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Abstract
Given a non-empty closed convex subset F of density matrices, we formulate
conditions that guarantee the existence of an F-morphism (namely, a completely
positive trace-preserving linear map that maps F into itself) between two arbi-
trarily chosen density matrices. While we allow errors in the transition, the
corresponding map is required to be an exact F-morphism. Our findings, though
purely geometrical, are formulated in a resource-theoretic language and provide
a common framework that comprises various resource theories, including the
resource theories of bipartite and multipartite entanglement, coherence, ather-
mality, and asymmetric distinguishability. We show how, when specialized to
some situations of physical interest, our general results are able to unify and
extend previous analyses. We also study conditions for the existence of maxi-
mally resourceful states, defined here as density matrices from which any other
one can be obtained by means of a suitable F-morphism. Moreover, we quanti-
tatively characterize the paradigmatic tasks of optimal resource dilution and dis-
tillation, as special transitions in which one of the two endpoints is maximally
resourceful.

Keywords: quantum information theory, quantum resource theories, quantum
statistical morphisms

(Some figures may appear in colour only in the online journal)

1. Introduction

Many problems in information theory and statistics (and quantum generalizations thereof)
can be reformulated as to whether a suitable transition between two objects is possible under
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suitable constraints. For example, noisy channel coding in information theory can be under-
stood as the problem of transforming a number of uses of a noisy channel into less uses
of a less noisy (ideally noiseless) channel, under the constraint that no side communica-
tion is available between sender and receiver. Another example is provided in mathematical
statistics by the task of extracting statistics from a given sample. The exact same intuition
becomes paradigmatic in statistical mechanics, most notably in thermodynamics, where a
typical problem, for example, is to whether a thermodynamic process satisfying certain con-
straints (e.g., an isothermal process, an adiabatic process, etc) exists between two given
states.

Whenever the set of allowed transformations is constrained for some reasons, it is nat-
ural to consider the possibility of performing a forbidden transformation as a resource
[DHWO08, HHHHO09, CFS16, CG19]. The state space of the system (that is, the set of objects
that are being transformed) thus ends up being divided into free states (that is, states that
can be reached from any other state by means of allowed transformations) and non-free
states. The latter are implicitly defined to be the resourceful states in the theory. Notice
that the word ‘state’ here is not to be meant in its strict sense of ‘state of a physical
system’, but denotes more generally the objects that are being transformed. These could com-
prise states proper, like in conventional thermodynamics, but are not limited to these. One
could consider as objects, for example, statistical models (as in mathematical statistics), or
noisy channels (as in information theory), or entire generalized operational theories for that
matter.

In fact, it turns out that it is often easier to study resource theories, in which the first thing
being defined is not the set of allowed transformations, but rather the set of free states, while
allowed transformations are implicitly defined only later, as all those transformations that map
the free set into itself. Even though sometimes less clear operationally, such an approach (that
we may call ‘geometric’, in order to contrast it with the previous ‘operational’ one that puts
constraints on allowed operations) has, from a purely mathematical viewpoint, various advan-
tages: for example, resource theories typically become asymptotically reversible only if the set
of allowed transformations is taken to be the maximal one (plus epsilon) compatible with the
theory [BPOS, BG15].

In this paper we study general resource theories by following the geometric approach, that
is, by building the theory on top of a given set of free states F, that we in particular assume
to be non-empty, closed, and convex. Accordingly, we allow any transformation that maps
F into itself. For the sake of generality, in this paper we do not even assume any particular
rule of composition for free states, so that we essentially work in the single-shot regime, but
we still allow the input and the output systems, and their respective free sets, to change as
a consequence of the transformation. In this way, even though we cannot say anything about
asymptotic rates, we can still discuss in full generality single-shot rates for resource distillation
and dilution, for example.

The main aspect that differentiates our work from previous ones is that here we do not focus
only on the tasks of resource dilution and distillation. Instead, we consider the more general
problem of formulating sufficient (and, in some cases, necessary) conditions for the existence
of an F-preserving transformation between an arbitrarily given input—target pair of states. This
means that the analysis presented here does not rely on the existence of any privileged max-
imally resourceful state (like the maximally entangled state in bipartite entanglement theory)
and thus applies to quite general resource theories.

Concerning the kind of transformations that we consider in this work, two remarks
are in order. First, while we allow for noisy transitions, that is, situations in which the
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input state is mapped not exactly but ‘close’ to the wanted target, we only allow transi-
tions implemented by operations that are exactly F-preserving. This stands in contrast to
other single-shot analyses of general resource theories in which ‘almost-free’ operations
are allowed in the finite block-length regime (see, e.g., reference [BG15]). Second, we
search for conditions that are expressed in terms of resource monotones (a notion to be
rigorously introduced in what follows), computed separately for the initial state and for
the target state. On the one hand, in this way we are able to ‘decouple’ the initial state
from the target state, and to speak of their respective resource’s worth, independently of
each other. On the other hand, this means that functions that comprise both states at once,
like those that in some situations can be obtained by means of semidefinite linear pro-
grams [BG17, GJBT 18], will not be considered in this work. Another aspect of the problem
that is not considered in this work is the computational complexity of computing resource
monotones.

The paper is structured as follows. After introducing the notation and reviewing some basic
notions in section 2, we present our main results and prove them in detail in section 3. Section 4
presents some applications of our general analysis to specific cases of physical interest: appli-
cations to the resource theories of athermality and asymmetric distinguishability (section 4.1);
bipartite entanglement (section 4.2); conditions for the existence of maximally resourceful
states, together with necessary and sufficient conditions for dilution and distillation which
can give, whenever a dimension scaling is provided, optimal dilution and distillation rates
(section 4.3). Section 5 concludes the paper.

2. Mathematical preliminaries

We denote by D(C™) the set of all m-by-m complex density matrices p, i.e., p > 0 and
Tr{p} = 1, which are used here to represent quantum states of m-dimensional quantum
systems. Within D(C™), we identify a non-empty closed convex subset F as the set of
‘free states’. The closure and the convexity of F is crucial in various steps of our proofs,
for example, when invoking the closure under convex mixtures, or when applying a vari-
ant of the minimax theorem that requires convex domain. Here and throughout this work,
resource morphisms (or more precisely F-morphisms?) are defined as completely posi-
tive, trace-preserving (CPTP) linear maps &£ : D(C™) — D(C™) such that £(F) C F. More
generally, one may consider CPTP maps that change the dimension of the system, for
example, & : D(C™) — D(C"). Also in this case, whenever the output free set F' is also
specified, it is possible to define a notion of resource morphisms by the condition that
E(F) C F'. However in what follows, for the sake of readability, we will restrict our-
selves to the case of equal input and output dimensions and F = F', keeping in mind how-
ever that all the results we derive can be straightforwardly extended to the general case.
We will go back to the more general setting, with different input and output systems,
in section 4 when discussing various applications like the tasks of resource dilution and
distillation.
The general structure that we study in this work is the following:

Definition 1 (resourcefulness preorder). Given two density matrices p, o € D(C™),
we write p > o whenever there exists a resource morphism € such that §|lo — E(p)||; < e,

2 Here we prefer the term ‘resource morphisms’ to the more common ‘free operations’ because it reminds the fact that
the foundational concept, in the geometric approach in which we are working, is the free set F, not the set of allowed
transformations, which are just defined as all those that map F into itself.
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where || X;| :=Tr {\/XTX } denotes the trace-norm. In particular, we write p > o whenever
P >e=0 0.

In the above definition, the preorder . has been introduced with respect to the distance
induced by the trace-norm, although it is possible to use any other well-behaved distance mea-
sure between density matrices (like the fidelity, for example) without substantially changing
the results [NCO00, Will3]. In any case, an important thing to notice in definition 1 is that,
even though errors are allowed in the state transformation, we always require the constraint
E(F) C F to be strictly satisfied.

The resourcefulness preorder naturally leads us to define a maximally resourceful element
as follows:

Definition 2 (maximally resourceful element). An element o € D(C™) is said to be
maximally resourceful if o > o for any o € D(C™).

Given a general resource theory, an important question is to whether the theory possesses
maximally resourceful elements or not. In section 4.3 we will consider sufficient conditions for
their existence. However, we recall that our main results do not rely in any way on the existence
of maximally resourceful elements.

2.1. Information-theoretic divergences

In what follows, for any operator p € D(C™) we denote by 11, the orthogonal projector onto its
support (i.e., the orthogonal complement of its kernel). Moreover, for any € € [0, 1], we denote
by B“(p) the set of operators {p’ € D(C™): ||p — p'||1 < 2¢} and by P“(p) the set of operators
{P:0<P<TandTr{pP} > 1 — €}. All logarithms are taken in base 2.

Definition 3 (relative entropies). Given two density matrices p, o € D(C™), we define

(a) the Umegaki relative entropy [Ume62]:

Tr{p (log p—1log o)} , ifll, > 11,
D(pl|o) = { : J ! (1)
00 , otherwise;
(b) the hypothesis testing relative entropy [BD10]: for any € € [0, 1]
Di(p|lo):= —log min Tr{c P}, (2)
PEP(p)

with the convention —log 0 := + o0; for ¢ = 0, one recovers the min-divergence, defined
as [Dat09b]

Dnin(p|lo):= —log Tr{c II,} ; 3)
(c) the max-divergence [Dat09b]:

log min{\ € R: \o — p >0}, ifIl, >TI,,
Drax(pl|o) == {+ ! 4)

00, otherwise;
in this case we also define a ‘smoothed’ version as follows: for any € € [0, 1],
Drenax(p”J) = inf Dmax(pl”U)' )
p'eB(p)

4
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A crucial property satisfied by all these divergences is the monotonicity under CPTP lin-
ear maps, that is, for example, D (£(p)||E(0)) < D(pl||o) and analogously for the others. In a
resource theory characterized by the set of free states F, we also introduce the following:

Definition 4 (max-divergence of resourcefulness). Given two density matrices p, o €
D(C™) and a non-empty closed convex subset F C D(C™), the max-divergence relative to F is
defined as

Dinax e(pllo) := log inf {)\ ER: A;__lp € F} , (6)

with the convention that inf () = 4oc0. Its ‘smoothed’ version is defined in analogy with (5),
that is

Drenax,F(p”U) = inf Dmax,F(p,HO-)- (7)
p'EB(p)

We notice that if F = D(C™), then Dpux.r(p||0) = Dmax(p||o), but in general Dy r(p||o)
> Diax(p||o). Moreover, while Dy, F may fail to be monotonic under general CPTP maps, it
is monotonic under the action of resource morphisms, that is, CPTP maps that map F into itself.
This can be easily seen by noticing that, if for some \, (A — 1)~!(\o — p) is in F, then, for any
resource morphism &, also (A — 1) 'E\a — p) = (A — 1) "' (\E(0) — E(p)) is automatically
in F, so that Dy, r(E(p)||E(0)) cannot be larger than Dy, r(p||0).

2.2. Resource monotones

We say that a function f : D(C™) — [0, +00] constitutes a resource monotone if it achieves its
global minimum on all elements of F, and it does not increase under the action of resource mor-
phisms, i.e., f(p) = f(E(p)) for any resource morphism €. More properties can be demanded
(and are indeed desirable) in order to fruitfully work with concrete examples of resource
monotones. The information-theoretic divergences introduced above can be used to introduce
resource monotones that inherit many useful properties from the parent divergence. In our
construction, the following quantities play a central role [LBT19].

Definition 5 (entropic resource monotones). Given a non-empty closed convex set
F C D(C™), for any density matrix p € D(C™) and any € € [0, 1], we define the following
quantities:

(@) D(p):=infoer D(p|w);
(b) Dj,(p) = —log max,ecr minpepe(, Tr{P w}, with the convention —log 0:= + oo;
(C) D?nax(p) = infweF Dfnax(pr);
(d) D p(p) = infcr Dy p(pl|w).
In the case € = 0, we simply remove the superscript; the only exception is D§="(p), for
which we will use the special notation © ;i (p).

The above quantities are all well-behaved resource monotones. This fact is a direct
consequence of the monotonicity of the parent divergences under the action of resource
morphisms.

Definition 6 (free fraction and generalized free fraction). Given a non-empty closed
convex free set F C D(C™), the free fraction of a density matrix p € D(C™) is defined by the
formula

F(p)=max{pe[0,1]:Fw e Fst.pp+ (1 — pw € F}. (8)
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‘When mixing with general w € D(C™) instead of w € F is allowed, one obtains the generalized
free fraction, defined as

Fe(p)=max{p € [0,1]: Fw € D(C")s.t. pp + (1 — pw € F}. ©)

The free fraction and the generalized free fraction are related to the robustness 93(p)
[VT99] and the generalized robustness DRq(p) [Ste03], respectively, through the relations
F(p) ' =1+ R(p) and F,(p)~' =1+ R,(p), and they are both directly related with the
entropic resource monotones in definition 5 as follows:

—log §(p) = log(l + R(p)) = Dmaxr(p)s (10
—log §g(p) = log(1 + Rg(p)) = Dmax(p), (1)

with the convention —log 0 := + oo. In particular, we have that D,,x(p) coincides with the
generalized logarithmic robustness of [Dat09b, Dat09a], while ® . F(p) coincides with the
logarithmic robustness of [BD11]. For this reason, in what follows, when speaking of ® ,x(p)
(respectively, D ma F(p)) we will follow the mainstream convention and call it ‘generalized log-
robustness’ (respectively, ‘log-robustness’) even though, depending on the context, it would be
more appropriate to use the term we introduced above, that is, ‘generalized log-free fraction’
(respectively, ‘log-free fraction’).

Remark. All resource monotones introduced above would still be well-defined monotones
even if the class of resource morphisms were enlarged to comprise also positive, but not
completely-positive, linear maps. This seems no coincidence, since at the single-shot level,
where no rule for composing system is given yet, there really is no compelling mathematical
reason to limit the discussion to CPTP linear maps only. This is a common feature of var-
ious problems in quantum statistics, in particular quantum decision theory, where the theory
becomes simpler if one works with quantum statistical morphism (which may violate complete
positivity) and introduce CPTP maps as special cases, rather than starting from the beginning
with fully blown CPTP maps [Bus12]. Here we do not investigate further into this point, and
simply justify the assumption of CPTP-ness on practical grounds.

2.3. Optimal convex decompositions

Our main results rely on the following construction, whose intuitive picture is given in figure 1
below.

Given o € D(C™), assuming o ¢ F, let us fix a convex decomposition achieving its
generalized free fraction and write it as

o1 = §g(o)o + [1 — Fe(o)]oo. (12)

In the above equation, due to the optimality of §,, o+ € F lies on the border of F, while o
lies on the border of D(C™), as depicted in figure 1. The above decomposition includes the
situation in which §,(c) = 0, thatis, o = oy. For any decomposition as in (12), another free
state o_ can be uniquely defined using the max-divergence of resourcefulness (definition 4) as
follows:

ZDmax,F(”H”+)U+ — 0

O T Dl (13)
Sg(O') 2Dmax,F((TH(T+) -1 Sg(O') 2Dmaxy,:(aHa+) —1
- 2PmaxF@llo) - uxrlo) — 1 | 7® (14)
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g0

Figure 1. Geometric intuition for the generalized free fraction introduced in definition
6. Here o denotes the optimized density matrix, which is able to achieve, by means of
convex mixing, the generalized free fraction of o.

whenever Dy r(o||oy) < 400, or o_ =0, otherwise. In order to derive (14) we just
plugged (12) into (13) and rearranged terms. Notice that since o ¢ F, we have o # o, and
Dpax.r(o||o+) > 0. Itis easy to check that, by construction, o_, as o, lies on the intersection
between the border of F and the segment joining o with 0. Our main results will originate
from a careful evaluation of the relative distances between these four points in state space.

3. Main results

In this section, we state and prove the main results of this paper. Firstly we derive, for any finite-
dimensional resource theory in which the set of free states is non-empty closed and convex,
sufficient conditions for the existence of a resource morphism between any two states, given
in terms of resource monotones. Such conditions are formulated so to allow, in general, non-
zero errors in the state transition, while the operation implementing the transition is an exact
resource morphism.

Theorem 1. Let us arbitrarily fix two states, p,o € D(C™), and two values €, ¢, € [0, 1].
Let us moreover choose & € B?(0) and 61 € F 5o that Dy (5|5 1) = Didux(0).

(@) If D, (p) = +o0, then p, 0.
(b) If Diax(0) = 0, then p>,0.
(©) If D, (p) < +00 and Didax(c) > 0, then

1. either Dy p(6]|64) < +00; in such a case, P=e 4,0 if the following two conditions
simultaneously hold:

Dil(p) = D2, (0) (15)
and

€ D . i~ 7@(1
27?£?h1 (pllw) S 2 mdx,F(0'H0'+) u () _ 1

; (16)

= 2Dmax,F(5'H5'+) — 1

2. 0r Dyax (6 ||G4) = 400, in such a case, p>, 1,0 if condition (15) above holds together
with

D! = min D¢’ . 17
max D}/ (p||w) = min D/ (p||w) (17)
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Remark. As discussed in section 2.3, the assumption D;2.x(0) > 0 in case (c.1) guarantees
that also Dy £(5]|64) > 0, so that the denominator appearing in the right-hand side of (16) is
strictly greater than zero. Also, since D;' (p) > — log(1 — €) independently of p, the parameter
€1 can be modulated so to compensate, to some extent, eventual lack of resource in the initial
state.

Condition (17) is stronger than condition (16), in the sense that if the former is satisfied, the
latter is also satisfied. This is because, by multiplying both sides by 2PmxF@I7+) — 1 > 0 (see
preceding remark), condition (16) becomes

~~ Fl Fl ,
Dinax p(3104)—max Dy (pllw) ——max Dy (pl|w)

2 2 =2

Dina (6|54 )—min Dy (pllw)

1’
and this, if max,cr D} (p||w) = min,er D) (p||w), becomes equivalent to

—max D! (p|w
0 ek h (pllw) <

X 1

which is always trivially satisfied, due to the non-negativity of the hypothesis testing relative
entropy. In other words, we have shown the following:

Corollary 1.  Given a state p € D(C™), suppose that max,.cr D) (p||lw) = min,er D' (p||lw).
Then, for any o,
@Zl (p) 2 @;?lax(o') = p>—(‘1+‘2)0"
Corollary 1, for rank-one p and ¢; = 0, recovers theorem 2 in reference [LBT19].

Proof of theorem 1. Case (a) is easily proved as follows. The condition D;'(p) = +00
guarantees the existence of an operator P € P (p) such that Tr {P w} =0 for all w € F.
Hence, by constructing a CPTP map as follows:

EO=Tr{P }o+Tr{(1—-P) -},

where ¢ is an arbitrarily fixed element of F, we see that £ maps all free states to ¢, so that
E(F) C F, while ||E(p) — o1 <2(1 = Tr{Pp}) < 2.

Case (b) follows trivially from the fact that condition D2,x(c) = 0 guarantees the existence
of at least one free state which is e;-close to 0. Hence, the sought resource morphism is trivially
given by the CPTP map that prepares any one such states.

Now we move on to case (c). We begin by looking at condition (15), which is the same in
both (c.1) and (c.2), and rewrite it as follows

—log Tr{P" w'} > Dnux(7]|0+), (13)

where

e the operators P* € P'(p) and w* € F are chosen to satisfy:

T {P* W'} =274 ® (19)
= in Tr{P 20

max mpin, TP ) e

= i Tr{P ; 21

(2B i ) o
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the equality in the third line follows from the minimax theorem, for example, in Kakutani’s
formulation [Kak41, FKKO04], whose hypotheses are satisfied since both optimizations
range over convex sets and the functional to be optimized is linear, and hence both convex
and concave, in its arguments;

e the operators & € D(C™) and & € F are chosen so to satisfy:

Dinax(5(|5 1) = D2 (0) (22)
=min min Dy (0'||w) (23)
weF o'eB(0)
= min min Dy (0’||w) (24)
o'eB (o) weF
= Dmax(0), (25)

that is, o4 achieves the generalized free fraction for & as in equation (12), namely:
0+ = 84(0)7 + (1 — F4(5))00. (26)

In reference [BST19], condition (15) alone is shown to be sufficient for the existence of
a test-and-prepare CPTP linear map & such that ||E(p) — 0|1 < 2(¢; + €) and E(w*) =74
Such a map is explicitly given as follows:
-0

EC) =Tr{P" }& +Te{(1 - P") -}Mﬁil, 27)
where, for convenience of notation, we have put M :=1/Tr {P* w*} = 22/ ®_Without loss of
generality, we can assume that 1 < M < +oo for the following reasons. First of all, notice
that the assumption D;'(p) < oo implies M < +oco. Moreover, we can also assume that
Tr{P* w*} < 1, thatis M > 1, otherwise D;' (p) = 0 and, by (15), Di3.x(c) = 0, thus making
the situation trivial.

As shown in [BST19], the above map is CPTP; in order to show that it is a resource mor-
phism, we only need to show that £(F) C F. To this end, let us assume that the input to £ is an
arbitrary ¢ € F. We need to show that £(¢) € F. By arranging terms, we obtain,

1 =Tr{P* ¢} \ _ 1 =Tr{P* ¢} \ _
Ep)=(1———+— " _— . 28
(¥ ( =t o) ) T\ T prwry ) O (28)
Again for convenience of notation, let us put 7:= % and R := §,(0). We now recall

the optimal decomposition (26): by inserting it into (28) and rearranging terms once more, we
arrive at

E(p) =1 —t+1R)s + (t — tR)Dy. (29)

The above relation tells us that £(¢) lies somewhere on the affine line passing through both
& and 6. Therefore, in order to have £(p) € F, the coefficient (1 — ¢ 4 tR) weighing & must
be carefully bounded both from above and from below, so that £(¢) is neither too close to &
nor too close to G, in which case it could end up lying outside F (see figure 1 for a schematic
picture).

The upper bound is computed as follows. Since the free fraction is exactly defined as the
maximum weight of & so that a convex mixture with &g lies in F, we want to show that the
weight of ¢ in (29) does not exceed R, that is,

I —t+tR <R,
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or, equivalently,
1—t<(1—=10R. (30)
Since, starting from equation (21),

TP W) = i, e TP )

= max Tr{P" w}
weF
> Tr{P" p} >0,

we see that 7 > 1, thatis, 1 — ¢ < 0, and inequality (30) automatically holds for any R € [0, 1],
without the need to invoke any extra condition.

Hence, condition (16) or condition (17) are only required to obtain the correct lower bound,
that is, to prevent that £(¢) crosses the border of F when approaching &¢. In order to derive the
lower bound, we resort to the construction introduced in equation (13) and depicted in figure 1.
Once a decomposition achieving the generalized free fraction of & is found, 6 _ is the state on
the boundary of F, which is ‘antipodal” with respect to & . If we get past it, we end up outside
F: we need to make sure this does not happen.

We begin by assuming that Dy r(F|F4) < 400, that is, 64+ # 6_. (We recall that
Dinax p(5]|G4+) > 0 is a consequence of the assumption D2 (0) > 0.) In this case, we need
to impose that

R2Dmax,F(6_”&+) — 1
l—t+tR>

2Dmax,F((~7H(~7+) _ l : (31)

Before proceeding, we notice that the above inequality, if satisfied, implies in particular
1 —t+tR > 0, because R 2PmaxF@llo4) — 2Pmax FG1I7-H)~Dnax @l 4) >
Condition (31), after writing ¢ explicitly again, reads as follows:

1

1 —Tr{P" ¢} 1 —Tr{P* ¢} R 2Pmax F@l64) _
————— 5 +R > _ .
1 =Tr {P* W*} 1-Tr {P* w*} 2Dmax F@1I54+) _

Since we are assuming that Tr {P* w*} < 1, multiplying both sides by 1 — Tr {P* w*} does
not change the inequality, so we obtain the equivalent condition:

R2Dmax,F(6_”&+) — 1
(=BT {P ¢} > =

(1 =Tr{P" w'})+Tr{P" W'} —R.

Dmax,F(FTHFLI—) _ 1
After rearranging the right-hand side, we arrive at

Tr {P* w*} 2Pmunr@l74) _
2Dmax.F(5'H5'+) -1

(1-RTe{P" ¢} > (1 -R)

Since R < 1 (because we assumed that & ¢ F, that is, D ,,x(5) > 0), we can divide both sides
by (I — R) and obtain

LZDmax,F(ﬁHFTJ—) _ 1
Te{P" p} > 27

(32)

Dmax,F((;”(;-&-) _ 1 :

10
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The above condition must be satisfied for any ¢ € F. Hence, what we really want is a lower
bound on min,cr Tr{P* ¢}. Noticing that

in Tr {P* > mi in Tr {P 33
PR T el e T ) (9

= i i T P 34
T I, TP ) oY

€
—max D) (p||w)
DaE h /}H ’

(35)
condition (32) holds whenever the following, stricter condition holds, that is,

1ylle 1 3 Dimax p(G (|5 4)
—max D! 2 'max,F' + _1
) max Dy, (pllw) > M o
ZDmax,F(”H”+) _ 1
Dina (6|54 )—min D, (pllw) 1

2

- IDmax F@64) _ 1
Hence, condition (16) guarantees that £(p) € F for any ¢ € F, that is, that the operation &£
defined in (27) is a valid resource morphism.

Let us finally consider the case in which Dy p(d||0+) = +o0, that is, 5. = ¢_. In this
case, lower and upper bounds have to coincide, so that the map defined in (27) is a resource
morphism if and only if 1 — 7 4+ tR = R. This can only happen if R = 1 (but this is excluded
because & ¢ F) orif 1 — ¢t = 0, that is, if r = | independently of the input ¢ € F. This is guar-
anteed if the operator P* in (27) has the same trace on all free states, which is exactly the
content of (17). O

A less general, but simpler, statement stemming from theorem 1 is the following:

Corollary 2. With the same notations of theorem 1, suppose that the following condition
holds,

D,1(p) = Dinax (7 ]|64). (36)
Then, p=c, 4c,0.

Proof. Assuming (36), if Diax r(G]|5+) = +00, then also ;' (p) = +o0. In such a case, we
know from theorem 1, case (a), that p>~., o, which of course implies also p=(c, +¢,)0.

On the other hand, if Dyax p(7]|5+) = 0, we know that & € F, so that, in fact, D2, () = 0.
In other words, we are in case (b) of theorem 1, and again p>(, 1,0 holds.

We are hence left to consider the case

+00 > D (p) = Dnaxr(5|654) > 0. (37)

We show that condition (37) alone implies both conditions (15) and (16) of case (c.1) in
theorem 1.

Since by definition Dyx £(5]|5+) = Dmax(5|61) = Dimax(0), we immediately see that con-
dition (37) implies condition (15). Hence, we only need to show that also condition (16) is
implied. In fact, we can show that (37) implies a condition that is even stronger than (16). Such
a condition is the following:

ZDmax,F(&H&+)7©;1 () _ 1
0=

2Dmax,F(5'H5'+) — 1
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If the above is satisfied, also (16) is satisfied, and we can conclude that p~(, .,yo. The above
inequality is satisfied because, as a consequence of Dy £(0]|G4) > 0, the denominator in the
right-hand side is strictly positive, so that the above inequality is equivalent to

1 2 ZDmax,F((;HFLI—)_@;l (/’),

which is satisfied if and only if condition (37) is satisfied. O

A merit of corollary 2 is to provide a simple compact sufficient condition, free of supple-
mentary caveat like condition (16), which is difficult to interpret operationally. However, the
right-hand side of (36) is not yet a valid resource monotone. The following result fills the gap.

Theorem 2. Given p,o € D(C") and €), ¢, € [0, 1], if

D, (p) = D, (), (38)
then p=(c, +¢,)0.

Theorem 2, when ¢, = 0 and o is rank-one, recovers theorem 5 in reference [LBT19] (see
also corollary 17 of [RBTL19]).

Theorems 1 and 2 are independent of each other. This is because, on the one hand, it is
possible that ©;' (p) > Diiux(0) even though D) (p) # D2, r(0), so that theorem 2 would be
inconclusive. On the other hand, it is possible that D;'(p) > D>, (o) even though neither
condition (16) nor (17) hold, so that theorem 1 would be inconclusive. In other words, theo-
rems 1 and 2 in general apply to two different regimes and are logically independent of each
other. Nonetheless, since & € B2 (o) and 6+ € F, we see that Dy r(5]|51) > @max (o). This
implies that corollary 2 above can be as well derived as a consequence of theorem 2.

Proof. We begin by noticing that, if ©;'(p) = +o0, we are back to case (a) of theorem 1.
Also, if L‘Dmax g(0) = 0, then also Di2x(0) = 0, and we are back to case (b) of theorem 1. In
what follows we will hence assume that +oo > D;'(p) = D2, (o) > 0.

Letus define P*,w*, &, 0 as the optimizers achieving the quantities that appear in condition
(38), that is,

Dj(p) =min Dj! (pl|w) = Dj! (pl|w") = ~log Tr {P* &’} (39)
max > o) = m1n Dnﬁax £(0||w) = Dmax (|0 4). (40)

Notice that while &, & were used in theorem 1 to denote the optimizers achieving D2 (o), for
the sake of this proof the same symbols are used to denote the optimizers achieving @2, £(0).
Writing M == 1/Tr {P* w*}, that is,

1 %
i =Tr{P" w'} = max Pergglr}p) Tr{P w},

we define the map

Mo — 5

EO) =Tr{P" Y6+ (1 —Te{P" .})%. (41)
Notice that, with respect to the map constructed in (27), the above map uses the same operator
P*, but prepares different states depending on the outcome. As before, moreover, it is possible
to assume without loss of generality that | < M < +oc.

12



J. Phys. A: Math. Theor. 53 (2020) 445303 W Zhou and F Buscemi

Since Diax (]| +) = Dmax(¢||6+), condition (38) implies that,
D; (p||w*) = Dmax(5|54), (42)

A direct consequence of [BST19] is that condition (42), together with the fact that & € B%(0),
imply that the map € defined in (41) is a valid CPTP map such that 1(|€(p) — 0| < €1 + €.
In what follows we show that £ is, in particular, a resource morphism.

Because ¢ and G have been chosen as the states that optimize D7, (o), we have
Dinax F(0 |6 +) = Dmax r(6) = — log (). Therefore, we obtain the following decomposition
of g4,

o4+ =3§(0)0 + (1 — ()00, (43)

with o € F. By plugging (43) in (41), and considering as input to the map an arbitrary free
state ¢ € F, we reach the following

E(p)=(1—t+1tR)g + (t — tR)oy, (44)
where, for the sake of notation, we put #:= % and R =3 (o). Notice that while the

proof of theorem 1 is obtained by working with the generalized free fraction, in this proof we
are mostly working with the free fraction.

We need to show that £(p) € F, for all ¢ € F. To that end, we only need to show that the
weight in front of & in (44) is non-negative and upper bounded by R.

In order to show that it does not exceed R, we proceed as follows. In the proof of theorem 1,
we have shownthats > 1,sothat 1 — ¢ + R < R, thatis, R(f — 1) < ¢ — 1, holds automatically
forany R € [0, 1].

In order to show the weight of & is non-negative, it suffices to show that

1
R>1-——.
t
. 1 M 1 M—1 . :
Since t < T o] w1 We havethat 1 — ¢ ' <1 — s SO that the above is satisfied
whenever
1
R > i =Tr{P" w'},

that is to say

§G) =2 PmrF @ > Tr {PF W} = 2700,

4. Applications and examples

In this section we apply theorems 1 and 2 to some situations of physical interest, and show
how we can not only rederive, but sometimes also strengthen, previous results.

4.1. Singleton resource theories

We begin this section by considering the special case of singleton resource theories, in which
the set of free states F comprises only one element. This scenario includes the resource theory
of athermality, namely, the case in which free operations are those that preserve the thermal

13
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state of the system [HO13, BHO" 13, BHN™ 15, Bus15], which in turns provide the backbone
of the resource theory of quantum thermodynamics [GJB™18]. More generally, when the out-
put singleton is allowed to differ from the input one, this is referred to as the resource theory
of asymmetric distinguishability, whose optimal rates have been studied in [Mat10, BST19,
WWI19].

In the singleton case, the log-robustness typically is infinite, and the applicability of theorem
2 is quite limited. On the contrary, theorem 1 can still be useful, even in the case of a singleton
F. Indeed, theorem 1 reduces in the singleton case to lemma 3.3 of [BST19], which is good
enough to serve as the starting point to study optimal asymptotic interconversion rates.

Proposition 1. Consider an input system, with initial state p € D(C™) and free singleton
F= {v}, and an output system, with target state o € D(C") and free singleton F'= {~'}. If the
following condition holds,

D (pll7) = D (a1, (45)
then p>(, 1+e,)0.

Proof. We can restrict ourselves to consider only case (c.2) of theorem 1, because for a
singleton F' = {+'}, whenever o # 7/, one has Dyay ¢'(o||7') = +00. But since also the input
free set F is a singleton, we have

min D} (p||w) = max D;!(p||w),
weF weF

and condition (17) is automatically satisfied. O

4.2. Resource theory of bipartite entanglement

Next, we specialize our results to the resource theory of entanglement. We begin by considering
bipartite entanglement, namely, the case in which F is the set of all separable states of a given
bipartite system. Resource morphisms are given by separability-preserving (or non-entangling)
CPTP maps, usually denoted as SEPP. One-shot entanglement distillation and dilution under
SEPP have been studied in [BD11]. In what follows we show how our corollary 2 is able to
guarantee the existence of a SEPP transition directly mapping p to o, even in situations in
which the results of reference [BD11] cannot guarantee the existence of a ‘distill-and-dilute’
transition.

In order to illustrate the point, it is enough to consider the exact case, that is, €; = ¢, = 0.
The same conclusions hold also in the approximate case, however, some care must be taken in
that while here we use the trace-distance to measure approximations, reference [BD11] uses
the fidelity. Trace-distance and fidelity are well-known to be equivalent [Will3, NCO0O0], but
approximation parameters must be changed: we leave it to the interested reader to work out
the exact factors.

By rewriting the main results of [BD11] using our notation, the zero-error one-shot
SEPP-distillable entanglement qu)SEPP(p) and the zero-error one-shot SEPP-entanglement cost

Eppp(0) satisfy
E;){)SEPP(p) 2 I_Emm(p)J (46)
and

E(C},)SEPP(U) < :Dmax,F(U) + 1, (47)

14
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respectively. These two relations together guarantee that it is possible to exactly go from p to
o via SEPP (passing through the maximally entangled state) if

Lgmin(p” > Dmax,F(o—) +1,

which is more restrictive than what theorem 2 says, that is,

Qmin(p) = Qmax,F(o—)~

This is possible because we do not require the transformation to pass through the maximally
entangled state, but we allow it to go directly from p to o.

Remark. When working within the resource theory of entanglement, especially in the one-
shot regime, it is customary to allow the output system to differ from the input one. Conse-
quently, also the set of free states changes from F to F'. As already noticed, our bounds can be
straightforwardly extended to cover this situation as well: in such a case, all quantities related
to the input state p will be computed with respect to the input free set F, while all quantities
related to the output state o will be computed with respect to the output free set F'.

4.3. Existence of a maximally resourceful state and weak-converse bounds for distillation
and dilution

In this section we show how corollary 1 and theorem 2 can be used to formulate sufficient
conditions that guarantee that an element «v is maximally resourceful, in the sense of definition
2. We also address the related problem of deciding when corollary 1 and theorem 2 are optimal,
i.e., when the sufficient conditions they formulate become also necessary. For the sake of the
presentation, we focus here on the case of exact transitions, that is, ¢; = €, = 0, keeping in
mind, however, that the results of section 3 allow us to go beyond the exact case and to speak
of, e.g., almost-maximally resourceful elements.
We begin with the following fact (see also corollary 4 in [LBT19]):

Proposition 2. The following statements hold.

(a) Let o € D(C?) be such that D pin() = max ,cpcd) Dmax(p), and Tr{w 11, } = constant,
for any w € F. Then o is maximally resourceful in D(CY).

(b) Let o € D(CY) be such that D pmin(a) = max,cpcd) Omaxf(p). Then o is maximally
resourceful in D(CY).

Proof. Case (a): being Tr{w II,} constant for any w € F, the assumptions in corollary
1 are satisfied with €; = €, = 0. The proof then follows trivially, from the assumption that
Dmin(a) = max ,epcd) Dimax(p) = Dmax(0) for any o € D(CY).

Case (b): in this case we apply theorem 2, and again the proof follows trivially, from the
assumption that ® i, () = mMax,cpcd) D maxF(P) = Dmax r(0). O

Remark. Since, for any p,0, Dnin(p||0) < Dunax(p||o) < Dimax.r(p||o), condition
(a) in proposition 2 above implies that Dpin() = Dmax(@) = max,cpcd) Dmin(p) =
max,p ) Dmax(p); analogously, condition (b) implies Dpin(@) = Dpar(a) =
max ,cpcd) Dminlp) = max ,cpcd) Dmax,F(0).

The two sufficient conditions considered in proposition 2 are independent. For example,
both in the resource theory of bipartite entanglement and in the resource theory of coherence a

maximally resourceful state exists, namely, the maximally entangled state and the maximally
coherent state, respectively. However, while the maximally coherent state satisfies condition
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(a) but not condition (b), the maximally entangled state satisfies condition (b) but not (a): see
[RBTL19] for the explicit calculation.

Another example is provided by the resource theory of genuine multipartite entanglement,
in which the free set is taken to be the set of all biseparable states and resource morphisms
correspondingly are defined as biseparability-preserving maps. In this case, it is possible to
show by explicit calculation [CTPdV 19, RBTL19] that the generalized GHZ state, that is,

d
1
W = >
\/HiZI

satisfies condition (b) of proposition 2. We conclude, therefore, that \\Ilgdez)> is maximally

resourceful.

The following propositions provide sufficient conditions so that the bounds in corollary 1
and theorem 2 are optimal. In the following proposition, we make it explicit that the input
system (with state space D(C™) and free set F) in general may differ from the output system
(with state space D(C") and free set F'). A related result is theorem 2 of reference [LBT19].

Proposition 3 (weak-converse bounds for dilution). When dealing with transitions
from an input system (C™, F) to an output system (C", F"), the following statements hold.

(a) Suppose that o € D(C™) satisfies D pin(@) = Dmax (), then, for any o € D(C")

a> o0 = Dnin(@) 2 Dmax(0). (48)
(b) Suppose that oo € D(C™) satisfies D min(t) = Dmaxr(Q); then, for any o € D(C")

a0 = Dnin(@) 2 D e (0). (49)

Proof. Case (a): suppose that a > o, so that there exists a resource morphism
£ :D(C™) — D(C") such that £(«) = o; then,

:Dmin(a) - :Dmax(a)
2 Dmax (E())
- :Dmax(o')a

where the inequality in the second line comes from the fact that ®,,y is a resource monotone.
Case (b): suppose that a > o, then

:Dmin(a) = :Dmax,F(O‘)
2 D (E()
= (Dmax,F/(o—)’

where the inequality in the second line comes from the fact that ®,r is a resource
monotone. O

An analogous weak converse for distillation is the following (see also theorem 5 of [LBT19]
for a related result).

Proposition 4 (weak-converse bound for distillation). Consider an input system
(C™,F) and an output system (C",F'), and let oo € D(C") be a target state such that
D (@) = Dmin(). Then, for any p € D(C™),

P = Dnin(p) 2 Dpe (@) (50)
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Proof. If p > « then Dyin(p) = Dnin(E(P)) = Dmin(@) = D axp (). O

Remark. By looking at the proofs of theorems 1 and 2, we see that the resource morphisms
used there have been constructed as test-and-prepare quantum channels. As a consequence,
propositions 3 and 4 above can be interpreted as giving sufficient conditions for which test-
and-prepare channels are provably optimal in resource manipulation, despite constituting a
very special class among all CPTP maps.

A natural question to ask, at this point, is whether density matrices always exist, for which
propositions 3 and 4 hold, namely, for which test-and-prepare channels provide the opti-
mal resource morphisms. As it turns out, perhaps surprisingly, in any resource theory with
non-empty closed and convex F, even if a maximally resourceful element may not exist, a
golden state, namely, a rank-one density matrix ¥ € D(C%) such that max /}GD(C(I)@min(p) =
Onin(V) = DOnax (P 4) = maxpeD(Cd)@max(p), can always be found [LBT19, RBTL19]. How-
ever, before concluding that test-and-prepare morphisms are optimal for golden states,
one still needs to verify that, either ¥ satisfies Tr{w W} = constant for all free w, or
Dmax(V 1) = Dmaxr(P4) also holds, and both such extra conditions depend on the actual
resource theory at hand. The resource theories of coherence and bipartite entanglement again
provide two paradigmatic examples in this sense.

5. Conclusions: resource comparison without a maximally resourceful state

In this work we have derived sufficient (and, in some cases, necessary) conditions for the exis-
tence of a CPTP linear map transforming, up to arbitrary accuracy, an input state p into a target
state o, under the additional condition that a convex non-empty subset of states is mapped
into itself. Such a framework is particularly suitable to be applied to generalized resource the-
ories, in which the convex subset represents the set of free states in the theory, so that any
transformation that maps free states to free states is itself free, in the sense that it cannot cre-
ate resources for free. The conditions that we formulated are expressed in terms of entropic
monotones, which are computed independently for the input state and the target state. In this
way, we can still speak of the resource’s worth of any state, taken individually, even if a privi-
leged maximally resourceful state does not exist, so that the tasks of resource distillation and
dilution (which typically are used to quantify the resource content) cannot be defined. Aspects
that we did not cover in this work are the scaling of the interconversion rates in the case in
which a composition rule is given, and the complexity of numerically computing the entropic
monotones used to compare resources.
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