The assumption that data
processing holds approximately gives that

I(R;Q), +& 2> I(R;Q)s = I(R; QF),. 99)

We can rewrite this inequality using the chain rule for
conditional mutual information as
e 2 I(R;QE), — I(R; Q), = I(R; E|Q),, (100)

which proves (97). Now, from the inequality in (23), we know
that there exists a recovery map Rg_, g such that

I(R;E|Q), = —log F(proe,Ro—0e(pre)). (101)
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Since the fidelity is invariant with respect to unitaries, we find
(abbreviating Vpr_, g/g as V) that

F(proE,Ro—0E(PRQ))

= F(VoroeV'.VRo—or(pro)V)  (102)
= F(oro'esVRo—0E(PrROIV) (103)
< F(orgTre{VR o oe(oro)V),  (104)

where the inequality follows from monotonicity of fidelity
under the discarding of subsystems. By defining the channel

E0m0() =Trp(Vor—orRo0eOVhp o) (105
we find that

e > —log F(oro,E0-0(PrO)) (106)

establishing (98). |
The following theorem provides a converse.
Theorem 8. Suppose that the reduced dynamics are approx-
imately CPTP, i.e., that to every unitary interaction Vyg_, o'g/
leading to

org = Tred{Vor—o e proE VéE_)Q/E/}’ (107)
there exists a CPTP map £¢_, o such that
%”GRQ/ —E&o-0(pro)l < &, (108)

where ¢ € [0, 1]. Then the quantum data processing inequality
is satisfied approximately, in the sense that

I(R; Q))s < I(R; Q), +2¢ log|R|
+ (1 +e)hyle/(1 + &)],

and the conditional mutual information is nearly equal to zero
as well:

I(R; E|Q), < 2¢ log|R| + (1 + &)ha[e/(1 + &)].

Proof. This follows directly from the assumption in (108),
the Alicki-Fannes-Winter inequality, and the quantum data
processing inequality:

I(R; Q) = H(R); — H(R|Q)s

(109)

(110)

(111)

= H(R)e(p) — H(RIQ")s (112)
< H(R)g(p) — H(R|Q)e(p) + 2¢ log | R|

+ (1 4+ &)hale/(1 + ¢&)] (113)
= I(R; Q')¢(p) + 2¢ log |R|

+ (1 4+ &)hale/(1 + &)] (114)

< I(R; Q)p +2¢ log |R| + (1 + &)hale/(1 + o)].
(115)

The inequality for conditional mutual information follows the
same reasoning we used to arrive at (100). |

VII. CONCLUSION

We have shown how recent results regarding recoverability
give enhancements to several entropy inequalities, having
to do with entropy gain, information gain, disturbance, and
complete positivity of open quantum systems dynamics. Our
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first result is a remainder term for the entropy gain of a quantum
channel, which for unital channels is stronger than that which
is obtained by directly applying the results of [12,13]. This
result implies that a small increase in entropy under a subunital
channel is a witness to the fact that the channel’s adjoint can be
used as a recovery channel to undo the action of the original
channel. Our second result regards the information gain of
a quantum measurement, both without and with quantum
side information. We find here that a small information gain
implies that it is possible to undo the action of the original
measurement (if it is efficient). The result also has operational
ramifications for the information-theoretic tasks known as
measurement compression without and with quantum side
information. Our third result provides an information-theoretic
measure of disturbance, introduced in [23], a strong opera-
tional meaning. We finally provide a robust extension of the

PHYSICAL REVIEW A 93, 062314 (2016)

main result of [24], establishing that the reduced dynam-
ics of a system-environment interaction are approximately
CPTP if and only if the data processing inequality holds
approximately.
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